Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Vasculitis and Thrombophlebitis Treatment & Management

  • Author: Nadia Jennifer Chiara Luca, MD; Chief Editor: Lawrence K Jung, MD  more...
 
Updated: Jun 30, 2015
 

Medical Care

The management of children with Kawasaki disease involves hospital admission and treatment with intravenous immunoglobulin (IVIG) and high-dose aspirin in the acute phase of the illness.[27] Subsequently, daily low-dose aspirin is given for 6-8 weeks until follow-up echocardiography. IVIG-resistant disease may be treated with methylprednisolone and/or other immunosuppressive therapies (see Kawasaki Disease “Treatment of IVIG-Resistant Disease”)

The management of children with Henoch-Schönlein purpura is primarily symptomatic, and most patients do not require hospital admission. Nonsteroidal anti-inflammatory drugs (NSAIDs) can be given for joint pain or swelling. Corticosteroids may be considered in selected patients (ie, those with severe GI symptoms),[28] but is an area of controversy in the literature.[29] Clinically significant nephritis is typically treated with steroids and other immunosuppressive therapies.

Patients with chronic vasculitides should be managed by a multidisciplinary group of specialists (eg, rheumatologists, cardiologists, nephrologists) and require long-term follow-up for monitoring of relapses, disease activity, end-organ damage and morbidity associated with therapy.

Infliximab and adalimumab can be considered as first-line immunomodulatory agents for the treatment of ocular manifestations of Behçet's disease.[30]

No therapeutic trials have looked at management of vasculitis in the pediatric population, and practice has been based on adult guidelines, which have been summarized.[31, 32, 33] These recommendations provide general guidance that should be modified based on the features of each individual’s illness.

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis

In general, adult patients with ANCA vasculitis are categorized according to different levels of severity to assist treatment decisions, as proposed by the European Vasculitis Study (EUVAS) group.[31]

Table 1. EUVAS disease categorization of ANCA-associated vasculitis (Open Table in a new window)

Category Definition
Localized Upper and/or lower respiratory tract disease without any other systemic



involvement or constitutional symptoms



Early



systemic



Any, without organ-threatening or life-threatening disease
Generalized Renal or other organ-threatening disease, serum creatinine >500



μmol/L (5.6 mg/dL)



Severe Renal or other vital organ failure, serum creatinine >500 μmol/L (5.6 mg/dL)
Refractory Progressive disease unresponsive to glucocorticoids and cyclophosphamide

Induction therapy

Optimal induction therapy for patients with generalized disease (renal or other major organ involvement) is a subject of intensive study. Initial guidelines suggested a combination of cyclophosphamide and high-dose glucocorticoids. However, there have been 3 randomized controlled trials investigating the use of rituximab as an induction agent in adults with granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA).[34, 35, 36] These studies have shown that rituximab is likely as effective as cyclophosphamide in inducing remission.

The most recent treatment recommendations[33] suggest that either regimen be considered and that rituximab may be preferred when cyclophosphamide avoidance is desired (eg, due to toxicity). Some evidence suggests that granulomatous manifestations (eg, orbital granulomas) may not respond to rituximab as well as vasculitic manifestations.[37] With either regimen, high-dose prednisone (1 mg/kg) should be maintained for 1 month. When rapid effect is needed, intravenous (IV) pulsed methylprednisolone may be used in addition to the oral prednisone.

Local guidelines for the prevention of glucocorticoid-induced osteoporosis should be followed in all patients. Cyclophosphamide use should be limited to 3-6 months because of potential for long-term toxicity. However, no consensus about whether pulse IV cyclophosphamide is superior to daily oral therapy. All patients who receive cyclophosphamide should also receive prophylaxis against Pneumocystis jiroveci (trimethoprim-sulfamethoxazole or pentamidine), especially those with GPA.

For patients with mild-to-moderate or limited disease, methotrexate can be used as a less toxic alternative for induction. However, there is some evidence that induction with methotrexate may be associated with a higher risk of relapse.[38]

Plasma exchange is recommended as adjunctive therapy for patients with rapidly progressive severe renal disease.

Maintenance therapy

Evidence suggests that once remission is achieved with either a cyclophosphamide- or rituximab-based regimen, maintenance therapy is required to prevent relapse. One alternative is to use either methotrexate or azathioprine. A recent study has also suggested the use of biannual rituximab as maintenance therapy.[39] The use of low-dose glucocorticoids (10 mg/d of prednisone) is also recommended. Maintenance therapy should be continued for at least 18-24 months, and early cessation is associated with an increased risk of relapse.

