Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Subacute Cutaneous Lupus Erythematosus (SCLE) Workup

  • Author: Janice Lin, MD, MPH; Chief Editor: William D James, MD  more...
 
Updated: Mar 07, 2016
 

Approach Considerations

In order to ensure proper diagnosis, relevant clinical history, detailed skin and physical examinations, laboratory tests, serologic tests, and skin biopsy should be used. It is important to classify cutaneous lupus skin lesions correctly when possible and evaluate for any evidence of systemic involvement.

Next

Laboratory Studies

The extent of laboratory workup should be individualized and based on the level of suspicion for systemic involvement, as follows:

  • Complete blood cell (CBC) count to evaluate for hematologic abnormalities, including anemia, leukopenia, and/or thrombocytopenia
  • Renal function test and urinalysis to evaluate for evidence of proteinuria and renal insufficiency.
  • Antibody testing first with ANA, then other autoantibodies (including but not limited to dsDNA, Ro, La, Sm, ribosomal P) when systemic lupus erythematosus is suspected
  • Complement level (C3 and C4)

 

Previous
Next

Serologic Testing

As mentioned, most patients with subacute cutaneous lupus erythematosus (SCLE) manifest a positive antinuclear antibody (ANA) when tested with human substrates. HEp-2 cells are the substrate used most commonly in commercial laboratories. In a multicenter study, 70% of patients with SCLE were found to have positive ANA and only 5% had positive dsDNA.[22]

Anti-Ro (SS-A) autoantibodies are present in a high proportion of patients, as follows:

  • Annular SCLE - 90%
  • Papulosquamous SCLE - 80-85%
  • SCLE with vasculitis, Sjögren syndrome, or C2d deficiency - Greater than 95%
  • Mothers of infants with neonatal lupus erythematosus (NLE) - Greater than 90%
  • Drug-induced SCLE - 70-80%

Anti-La (SS-B) autoantibodies are often present, but in a lower percentage of patients (typically < 50%). Antinative DNA (double-stranded or nDNA) antibodies usually reflect systemic lupus erythematosus (SLE), but may occur in up to 12% of patients with SCLE. It is also possible to have negative ANA but positive anti-Ro antibody in SCLE patients.[21]

Previous
Next

Biopsy and Histologic Findings

Characteristic histopathologic alterations observed in subacute cutaneous lupus erythematosus (SCLE) include (1) vacuolar alteration of the basal cell layer and (2) an inflammatory cell infiltrate (usually lymphocytic) around vessels (perivascular), around appendiceal structures (periappendiceal), and in a subepidermal location. Epidermal changes, such as atrophy, are common, but follicular plugging is less frequent than in patients with discoid lupus erythematosus (DLE). An abundance of mucin often is seen within the dermis.

Histopathologic features differ depending on the type and age of the lesion. For example, papulosquamous lesions of SCLE are much more likely to manifest diagnostic findings than are annular lesions of SCLE.

Occasionally, direct immunofluorescence (DIF) testing may aid in diagnosis. A positive lupus band test (LBT) is defined as findings of immunoglobulin and/or complement at the dermoepidermal junction. These deposits appear granular and contain IgG, IgM, and occasionally IgA.[23] Examination of tissue may be performed on skin lesions (lesional) or healthy skin (nonlesional). However, nonlesional positive LBTs can be seen in SLE, rheumatoid arthritis, Sjögren syndrome, and other autoimmune diseases.[24] In the majority of cases, clinical and histologic findings are sufficient to make the diagnosis of cutaneous lupus without the need for DIF testing.

The use and interpretation of these tests vary according to the site of biopsy. Only 60% of patients with SCLE test positive on lesional skin. Some, usually those with systemic lupus erythematosus (SLE), have a positive LBT.

Older lesions may be more likely to be negative on immunofluorescence microscopy. The frequency of positive tests also is affected by tissue handling techniques. Snap frozen tissue is less likely to be falsely positive than tissue sent to the laboratory in Michel transport media.

Previous
 
 
Contributor Information and Disclosures
Author

Janice Lin, MD, MPH Clinical Instructor, Department of Immunology and Rheumatology, Stanford University School of Medicine

Janice Lin, MD, MPH is a member of the following medical societies: American College of Physicians, American College of Rheumatology, Medical Dermatology Society, Rheumatologic Dermatology Society

Disclosure: Nothing to disclose.

