Medscape is available in 5 Language Editions – Choose your Edition here.


Pediatric Bronchiectasis Treatment & Management

  • Author: Michael R Bye, MD; Chief Editor: Michael R Bye, MD  more...
Updated: Sep 20, 2015

Approach Considerations

In addition to the treatment of an identified underlying disorder in patients with bronchiectasis, therapy is guided at reducing the airway secretions and facilitating their removal through cough. Pharmacotherapy may be used to enhance bronchodilation and to improve mucociliary clearance.

Antibiotics can be used to prevent and treat recurrent infections, usually based on the findings at bronchoalveolar lavage. Secretions can be mobilized with chest physiotherapy and mucolytic agents. Occasionally, surgery may be considered. The goal of therapy is to mobilize secretions and to reduce the infectious and inflammatory load, thereby preventing progression of airway destruction.

Randomized trials of these treatment options lack proper control groups. In children, many of the therapies have been used in cystic fibrosis (CF). However, non-CF bronchiectasis may not always respond the same as CF. The markers used to assess therapy effectiveness have included the volume of sputum production and the clearance of a radiolabeled aerosol from the lung. More meaningful studies that focus on measures such as rate of respiratory exacerbations and quality of life and improvement in lung function and radiographic findings are needed.


Anti-inflammatory Therapy

Randomized placebo-controlled trials of inhaled corticosteroids in patients with non-CF bronchiectasis showed no significant improvement in lung function. Inhaled corticosteroids may have a role in regulating the host response and halting inflammatory damage to the lung. In children with underlying asthma, it is important to continue inhaled corticosteroids on a chronic basis.

A study of 27 children with stable non-CF bronchiectasis looked at the effects of withdrawal of inhaled corticosteroids.[18] After 12 weeks, they found the patients had increased airway reactivity and decreased neutrophilic apoptosis in induced sputum, but no change in symptom scores, forced expiratory volume in 1 second (FEV1), oxygen saturation, sputum neutrophil ratios, sputum tumor necrosis factor-alpha, or interleukin 8. Systemic corticosteroids may be used to treat any acute reactive airway component, when appropriate.


Bronchodilator Therapy

Bronchodilators are indicated when bronchial hyperreactivity is evident. These agents are used to improve ciliary beat frequency and, thus, facilitate mucus clearance. However, no randomized studies have validated their usefulness in the management of bronchiectasis.

Furthermore, some patients with bronchiectasis experience paradoxic bronchoconstriction with beta-agonist therapy. This is likely secondary to loss of airway tone due to beta-agonist relaxation of bronchial smooth muscle superimposed on already weakened bronchial cartilage in the bronchiectatic airway. Therefore, assessing bronchodilator response before beginning such therapy is critical.


Mucolytic Therapy

Mucolytic drugs are given with the intent of improving tracheobronchial clearance via alteration of sputum consistency. Aerosolized recombinant DNase breaks down DNA released by neutrophils, which accumulates in the airways in response to chronic bacterial infection; however, treatment with this agent has not shown significant benefit in non-CF bronchiectasis. This is presumably due to a lesser component of neutrophils in the airway than in CF.


Antibiotic Therapy

The initial course of treatment may be oral antibiotics and aggressive airway clearance. Intravenous antibiotic therapy and hospitalization may be necessary for children experiencing exacerbations of endobronchial disease. Exacerbation may be characterized by increased cough or sputum production or changes in pulmonary function. Home intravenous antibiotic therapy may be an option in some situations.

A Cochrane review found that long-term therapy with antibiotics is effective in reducing sputum volume and purulence but has limited impact on the frequency of exacerbations and the natural history of the disease process.[19] In addition, long-term antibiotic use may result in the emergence of resistant organisms. A 2015 review determined that available evidence shows benefit associated with use of prolonged antibiotics in the treatment of patients with bronchiectasis, at least halving the odds of exacerbation and hospitalization. However, the authors also add that the risk of emerging drug resistance is increased more than threefold.[20]

Some clinicians treat bronchiectasis with prolonged oral antibiotics on a rotating basis. This is falling into disfavor, as it is in CF. Broad-spectrum antibiotics can be given for a month, followed by a second broad-spectrum drug, followed by a third, and so forth. Another option is to use alternating antibiotics for 7-10 days, with antibiotic-free periods of 7-10 days between each course.