Refractory or relapsing disease

The RAVE trial,[34] a randomized, controlled, double-blinded study of cyclophosphamide versus rituximab in ANCA vasculitis, included a planned subgroup analysis of patients with refractory or relapsing disease. The findings demonstrated that rituximab was particularly effective in this population. Several other small series also report the effectiveness of rituximab in patients with refractory or relapsing disease. Other options for refractory or relapsing disease include IVIG, mycophenolate mofetil, infliximab, 15-deoxyspergualin, and antithymocyte globulin.[31]

Systemic polyarteritis nodosa

Patients with severe disease should receive a combination of cyclophosphamide and glucocorticoids. However, a selected group of patients with mild polyarteritis nodosa may be successfully treated with glucocorticoids alone.

Cutaneous polyarteritis nodosa

Some patients respond to NSAIDs alone; however, most require treatment with prednisone. Steroid-sparing agents may be needed (eg, methotrexate, mycophenolate mofetil, colchicine, IVIG). Penicillin prophylaxis may prevent disease exacerbations in patients with evidence of triggering streptococcal infections.[4]

Large vessel vasculitis

A paucity of large controlled trials in the management of large-vessel vasculitis is noted, even in adult patients. Treatment recommendations are based on the EUVAS guidelines.[32]

Induction therapy usually involves high-dose glucocorticoid (prednisone, 1 mg/kg/d). The initial high dose should be maintained for a month and then gradually tapered. Azathioprine or methotrexate have been used as adjuncts to steroid therapy in patients with Takayasu arteritis to improve disease control and to facilitate reduction of the steroid dose. Cyclophosphamide has been used in adults with Takayasu arteritis resistant to glucocorticoids. In addition, tumor necrosis factor (TNF)-α inhibitors (eg, infliximab, etanercept) have been tried with encouraging results, including in a small study of 4 children.[40]

Primary CNS vasculitis

Initiate treatment with high-dose steroids and monthly IV cyclophosphamide for 6 months, followed by maintenance with mycophenolate mofetil or azathioprine for 18 months. Anti-thrombotic therapy (heparin followed by antiplatelet) may be added for large-vessel disease.[21] See Behcet Syndrome and Anti-GBM Antibody Disease for specific treatment of these conditions.

Thrombophlebitis/hypercoagulable state

Anticoagulation is indicated for any patient with a thrombotic episode and an underlying hypercoagulable state. This usually involves initial treatment with heparin with subsequent transition to warfarin.

Refer to Antiphospholipid Antibody Syndrome for details on treatment. Generally, anticoagulant prophylaxis is not indicated in the absence of a thrombotic event. No studies in the optimal management of pediatric patients with antiphospholipid antibody syndrome have been done. The adult literature suggests that patients with documented venous or arterial thrombotic events should be managed with warfarin.[41]

Next

Surgical Care

With involvement of the aorta and renal arteries, angioplasty and stenting of stenotic vessels has been used to improve flow (eg, in Takayasu arteritis). A significant proportion of vessels may develop restenosis, but good response to repeat procedure is noted.[42] In addition, reconstructive surgery with graft implantation may be required. Note that vascular procedures must be done during periods of inactive disease.

Patients with Wegener granulomatosis may develop subglottic stenosis; these lesions can be amenable to endoscopic management with local corticosteroid injection and/or mitomycin-C application.[43] Note that in granulomatosis with polyangiitis (formerly Wegener granulomatosis), repeated procedures are often necessary, and some patients may require tracheostomy insertion.

Previous
Next

Consultations

See the list below:

  • Pediatric rheumatologist
  • Pediatric nephrologist (if renal involvement)
  • Pediatric cardiologist (if large vessel involvement)
  • Pediatric otolaryngologist (for upper respiratory tract involvement)
  • Pediatric hematologist (for thrombophilic disorders)
  • Pediatric neurologist (for CNS involvement)
  • Vascular surgeon or interventional radiologist, as indicated
Previous
Next

Diet

Therapy with prednisone requires adherence to low-salt and low-fat diet with extra calcium and vitamin D.

A low-salt diet is indicated if the patient is hypertensive.

Previous
Next

Activity

No limitations are indicated unless anticoagulants are used (then avoid contact sports).