Coauthor(s)

Jeffrey P Callen, MD Professor of Medicine (Dermatology), Chief, Division of Dermatology, University of Louisville School of Medicine

Jeffrey P Callen, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American College of Physicians, American College of Rheumatology

Disclosure: Received income in an amount equal to or greater than $250 from: XOMA; Biogen/IDEC; Novartis; Janssen Biotech, Abbvie, CSL pharma<br/>Received honoraria from UpToDate for author/editor; Received honoraria from JAMA Dermatology for associate editor and intermittent author; Received royalty from Elsevier for book author/editor; Received dividends from trust accounts, but I do not control these accounts, and have directed our managers to divest pharmaceutical stocks as is fiscally prudent from Stock holdings in various trust accounts include some pharmaceutical companies and device makers for i inherited these trust accounts; for: Celgene; Pfizer; 3M; Johnson and Johnson; Merck; Abbott Laboratories; AbbVie; Procter and Gamble; Amgen.

Ruth Ann Vleugels, MD, MPH Assistant Professor of Dermatology, Harvard Medical School; Associate Physician, Department of Dermatology, Brigham and Women's Hospital; Associate Physician, Department of Immunology and Allergy, Children's Hospital Boston

Ruth Ann Vleugels, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American College of Rheumatology, American Medical Association, Society for Investigative Dermatology, Medical Dermatology Society, Dermatology Foundation

Disclosure: Nothing to disclose.

Specialty Editor Board

Michael J Wells, MD, FAAD Associate Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine

Michael J Wells, MD, FAAD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American Medical Association, Texas Medical Association

Disclosure: Nothing to disclose.

Lester F Libow, MD Dermatopathologist, South Texas Dermatopathology Laboratory

Lester F Libow, MD is a member of the following medical societies: American Academy of Dermatology, American Society of Dermatopathology, Texas Medical Association

Disclosure: Nothing to disclose.

Chief Editor

William D James, MD Paul R Gross Professor of Dermatology, Vice-Chairman, Residency Program Director, Department of Dermatology, University of Pennsylvania School of Medicine

William D James, MD is a member of the following medical societies: American Academy of Dermatology, Society for Investigative Dermatology

Disclosure: Nothing to disclose.

References
  1. Biazar C, Sigges J, Patsinakidis N, Ruland V, Amler S, Bonsmann G, et al. Cutaneous lupus erythematosus: first multicenter database analysis of 1002 patients from the European Society of Cutaneous Lupus Erythematosus (EUSCLE). Autoimmun Rev. 2013 Jan. 12(3):444-54. [Medline].

  2. Lin JH, Dutz JP, Sontheimer RD, Werth VP. Pathophysiology of cutaneous lupus erythematosus. Clin Rev Allergy Immunol. 2007 Oct. 33(1-2):85-106. [Medline].

  3. Braunstein I, Klein R, Okawa J, Werth VP. The interferon-regulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. Br J Dermatol. 2012 May. 166(5):971-5. [Medline]. [Full Text].

  4. Klein LR, Elmets CA, Callen JP. Photoexacerbation of cutaneous lupus erythematosus due to ultraviolet A emissions from a photocopier. Arthritis Rheum. 1995 Aug. 38(8):1152-6. [Medline].

  5. Grönhagen CM, Fored CM, Linder M, Granath F, Nyberg F. Subacute cutaneous lupus erythematosus and its association with drugs: a population-based matched case-control study of 234 patients in Sweden. Br J Dermatol. 2012 Aug. 167(2):296-305. [Medline].

  6. Reed BR, Huff JC, Jones SK, Orton PW, Lee LA, Norris DA. Subacute cutaneous lupus erythematosus associated with hydrochlorothiazide therapy. Ann Intern Med. 1985 Jul. 103(1):49-51. [Medline].

  7. Bentley DD, Graves JE, Smith DI, Heffernan MP. Efalizumab-induced subacute cutaneous lupus erythematosus. J Am Acad Dermatol. 2006 May. 54(5 Suppl):S242-3. [Medline].

  8. Bezerra EL, Vilar MJ, da Trindade Neto PB, Sato EI. Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. Arthritis Rheum. 2005 Oct. 52(10):3073-8. [Medline].

  9. Cassis TB, Callen JP. Bupropion-induced subacute cutaneous lupus erythematosus. Australas J Dermatol. 2005 Nov. 46(4):266-9. [Medline].

  10. Farhi D, Viguier M, Cosnes A, Reygagne P, Dubertret L, Revuz J, et al. Terbinafine-induced subacute cutaneous lupus erythematosus. Dermatology. 2006. 212(1):59-65. [Medline].

  11. Wiznia LE, Subtil A, Choi JN. Subacute cutaneous lupus erythematosus induced by chemotherapy: gemcitabine as a causative agent. JAMA Dermatol. 2013 Sep. 149(9):1071-5. [Medline].