Davies and colleagues and Anwar and colleagues suggested that long-term triweekly therapy with azithromycin can be helpful in patients with bronchiectasis.[21, 22] This has also been helpful in CF. Macrolide antibiotics have anti-inflammatory effects, which have been helpful in CF and in non-CF bronchiectasis.

However, a recent study reported that long-term erythromycin treatment changes the composition of respiratory microbiota in patients with bronchiectasis. In patients without P. aeruginosa airway infection, erythromycin did not significantly reduce exacerbations and promoted displacement of H. influenzae by more macrolide-tolerant pathogens including P. aeruginosa. The authors added that these findings argue for a cautious approach to chronic macrolide use in patients without P. aeruginosa airway infection.[23]

Rosen and associates concluded that antibiotics are important parts of therapy during exacerbations of bronchiectasis, with the selection of agents based on culture results.[24] Inhaled tobramycin was associated with decreased Pseudomonas aeruginosa load in sputum, improved lung function, and fewer hospitalizations. However, these researchers concluded that inhaled tobramycin is not indicated in non-CF bronchiectasis unless Pseudomonas is detected in the sputum or bronchoalveolar lavage samples.[24]

Colistin has recently come into frequent use as an inhaled antibiotic in patients with cystic fibrosis, and it may find its way into therapy for non-CF bronchiectasis. Other inhaled antibiotics are also in development for cystic fibrosis.


Chest Physiotherapy

Manual and mechanical interventions such as chest percussion, vibration, postural drainage, cough-assist devices, and airway oscillation (ie, flutter) are used to facilitate mucous expectoration. The goal is to facilitate effective airway clearance. These devices serve as adjuncts to the cough, which is the most effective and efficient manner of clearing the airway.


Surgical Treatment

Prior to the wide availability of broad-spectrum antimicrobials, both Field and Clark demonstrated a gradual symptomatic improvement of some children who did not undergo surgical therapy for bronchiectasis.[3, 7] In 1993, Lewiston recommended that surgery be delayed, unless symptomatically necessary, until the patient is aged 6-12 years because of the possibility for clinical improvement. Surgery is also delayed in children with stable disease that can be controlled with medical therapy.

Otgun and associates, in a retrospective study, concluded that the decision for bronchiectasis surgery should be made in cooperation with the chest disease unit.[25] Furthermore, anatomic localization of disease should be mapped with radiography and scintigraphic studies. Otgun and associates found the morbidity and mortality rates to be within acceptable ranges. In unilateral bronchiectasis, total excision and pneumonectomy, as opposed to leaving residual disease, was found to be well tolerated and most beneficial to the child.

Pulmonary segmental resection

Pulmonary segmental resection may be beneficial when damage is severe and well localized. Preoperative documentation of severe abnormalities in ventilation and/or perfusion to the affected portion of the lung, such as with a lung scan, is often helpful.


For patients with severe progressive disease, transplantation has worked as well as in subjects with other lung diseases.[26] Transplantation has predominantly been used in patients with CF.


Activity Limitations and Exercise

No specific activity limitations are necessary. Exercise generally promotes increased mucociliary clearance, which may enhance airway clearance in patients with bronchiectasis. However, exercise-induced dyspnea may require further investigation using exercise testing to evaluate for limitation or hypoxemia.


Deterrence/Prevention of Bronchiectasis

Childhood immunization for measles and pertussis has reduced bronchiectasis in the developed world. Screening for tuberculosis and other successful public health measures minimizes the risk of this disease in children.

Aggressive appropriate therapy of lower respiratory tract infections may prevent bronchiectasis. However, because some viruses predispose to bronchiectasis, this therapy is not always successful.

Therapy of the child with chronic or recurrent respiratory problems due to recurrent aspiration and/or gastroesophageal reflux disease is important to reduce the likelihood of developing bronchiectasis.



Although routine care of patients with bronchiectasis is successfully provided by a primary care physician, a pediatric pulmonologist must be consulted for all infants and children with bronchiectasis. The subspecialist should be an integral part of the child's care and should manage most of the pulmonary aspects of the bronchiectasis and the underlying disease.

If recurrent aspiration is a contributing factor, a pediatric gastroenterologist should have input into the child's care. Pediatric immunologists should help manage children with HIV infection or immunoglobulin deficiencies. If the child has an underlying rheumatologic disorder, a pediatric rheumatologist should be consulted on a regular basis.

Physical therapists or respiratory therapists are important and helpful in the chest physiotherapy techniques. Whether manually performed or performed with one of the mechanical devices, the procedure needs to be thoroughly learned and periodically reviewed with the therapist.

