Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Dermatologic Manifestations of Albinism

  • Author: Raymond E Boissy, PhD; Chief Editor: William D James, MD  more...
 
Updated: Jul 21, 2016
 

Background

The classification of congenital hypopigmentary diseases that result from a defect in the production of pigment (melanin) due to dysfunction of pigment cells (melanocytes) in the skin, the eyes, and/or the ears consists of the following: oculocutaneous albinism types 1-7; ocular albinism; Chediak-Higashi syndrome (see the image below); Hermansky-Pudlak syndrome; and Griscelli syndrome.[1, 2, 3, 4]

Infant with Chediak-Higashi syndrome presenting wi Infant with Chediak-Higashi syndrome presenting with hypomelanotic skin and white hair with a metallic sheen. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.

See 13 Common-to-Rare Infant Skin Conditions, a Critical Images slideshow, to help identify rashes, birthmarks, and other skin conditions encountered in infants.

Chediak-Higashi syndrome and Hermansky-Pudlak syndrome also manifest with extrapigmentary defects consisting of leukocyte, platelet, pneumocyte, and reticular cell dysfunction. Griscelli syndrome can also manifest with immunodeficiency and neurologic defects.

Infant with oculocutaneous albinism type 1 present Infant with oculocutaneous albinism type 1 presenting with hypomelanotic skin, white hair, and pink irides and pupils resulting from the dysfunction of tyrosinase in the melanocytes of these tissues and the subsequent lack of melanin synthesis. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.
Neonate with oculocutaneous albinism type 3 presen Neonate with oculocutaneous albinism type 3 presenting with minimally pigmented skin and light hair coloration resulting from the dysfunction of tyrosinase-related protein-1 in the melanocytes of these tissues and the subsequent reduction in melanin synthesis. The infant's parents are African American. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.
Next

Pathophysiology

These diseases present with a generalized complete or partial loss in pigmentation of the skin and the hair. Mutations in genes that regulate the multistep process of melanin synthesis, distribution of pigment by the melanocyte, and/or melanosome biogenesis are the basis for these diseases. The proteins/gene products (and respective gene) affected in each form of oculocutaneous albinism are as follows:

  • Oculocutaneous albinism type 1 - Tyrosinase enzyme [11q14-21]
  • Oculocutaneous albinism type 2 - P protein [15q11-13]
  • Oculocutaneous albinism type 3 - Tyrosinase related protein-1 enzyme (TYRP1) [9p23]
  • Oculocutaneous albinism type 4 - A membrane-associated transport protein (MATP/SLC24A2) [5p13.3]
  • Oculocutaneous albinism type 5 - Protein unknown [4q24]
  • Oculocutaneous albinism type 6 - A membrane-associated transport protein (SLC24A5) [15q21.1]
  • Oculocutaneous albinism type 7 - Protein unknown [10q22.2-3]
Previous
Next

Epidemiology

Frequency

The approximate incidences of these diseases are as follows:

  • Oculocutaneous albinism type 1 - One case per 40,000 population
  • Oculocutaneous albinism type 2 - One case per 36,000 population, except in Africans and African Americans, in whom the incidence is 1 case per 10,000 population
  • Oculocutaneous albinism type 3 - Unknown
  • Oculocutaneous albinism type 4 - One case per 100,000 population, except in Japan, where 24% of individuals with oculocutaneous albinism have this form
  • Oculocutaneous albinism type 5 - Unknown (reported in one family)
  • Oculocutaneous albinism type 6 - Unknown (reported in two individuals)
  • Oculocutaneous albinism type 7 - Unknown (reported in several individuals)
  • Ocular albinism - One case per 50,000 population
  • Chediak-Higashi syndrome - Extremely rare
  • Hermansky-Pudlak syndrome - Rare, except in Puerto Rico, where frequency is 1 case per 1800 population
  • Griscelli syndrome - Extremely rare

Race

All races appear to be equally affected by the associated mutations. However, oculocutaneous albinism type 2 is reportedly more common among Africans and African Americans (1 case per 10,000 population) than in whites (1 case per 36,000 population).

Sex

The incidence of these albino diseases is equal for men and women.

Age

All of these diseases present in neonates. Chediak-Higashi syndrome consists of an accelerated phase that occurs years to decades after birth.

Previous
Next

Prognosis

Oculocutaneous albinism types 1, 2, 3, and 4 and ocular albinism are not associated with mortality and/or morbidity outside of cutaneous sensitivity to solar irradiation and the associated visual defects described below (see Physical).