  12. Grönhagen CM, Fored CM, Linder M, Granath F, Nyberg F. Subacute cutaneous lupus erythematosus and its association with drugs: a population-based matched case-control study of 234 patients in Sweden. Br J Dermatol. 2012 Aug. 167(2):296-305. [Medline].

  13. Brunasso A, Aberer W, Massone C. Subacute lupus erythematosus during treatment with golimumab for seronegative rheumatoid arthritis. Lupus. 2014. 23(2):201-3. [Medline].

  14. Wilkerson E, Hazey MA, Bahrami S, Callen JP. Golimumab-exacerbated subacute cutaneous lupus erythematosus. Arch Dermatol. 2012 Oct. 148(10):1186-90. [Medline].

  15. Lowe G, Henderson CL, Grau RH, Hansen CB, Sontheimer RD. A systematic review of drug-induced subacute cutaneous lupus erythematosus. Br J Dermatol. 2011 Mar. 164(3):465-72. [Medline].

  16. Durosaro O, Davis MD, Reed KB, Rohlinger AL. Incidence of cutaneous lupus erythematosus, 1965-2005: a population-based study. Arch Dermatol. 2009 Mar. 145 (3):249-53. [Medline].

  17. Durosaro O, Davis MD, Reed KB, Rohlinger AL. Incidence of cutaneous lupus erythematosus, 1965-2005: a population-based study. Arch Dermatol. 2009 Mar. 145(3):249-53. [Medline].

  18. Cohen MR, Crosby D. Systemic disease in subacute cutaneous lupus erythematosus: a controlled comparison with systemic lupus erythematosus. J Rheumatol. 1994 Sep. 21 (9):1665-9. [Medline].

  19. Sontheimer RD. Subacute cutaneous lupus erythematosus. Clin Dermatol. 1985 Jul-Sep. 3 (3):58-68. [Medline].

  20. Callen JP, Kulick KB, Stelzer G, Fowler JF. Subacute cutaneous lupus erythematosus. Clinical, serologic, and immunogenetic studies of forty-nine patients seen in a nonreferral setting. J Am Acad Dermatol. 1986 Dec. 15(6):1227-37. [Medline].

  21. Tiao J, Feng R, Carr K, Okawa J, Werth VP. Using the American College of Rheumatology (ACR) and Systemic Lupus International Collaborating Clinics (SLICC) criteria to determine the diagnosis of systemic lupus erythematosus (SLE) in patients with subacute cutaneous lupus erythematosus (SCLE). J Am Acad Dermatol. 2016 Feb 18. [Medline].

  22. Tebbe B, Mansmann U, Wollina U, Auer-Grumbach P, Licht-Mbalyohere A, Arensmeier M, et al. Markers in cutaneous lupus erythematosus indicating systemic involvement. A multicenter study on 296 patients. Acta Derm Venereol. 1997 Jul. 77 (4):305-8. [Medline].

  23. David-Bajar KM, Bennion SD, DeSpain JD, Golitz LE, Lee LA. Clinical, histologic, and immunofluorescent distinctions between subacute cutaneous lupus erythematosus and discoid lupus erythematosus. J Invest Dermatol. 1992 Sep. 99 (3):251-7. [Medline].

  24. Rothfield N, Sontheimer RD, Bernstein M. Lupus erythematosus: systemic and cutaneous manifestations. Clin Dermatol. 2006 Sep-Oct. 24 (5):348-62. [Medline].

  25. Hejazi EZ, Werth VP. Cutaneous Lupus Erythematosus: An Update on Pathogenesis, Diagnosis and Treatment. Am J Clin Dermatol. 2016 Feb 12. [Medline].

  26. Herzinger T, Plewig G, Röcken M. Use of sunscreens to protect against ultraviolet-induced lupus erythematosus. Arthritis Rheum. 2004 Sep. 50(9):3045-6. [Medline].

  27. Stege H, Budde MA, Grether-Beck S, Richard A, Rougier A, Krutmann J. Evaluation of the capacity of sunscreens to photoprotect lupus erythematosus patients by employing the photoprovocation test. Eur J Dermatol. 2002 Jul-Aug. 12(4):VII-IX. [Medline].

  28. Kuhn A, Gensch K, Haust M, Meuth AM, Boyer F, Dupuy P, et al. Photoprotective effects of a broad-spectrum sunscreen in ultraviolet-induced cutaneous lupus erythematosus: a randomized, vehicle-controlled, double-blind study. J Am Acad Dermatol. 2011 Jan. 64(1):37-48. [Medline].

  29. Chang AY, Piette EW, Foering KP, Tenhave TR, Okawa J, Werth VP. Response to antimalarial agents in cutaneous lupus erythematosus: a prospective analysis. Arch Dermatol. 2011 Nov. 147(11):1261-7. [Medline]. [Full Text].