Consider transferring the care of the child with refractory bronchiectasis to a pediatric pulmonary center for clinical deterioration, frequent or increased symptoms, or hemoptysis.


Long-Term Monitoring

Children with bronchiectasis should be monitored throughout their lives by a clinician comfortable with the management of chronic lung disease. Children should be seen frequently, generally every 3-4 months, when stable and should be seen more frequently if they are not stable.

Spirometry is recommended at every visit in children older than 5 years. Chest radiograph need not be empirically repeated. If the clinical course changes, a radiograph should be part of the assessment.

Contributor Information and Disclosures

Michael R Bye, MD Professor of Clinical Pediatrics, State University of New York at Buffalo School of Medicine; Attending Physician, Pediatric Pulmonary Division, Women's and Children's Hospital of Buffalo

Michael R Bye, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American Thoracic Society

Disclosure: Nothing to disclose.


Charles Callahan, DO Professor, Chief, Department of Pediatrics and Pediatric Pulmonology, Tripler Army Medical Center

Charles Callahan, DO is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American College of Osteopathic Pediatricians, American Thoracic Society, Association of Military Surgeons of the US, Christian Medical and Dental Associations

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Charles Callahan, DO Professor, Chief, Department of Pediatrics and Pediatric Pulmonology, Tripler Army Medical Center

Charles Callahan, DO is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American College of Osteopathic Pediatricians, American Thoracic Society, Association of Military Surgeons of the US, Christian Medical and Dental Associations

Disclosure: Nothing to disclose.

Chief Editor

Michael R Bye, MD Professor of Clinical Pediatrics, State University of New York at Buffalo School of Medicine; Attending Physician, Pediatric Pulmonary Division, Women's and Children's Hospital of Buffalo

Michael R Bye, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Chest Physicians, American Thoracic Society

Disclosure: Nothing to disclose.

Additional Contributors

Thomas Scanlin, MD Chief, Division of Pulmonary Medicine and Cystic Fibrosis Center, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School

Thomas Scanlin, MD is a member of the following medical societies: American Association for the Advancement of Science, Society for Pediatric Research, American Society for Biochemistry and Molecular Biology, American Thoracic Society, Society for Pediatric Research

Disclosure: Nothing to disclose.


The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Pauline Fani, MD, to the development and writing of the source article.

  1. Singleton RJ; Valery PC; Morris P; Byrnes CA; Grimwood K; Redding G; Torzillo PJ; McCallum G; Chikoyak L; Mobberly C; Holman RC; Chang AB. Indigenous children from three countries with non-cystic fibrosis chronic suppurative lung disease/bronchiectasis. Pediatric Pulmonology. Feb 2013.

  2. Sirmali M, Turut H, Kisacik E, et al. The relationship between time of admittance and complications in paediatric tracheobronchial foreign body aspiration. Acta Chir Belg. 2005 Nov-Dec. 105(6):631-4. [Medline].

  3. Clark NS. Bronchiectasis in childhood. Br Med J. 1963 Jan 12. 5323:80-8. [Medline].

  4. Weycker D, Edelsberg J, Oster G, Tino G. Prevalence and economic burden of bronchiectasis. Clin Pulm Med. 2006. 12:205.

  5. Callahan CW. Bronchiectasis: abated or aborted?. Respiration. 2005 May-Jun. 72(3):225-6. [Medline].

  6. Redding G, Singleton R, Lewis T, Martinez P, Butler J, Stamey D. Early radiographic and clinical features associated with bronchiectasis in children. Pediatr Pulmonol. 2004 Apr. 37(4):297-304. [Medline].

  7. Field CE. Bronchiectasis. Third report on a follow-up study of medical and surgical cases from childhood. Arch Dis Child. 1969 Oct. 44(237):551-61. [Medline].

  8. Twiss J, Metcalfe R, Edwards E, Byrnes C. New Zealand national incidence of bronchiectasis "too high" for a developed country. Arch Dis Child. 2005 Jul. 90(7):737-40. [Medline]. [Full Text].

  9. Karadag B, Karakoc F, Ersu R, et al. Non-cystic-fibrosis bronchiectasis in children: a persisting problem in developing countries. Respiration. 2005 May-Jun. 72(3):233-8. [Medline].

  10. Morrissey BM, Harper RW. Bronchiectasis: sex and gender considerations. Clin Chest Med. 2004 Jun. 25(2):361-72. [Medline].