Previous
 
 
Contributor Information and Disclosures
Author

Nadia Jennifer Chiara Luca, MD Fellow in Pediatric Rheumatology, University of Toronto Faculty of Medicine, Canada

Disclosure: Nothing to disclose.

Coauthor(s)

Susanne Maria Benseler, MD Pediatric Rheumatologist, Section Chief, Alberta Children's Hospital; Associate Professor, Department of Pediatrics, University of Calgary Faculty of Medicine, Canada

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Herbert S Diamond, MD Visiting Professor of Medicine, Division of Rheumatology, State University of New York Downstate Medical Center; Chairman Emeritus, Department of Internal Medicine, Western Pennsylvania Hospital

Herbert S Diamond, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American College of Rheumatology, American Medical Association, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Lawrence K Jung, MD Chief, Division of Pediatric Rheumatology, Children's National Medical Center

Lawrence K Jung, MD is a member of the following medical societies: American Association for the Advancement of Science, American Association of Immunologists, American College of Rheumatology, Clinical Immunology Society, New York Academy of Sciences

Disclosure: Nothing to disclose.

Additional Contributors

Barry L Myones, MD Co-Chair, Task Force on Pediatric Antiphospholipid Syndrome

Barry L Myones, MD is a member of the following medical societies: American Academy of Pediatrics, American Association of Immunologists, American College of Rheumatology, American Heart Association, American Society for Microbiology, Clinical Immunology Society, Texas Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author, Christine Hom, MD, to the development and writing of this article.

References
  1. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994 Feb. 37(2):187-92. [Medline].

  2. Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med. 1997 Nov 20. 337(21):1512-23. [Medline].

  3. Ozen S, Ruperto N, Dillon MJ, et al. EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann Rheum Dis. 2006 Jul. 65(7):936-41. [Medline]. [Full Text].

  4. Ozen S, Anton J, Arisoy N, et al. Juvenile polyarteritis: results of a multicenter survey of 110 children. J Pediatr. 2004 Oct. 145(4):517-22. [Medline].

  5. Akikusa JD, Schneider R, Harvey EA, et al. Clinical features and outcome of pediatric Wegener's granulomatosis. Arthritis Rheum. 2007 Jun 15. 57(5):837-44. [Medline].

  6. Peco-Antic A, Bonaci-Nikolic B, Basta-Jovanovic G, et al. Childhood microscopic polyangiitis associated with MPO-ANCA. Pediatr Nephrol. 2006 Jan. 21(1):46-53. [Medline].

  7. Boyer D, Vargas SO, Slattery D, Rivera-Sanchez YM, Colin AA. Churg-Strauss syndrome in children: a clinical and pathologic review. Pediatrics. 2006 Sep. 118(3):e914-20. [Medline].

  8. Sarica-Kucukoglu R, Akdag-Kose A, KayabalI M, et al. Vascular involvement in Behçet's disease: a retrospective analysis of 2319 cases. Int J Dermatol. 2006 Aug. 45(8):919-21. [Medline].

  9. Weyand CM, Goronzy JJ. Medium- and large-vessel vasculitis. N Engl J Med. 2003 Jul 10. 349(2):160-9. [Medline].

  10. Dedeoglu F, Sundel RP. Vasculitis in children. Rheum Dis Clin North Am. 2007 Aug. 33(3):555-83. [Medline].

  11. Jennette JC, Falk RJ. New insight into the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies. Curr Opin Rheumatol. 2008 Jan. 20(1):55-60. [Medline].

  12. Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest. 2002 Oct. 110(7):955-63. [Medline]. [Full Text].

  13. Md Yusof MY, Vital EM, Das S, Dass S, Arumugakani G, Savic S, et al. Repeat cycles of rituximab on clinical relapse in ANCA-associated vasculitis: identifying B cell biomarkers for relapse to guide retreatment decisions. Ann Rheum Dis. 2015 Apr 8. [Medline].

  14. Janeczko LL. Naive B-Lymphopenia Possible Biomarker of Disease Activity in Vasculitis. http://www.medscape.com/viewarticle/843633. Available at http://www.medscape.com/viewarticle/843633. April 24, 2015; Accessed: July 1, 2015.

  15. Lau KK, Wyatt RJ, Moldoveanu Z, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol. 2007 Dec. 22(12):2067-72. [Medline].