  30. Francès C, Cosnes A, Duhaut P, Zahr N, Soutou B, Ingen-Housz-Oro S, et al. Low blood concentration of hydroxychloroquine in patients with refractory cutaneous lupus erythematosus: a French multicenter prospective study. Arch Dermatol. 2012 Apr. 148(4):479-84. [Medline].

  31. Hofmann SC, Leandro MJ, Morris SD, Isenberg DA. Effects of rituximab-based B-cell depletion therapy on skin manifestations of lupus erythematosus--report of 17 cases and review of the literature. Lupus. 2013 Aug. 22(9):932-9. [Medline].

  32. Housman TS, Jorizzo JL, McCarty MA, Grummer SE, Fleischer AB Jr, Sutej PG. Low-dose thalidomide therapy for refractory cutaneous lesions of lupus erythematosus. Arch Dermatol. 2003 Jan. 139(1):50-4. [Medline].

  33. Sticherling M, Bonsmann G, Kuhn A. Diagnostic approach and treatment of cutaneous lupus erythematosus. J Dtsch Dermatol Ges. 2008 Jan. 6(1):48-59. [Medline].

  34. Usmani N, Goodfield M. Efalizumab in the treatment of discoid lupus erythematosus. Arch Dermatol. 2007 Jul. 143(7):873-7. [Medline].

  35. Manzi S, Sánchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis. 2012 Nov. 71 (11):1833-8. [Medline].

  36. Cortés-Hernández J, Avila G, Vilardell-Tarrés M, Ordi-Ros J. Efficacy and safety of lenalidomide for refractory cutaneous lupus erythematosus. Arthritis Res Ther. 2012 Dec 7. 14(6):R265. [Medline]. [Full Text].

  37. Cusack C, Danby C, Fallon JC, Ho WL, Murray B, Brady J, et al. Photoprotective behaviour and sunscreen use: impact on vitamin D levels in cutaneous lupus erythematosus. Photodermatol Photoimmunol Photomed. 2008 Oct. 24(5):260-7. [Medline].

  38. Klaeschen AS, Wenzel J. Upcoming Therapeutic Targets in Cutaneous Lupus Erythematous. Expert Rev Clin Pharmacol. 2016 Jan 22. [Medline].

  39. James JA, Kim-Howard XR, Bruner BF, Jonsson MK, McClain MT, Arbuckle MR, et al. Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus. 2007. 16(6):401-9. [Medline].

  40. Jung H, Bobba R, Su J, Shariati-Sarabi Z, Gladman DD, Urowitz M, et al. The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. Arthritis Rheum. 2010 Mar. 62(3):863-8. [Medline].

  41. Callen JP, Klein J. Subacute cutaneous lupus erythematosus. Clinical, serologic, immunogenetic, and therapeutic considerations in seventy-two patients. Arthritis Rheum. 1988 Aug. 31(8):1007-13. [Medline].

  42. Callen JP. Management of "refractory" skin disease in patients with lupus erythematosus. Best Pract Res Clin Rheumatol. 2005 Oct. 19(5):767-84. [Medline].

  43. Callen JP. Cutaneous lupus erythematosus: a personal approach to management. Australas J Dermatol. 2006 Feb. 47(1):13-27. [Medline].

  44. Huber A, Tüting T, Bauer R, Bieber T, Wenzel J. Methotrexate treatment in cutaneous lupus erythematosus: subcutaneous application is as effective as intravenous administration. Br J Dermatol. 2006 Oct. 155(4):861-2. [Medline].

  45. Kreuter A, Hyun J, Altmeyer P, Gambichler T. Intravenous immunoglobulin for recalcitrant subacute cutaneous lupus erythematosus. Acta Derm Venereol. 2005. 85(6):545-7. [Medline].

  46. Wenzel J, Brähler S, Bauer R, Bieber T, Tüting T. Efficacy and safety of methotrexate in recalcitrant cutaneous lupus erythematosus: results of a retrospective study in 43 patients. Br J Dermatol. 2005 Jul. 153(1):157-62. [Medline].

  47. Kreuter A, Tomi NS, Weiner SM, Huger M, Altmeyer P, Gambichler T. Mycophenolate sodium for subacute cutaneous lupus erythematosus resistant to standard therapy. Br J Dermatol. 2007 Jun. 156(6):1321-7. [Medline].

 
Previous
Next
 
Early lesions of subacute cutaneous lupus erythematosus may simulate polymorphous light eruption.
Papulosquamous lesions of subacute cutaneous lupus erythematosus may simulate psoriasis.
Annular lesions of subacute cutaneous lupus erythematosus.
Tumid lupus erythematosus.
Neonatal lupus erythematosus.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.