  11. Field CE. Bronchiectasis in childhood. I. Clinical survey of 160 cases. Arch Dis Child. 1949. 4:21-46.

  12. Twiss J, Stewart AW, Byrnes CA. Longitudinal pulmonary function of childhood bronchiectasis and comparison with cystic fibrosis. Thorax. 2006 May. 61(5):414-8. [Medline].

  13. Akalin F, Koroglu TF, Bakac S, Dagli E. Effects of childhood bronchiectasis on cardiac functions. Pediatr Int. 2003 Apr. 45(2):169-74. [Medline].

  14. Tsao PC, Lin CY. Clinical spectrum of bronchiectasis in children. Acta Paediatr Taiwan. 2002 Sep-Oct. 43(5):271-5.

  15. Lai SH, Wong KS, Liao SL. Clinical analysis of bronchiectasis in Taiwanese children. Chang Gung Med J. 2004 Feb. 27(2):122-8. [Medline].

  16. Edwards EA, Metcalfe R, Milne DG, Thompson J, Byrnes CA. Retrospective review of children presenting with non cystic fibrosis bronchiectasis: HRCT features and clinical relationships. Pediatr Pulmonol. 2003 Aug. 36(2):87-93. [Medline].

  17. Pizzutto SJ; Grimwood K; Bauert P; Schutz KL; Yerkovich ST; Upham JW; Chang AB. Bronchoscopy contributes to the clinical management of indigenous children newly diagnosed with bronchiectasis. Pediatric Pulmonology. January 2013. 48:67-73.

  18. Guran T; Ersu R; Karadag B; Karakoc F; Demirel GY; Hekim N; Dagli E. Withdrawal of inhaled steroids in chidlren with non-Cystic Fibrosis bronchiectasis. Journal of Clinical Pharmacy and Therapeutics. December 2008. 33:603-611.

  19. Evans DJ, Bara AI, Greenstone M. Prolonged antibiotics for purulent bronchiectasis. Cochrane Database Syst Rev. 2003. CD001392. [Medline].

  20. Hnin K, Nguyen C, Carson KV, Evans DJ, Greenstone M, Smith BJ. Prolonged antibiotics for non-cystic fibrosis bronchiectasis in children and adults. Cochrane Database Syst Rev. 2015 Aug 13. 8:CD001392. [Medline].

  21. Davies G, Wilson R. Prophylactic antibiotic treatment of bronchiectasis with azithromycin. Thorax. 2004 Jun. 59(6):540-1. [Medline].

  22. Anwar GA, Bourke SC, Afolabi G, et al. Effects of long-term low-dose azithromycin in patients with non-CF bronchiectasis. Respir Med. 2008 Oct. 102(10):1494-6. [Medline].

  23. Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ. The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial. Lancet Respir Med. 2014 Dec. 2 (12):988-96. [Medline].

  24. [Guideline] Rosen MJ. Chronic cough due to tuberculosis and other infections: ACCP evidence-based clinical practice guidelines. Chest. 2006 Jan. 129(1 Suppl):197S-201S. [Medline].

  25. Otgun I, Karnak I, Tanyel FC, et al. Surgical treatment of bronchiectasis in children. J Pediatr Surg. 2004 Oct. 39(10):1532-6. [Medline].

  26. Beirne PA, Banner NR, Khaghani A, Hodson ME, Yacoub MH. Lung transplantation for non-cystic fibrosis bronchiectasis: analysis of a 13-year experience. J Heart Lung Transplant. 2005 Oct. 24(10):1530-5. [Medline].

  27. Kellett F, Redfern J, Niven RM. Evaluation of nebulised hypertonic saline (7%) as an adjunct to physiotherapy in patients with stable bronchiectasis. Respir Med. 2005 Jan. 99(1):27-31. [Medline].

Posteroanterior chest radiograph of a child with bronchiectasis due to chronic aspiration.
CT scan of the chest of a child with bronchiectasis due to chronic aspiration.
Chest radiograph of a child with severe adenoviral pneumonia as an infant. The child has persistent symptoms of cough, congestion, and wheezing.
Bronchoscopic bronchogram of the left lower lobe on a patient with history of adenoviral pneumonia, demonstrating cylindrical and varicose types of bronchiectasis.
Bronchoscopic bronchogram of the right upper lobe of a patient with a history of adenoviral pneumonia, demonstrating saccular bronchiectasis.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.