  16. Gardner-Medwin JM, Dolezalova P, Cummins C, Southwood TR. Incidence of Henoch-Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet. 2002 Oct 19. 360(9341):1197-202. [Medline].

  17. Wu M-H, Nakamura Y, Burns JC, et al. State-of-the-art basic and clinical science of Kawasaki disease. Pediatric Health. 2008. 2:405-409.

  18. Cabral DA, Uribe AG, Benseler S, et al. Classification, presentation, and initial treatment of Wegener's granulomatosis in childhood. Arthritis Rheum. 2009 Nov. 60(11):3413-24. [Medline].

  19. Phillip R, Luqmani R. Mortality in systemic vasculitis: a systematic review. Clin Exp Rheumatol. 2008 Sep-Oct. 26(5 Suppl 51):S94-104. [Medline].

  20. Narchi H. Risk of long term renal impairment and duration of follow up recommended for Henoch-Schonlein purpura with normal or minimal urinary findings: a systematic review. Arch Dis Child. 2005 Sep. 90(9):916-20. [Medline]. [Full Text].

  21. Elbers J, Benseler SM. Central nervous system vasculitis in children. Curr Opin Rheumatol. 2008 Jan. 20(1):47-54. [Medline].

  22. Reiff A. Ocular complications of childhood rheumatic diseases: nonuveitic inflammatory eye diseases. Curr Rheumatol Rep. 2009 Jul. 11(3):226-32. [Medline].

  23. Avcin T, Cimaz R, Rozman B. The Ped-APS Registry: the antiphospholipid syndrome in childhood. Lupus. 2009 Sep. 18(10):894-9. [Medline].

  24. Levine D, Akikusa J, Manson D, Silverman E, Schneider R. Chest CT findings in pediatric Wegener's granulomatosis. Pediatr Radiol. 2007 Jan. 37(1):57-62. [Medline].

  25. Kim YK, Lee KS, Chung MP, et al. Pulmonary involvement in Churg-Strauss syndrome: an analysis of CT, clinical, and pathologic findings. Eur Radiol. 2007 Dec. 17(12):3157-65. [Medline].

  26. Lauque D, Cadranel J, Lazor R, et al. Microscopic polyangiitis with alveolar hemorrhage. A study of 29 cases and review of the literature. Groupe d'Etudes et de Recherche sur les Maladies "Orphelines" Pulmonaires (GERM"O"P). Medicine (Baltimore). 2000 Jul. 79(4):222-33. [Medline].

  27. Durongpisitkul K, Gururaj VJ, Park JM, Martin CF. The prevention of coronary artery aneurysm in Kawasaki disease: a meta-analysis on the efficacy of aspirin and immunoglobulin treatment. Pediatrics. 1995 Dec. 96(6):1057-61. [Medline].

  28. Weiss PF, Feinstein JA, Luan X, Burnham JM, Feudtner C. Effects of corticosteroid on Henoch-Schönlein purpura: a systematic review. Pediatrics. 2007 Nov. 120(5):1079-87. [Medline].

  29. Chartapisak W, Opastirakul S, Hodson EM, Willis NS, Craig JC. Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst Rev. 2009 Jul 8. CD005128. [Medline].

  30. Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014 Mar. 121(3):785-96.e3. [Medline].

  31. Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann Rheum Dis. 2009 Mar. 68(3):310-7. [Medline].

  32. [Guideline] Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009 Mar. 68(3):318-23. [Medline].

  33. Guerry MJ, Brogan P, Bruce IN, D'Cruz DP, Harper L, Luqmani R. Recommendations for the use of rituximab in anti-neutrophil cytoplasm antibody-associated vasculitis. Rheumatology (Oxford). 2012 Apr. 51(4):634-43. [Medline].

  34. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010 Jul 15. 363(3):221-32. [Medline].

  35. Jones RB, Tervaert JW, Hauser T, Luqmani R, Morgan MD, Peh CA. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010 Jul 15. 363(3):211-20. [Medline].

  36. Specks U, Merkel PA, Seo P, Spiera R, Langford CA, Hoffman GS, et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med. 2013 Aug 1. 369(5):417-27. [Medline].

  37. Holle JU, Dubrau C, Herlyn K, Heller M, Ambrosch P, Noelle B. Rituximab for refractory granulomatosis with polyangiitis (Wegener's granulomatosis): comparison of efficacy in granulomatous versus vasculitic manifestations. Ann Rheum Dis. 2012 Mar. 71(3):327-33. [Medline].