Children with Chediak-Higashi syndrome manifest easy bruising, mucosal bleeding, epistaxis and petechiae, recurrent infections primarily involving the respiratory system, and neutropenia. Approximately 85% of individuals with Chediak-Higashi syndrome enter an accelerated phase, including fever; anemia; neutropenia; and, occasionally, thrombocytopenia, hepatosplenomegaly, lymphadenopathy, and jaundice. Neurologic problems are variable in Chediak-Higashi syndrome and include a peripheral and cranial neuropathy, autonomic dysfunction, weakness and sensory deficits, loss of deep tendon reflexes, clumsiness with a wide-based gait, seizures, and decreased motor nerve conduction velocities. Death usually occurs in the first decade from infection, bleeding, or development of the accelerated phase.

Individuals with Hermansky-Pudlak syndrome manifest a bleeding diathesis resulting from a platelet storage pool deficiency. They also develop a ceroid storage disease in which a ceroid-lipofuscin material accumulates in various organ systems, resulting in pulmonary fibrosis, granulomatous colitis, gingivitis, kidney failure, and cardiomyopathy. Pulmonary fibrosis usually proves fatal in the fourth or fifth decade of life. There are nine different genetic forms of Hermansky-Pudlak syndrome.

Most individuals with Griscelli syndrome develop chronic infections resulting from severe immunodeficiency that can be fatal within the first decade of life.

Previous
Next

Patient Education

Patients should use broad-spectrum sunscreens and should wear appropriate clothing to prevent ultraviolet-induced damage to the skin. Visual impairment can be improved by using corrective lenses.

Previous
 
 
Contributor Information and Disclosures
Author

Raymond E Boissy, PhD Director of Basic Science Research, Professor, Departments of Dermatology and Cell Biology, University of Cincinnati College of Medicine

Raymond E Boissy, PhD is a member of the following medical societies: Sigma Xi

Disclosure: Received none from University of Cincinnati for none.

Specialty Editor Board

Richard P Vinson, MD Assistant Clinical Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine; Consulting Staff, Mountain View Dermatology, PA

Richard P Vinson, MD is a member of the following medical societies: American Academy of Dermatology, Texas Medical Association, Association of Military Dermatologists, Texas Dermatological Society

Disclosure: Nothing to disclose.

Van Perry, MD Assistant Professor, Department of Medicine, Division of Dermatology, University of Texas School of Medicine at San Antonio

Van Perry, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Chief Editor

William D James, MD Paul R Gross Professor of Dermatology, Vice-Chairman, Residency Program Director, Department of Dermatology, University of Pennsylvania School of Medicine

William D James, MD is a member of the following medical societies: American Academy of Dermatology, Society for Investigative Dermatology

Disclosure: Nothing to disclose.

Additional Contributors

Jean Paul Ortonne, MD Chair, Department of Dermatology, Professor, Hospital L'Archet, Nice University, France

Jean Paul Ortonne, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

James J Nordlund, MD Professor Emeritus, Department of Dermatology, University of Cincinnati College of Medicine

James J Nordlund, MD is a member of the following medical societies: American Academy of Dermatology, Sigma Xi, Society for Investigative Dermatology

Disclosure: Nothing to disclose.

References
  1. Chiang PW, Spector E, Tsai AC. Oculocutaneous albinism spectrum. Am J Med Genet A. 2009 Jul. 149A(7):1590-1. [Medline].

  2. Dessinioti C, Stratigos AJ, Rigopoulos D, Katsambas AD. A review of genetic disorders of hypopigmentation: lessons learned from the biology of melanocytes. Exp Dermatol. 2009 Sep. 18(9):741-9. [Medline].

  3. Oetting WS, Brilliant MH, King RA. The clinical spectrum of albinism in humans. Mol Med Today. 1996 Aug. 2(8):330-5. [Medline].

  4. Oetting WS, King RA. Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat. 1999. 13(2):99-115. [Medline].

  5. Pujani M, Agarwal K, Bansal S, Ahmad I, Puri V, Verma D, et al. Chediak-Higashi syndrome - a report of two cases with unusual hyperpigmentation of the face. Turk Patoloji Derg. 2011. 27(3):246-8. [Medline].

  6. Roy A, Kar R, Basu D, Srivani S, Badhe BA. Clinico-hematological profile of Chediak-Higashi syndrome: experience from a tertiary care center in south India. Indian J Pathol Microbiol. 2011 Jul-Sep. 54(3):547-51. [Medline].