  38. Faurschou M, Westman K, Rasmussen N, de Groot K, Flossmann O, Höglund P, et al. Long-term outcome of a clinical trial comparing methotrexate to cyclophosphamide for remission induction of early systemic ANCA-associated vasculitis. Arthritis Rheum. 2012 May 21. [Medline].

  39. Roubaud-Baudron C, Pagnoux C, Méaux-Ruault N, Grasland A, Zoulim A, LE Guen J. Rituximab maintenance therapy for granulomatosis with polyangiitis and microscopic polyangiitis. J Rheumatol. 2012 Jan. 39(1):125-30. [Medline].

  40. Filocamo G, Buoncompagni A, Viola S, Loy A, Malattia C, Ravelli A, et al. Treatment of Takayasu's arteritis with tumor necrosis factor antagonists. J Pediatr. 2008 Sep. 153(3):432-4. [Medline].

  41. Ruiz-Irastorza G, Hunt BJ, Khamashta MA. A systematic review of secondary thromboprophylaxis in patients with antiphospholipid antibodies. Arthritis Rheum. 2007 Dec 15. 57(8):1487-95. [Medline].

  42. Lee BB, Laredo J, Neville R, Villavicencio JL. Endovascular management of takayasu arteritis: is it a durable option?. Vascular. 2009 May-Jun. 17(3):138-46. [Medline].

  43. Roediger FC, Orloff LA, Courey MS. Adult subglottic stenosis: management with laser incisions and mitomycin-C. Laryngoscope. 2008 Sep. 118(9):1542-6. [Medline].

  44. McCrindle BW. Kawasaki disease: a childhood disease with important consequences into adulthood. Circulation. 2009 Jul 7. 120(1):6-8. [Medline].

  45. Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation. 2004 Oct 26. 110(17):2747-71. [Medline].

  46. Holve TJ, Patel A, Chau Q, Marks AR, Meadows A, Zaroff JG. Long-term cardiovascular outcomes in survivors of Kawasaki disease. Pediatrics. 2014 Feb. 133(2):e305-11. [Medline].

  47. Benseler SM, deVeber G, Hawkins C, et al. Angiography-negative primary central nervous system vasculitis in children: a newly recognized inflammatory central nervous system disease. Arthritis Rheum. 2005 Jul. 52(7):2159-67. [Medline].

  48. Cantez S, Benseler SM. Childhood CNS vasculitis: a treatable cause of new neurological deficit in children. Nat Clin Pract Rheumatol. 2008 Sep. 4(9):460-1. [Medline].

  49. Jennette JC, Xiao H, Falk RJ. Pathogenesis of vascular inflammation by anti-neutrophil cytoplasmic antibodies. J Am Soc Nephrol. 2006 May. 17(5):1235-42. [Medline].

  50. McCrindle BW, McIntyre S, Kim C, Lin T, Adeli K. Are patients after Kawasaki disease at increased risk for accelerated atherosclerosis?. J Pediatr. 2007 Sep. 151(3):244-8, 248.e1. [Medline].

 
Previous
Next
 
Preferred sites of vascular involvement by selected vasculitides.
Patient with Wegener granulomatosis and saddle-nose deformity.
Tender erythematous nodules in cutaneous polyarteritis nodosa (PAN).
Nodules on sole of foot in cutaneous polyarteritis nodosa (PAN).
Necrotic lesions of polyarteritis nodosa (PAN).
Chest radiography in Churg-Strauss syndrome (CSS) with pulmonary infiltrates.
CT of sinuses in a patient with Wegener granulomatosis (WG) showing erosion and loss of sinus walls.
CT chest in a patient with Churg-Strauss syndrome (CSS) showing multiple nodules.
Table 1. EUVAS disease categorization of ANCA-associated vasculitis
Category Definition
Localized Upper and/or lower respiratory tract disease without any other systemic



involvement or constitutional symptoms



Early



systemic



Any, without organ-threatening or life-threatening disease
Generalized Renal or other organ-threatening disease, serum creatinine >500



μmol/L (5.6 mg/dL)



Severe Renal or other vital organ failure, serum creatinine >500 μmol/L (5.6 mg/dL)
Refractory Progressive disease unresponsive to glucocorticoids and cyclophosphamide
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.