  7. Lin YY, Wei AH, He X, Zhou ZY, Lian S, Zhu W. A comprehensive study of oculocutaneous albinism type 1 reveals three previously unidentified alleles on the TYR gene. Eur J Dermatol. 2014 Mar-Apr. 24(2):168-73. [Medline].

  8. Hida T, Okura M, Tanaka T, Yamashita T. A case of oculocutaneous albinism type 4: aberrant expression of SLC45A2 transcript with exon skipping. J Dermatol. 2014 Oct 9. [Medline].

  9. Kamaraj B, Purohit R. Mutational analysis of oculocutaneous albinism: a compact review. Biomed Res Int. 2014. 2014:905472. [Medline].

  10. Ray K, Chaki M, Sengupta M. Tyrosinase and ocular diseases: some novel thoughts on the molecular basis of oculocutaneous albinism type 1. Prog Retin Eye Res. 2007 Jul. 26(4):323-58. [Medline].

  11. Rooryck C, Morice-Picard F, Elcioglu NH, Lacombe D, Taieb A, Arveiler B. Molecular diagnosis of oculocutaneous albinism: new mutations in the OCA1-4 genes and practical aspects. Pigment Cell Melanoma Res. 2008 Oct. 21(5):583-7. [Medline].

  12. Zuhlke C, Criee C, Gemoll T, Schillinger T, Kaesmann-Kellner B. Polymorphisms in the genes for oculocutaneous albinism type 1 and type 4 in the German population. Pigment Cell Res. 2007 Jun. 20(3):225-7. [Medline].

  13. Suzuki T, Tomita Y. Recent advances in genetic analyses of oculocutaneous albinism types 2 and 4. J Dermatol Sci. 2008 Jul. 51(1):1-9. [Medline].

  14. Forshew T, Khaliq S, Tee L, et al. Identification of novel TYR and TYRP1 mutations in oculocutaneous albinism. Clin Genet. 2005 Aug. 68(2):182-4. [Medline].

  15. Hutton SM, Spritz RA. A comprehensive genetic study of autosomal recessive ocular albinism in Caucasian patients. Invest Ophthalmol Vis Sci. 2008 Mar. 49(3):868-72. [Medline].

  16. Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008 Jan. 15(1):22-9. [Medline].

  17. Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res. 2006 Feb. 19(1):19-42. [Medline].

  18. Menasche G, Fischer A, de Saint Basile G. Griscelli syndrome types 1 and 2. Am J Hum Genet. 2002 Nov. 71(5):1237-8; author reply 1238. [Medline]. [Full Text].

  19. Minakawa S, Kaneko T, Matsuzaki Y, Akasaka E, Mizukami H, Abe Y, et al. Case of oculocutaneous albinism complicated with squamous cell carcinoma, Bowen's disease and actinic keratosis. J Dermatol. 2014 Sep. 41(9):863-4. [Medline].

  20. Chatterjee K, Rasool F, Chaudhuri A, Chatterjee G, Sehgal VN, Singh N. Basal cell carcinoma, oculo-cutaneous albinism and actinic keratosis in a native Indian. Indian J Dermatol. 2013 Sep. 58(5):377-9. [Medline]. [Full Text].

  21. Carden SM, Boissy RE, Schoettker PJ, Good WV. Albinism: modern molecular diagnosis. Br J Ophthalmol. 1998 Feb. 82(2):189-95. [Medline].

  22. King RA, Hearing VJ, Creel DJ. Albinism. Scriver CR, Beaudet AL, Sly WS, Valle DL, eds. The Metabolic and Molecular Bases of Inherited Disease. 7th ed. New York, NY: McGraw-Hill; 1995. Vol 3: 4353-92.

 
Previous
Next
 
Infant with oculocutaneous albinism type 1 presenting with hypomelanotic skin, white hair, and pink irides and pupils resulting from the dysfunction of tyrosinase in the melanocytes of these tissues and the subsequent lack of melanin synthesis. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.
Neonate with oculocutaneous albinism type 3 presenting with minimally pigmented skin and light hair coloration resulting from the dysfunction of tyrosinase-related protein-1 in the melanocytes of these tissues and the subsequent reduction in melanin synthesis. The infant's parents are African American. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.
Infant with Chediak-Higashi syndrome presenting with hypomelanotic skin and white hair with a metallic sheen. From Carden et al, Br J Ophthal, 1998, 82:189-195, with permission from BMJ Publishing Group.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.