Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Griscelli Syndrome Workup

  • Author: Noah S Scheinfeld, JD, MD, FAAD; Chief Editor: Dirk M Elston, MD  more...
 
Updated: Jan 19, 2016
 

Laboratory Studies

Characteristic laboratory features include pancytopenia, hypofibrinogenemia, hypertriglyceridemia, and hypoproteinemia. In Griscelli syndrome without delayed-type cutaneous hypersensitivity and impaired natural killer cell function manifests as the ever-present immunologic abnormalities.

Some patients with Griscelli syndrome have secondary hypogammaglobulinemia, impaired major histocompatibility complex–mediated cytotoxic effects, a decreased capacity of lymphocytes to trigger a mixed lymphocyte reaction, or various functional granulocytic abnormalities. One report noted low levels of immunoglobulin G2 in a patient with Griscelli syndrome.

Evidence of hepatitis can be demonstrated by abnormal liver function results. Neonatal hyperbilirubinemia (peak total bilirubin 26.5 mg/dL at age 4 wk) has been reported.

Chromosome analysis can be performed to detect mutations in MYO5A and RAB27A.

A prospective survey of degranulation assays for the rapid diagnosis of Griscelli syndrome and other familial hemophagocytic syndromes shows that such testing has promise.[39]

Next

Imaging Studies

Both CT and MRI are used to assess Griscelli syndrome. Usually, findings are normal at birth. When the disease manifests, imaging findings are abnormal. Findings in the 2 variants (ie, MYO5A,RAB27A) of Griscelli syndrome are different.

Isolated congenital cerebellar atrophy was observed in a patient with the MYO5A defect. No evidence of infiltration of lymphocytes is present in these patients. In Griscelli syndrome caused by RAB27A defects, CT scan can show areas of coarse calcification in the globi pallidi, left parietal white matter, and periventricular and left brachium pontis.

Patients with Griscelli syndrome can manifest hypodense signals in the genu and posterior limb of the internal capsule on the right side (which is compatible with inflammatory changes), as well as posterior aspects of both thalami, together with minimal generalized atrophy. CT scanning can also suggest cell infiltration of the brain. In both variants, MRI can reveal areas of increased T2 signal intensity and a focal area of abnormal enhancement in the subcortical white matter. At birth, findings from long-bone plain radiography have been reported to be normal.

When Griscelli syndrome manifests, abdominal ultrasonograms can show hepatosplenomegaly with intrahepatic cholestasis and absence of bile duct distension.

Previous
Next

Other Tests

Transmission electron microscopy of the skin shows an accumulation of numerous normal-sized stage IV mature melanosomes in the cytoplasm of melanocytes, with virtual absence of such melanosomes in adjacent keratinocytes. These findings allow Griscelli syndrome to be distinguished from Chediak-Higashi syndrome.

The peripheral blood smear shows no giant cytoplasmic granules in leukocytes. These findings allow Griscelli syndrome to be distinguished from Chediak-Higashi syndrome.

Neurologic evaluations reveal cerebral lymphohistiocytic infiltration and erythrophagocytosis with nonspecific electroencephalographic patterns.[40]

Valente et al[41] and Smith et al[42] noted that polarized light microscopy of hair shafts aids in the differential diagnosis of Chediak-Higashi syndrome and Griscelli syndrome.

Previous
Next

Procedures

Biopsy specimens of internal organs can reveal abnormalities. Liver biopsy specimens can show marked portal inflammation with focal hepatocellular necrosis.

Bone marrow aspiration samples can reveal slight hypocellularity with mild erythroid hyperplasia and hemophagocytosis.

Previous
Next

Histologic Findings

The common histopathologic findings of Griscelli syndrome include prominent, mature melanosomes in skin and hair follicle melanocytes.

Griscelli syndrome demonstrates hyperpigmented basal melanocytes and sparse pigmentation of adjacent keratinocytes. This pathology of melanocytes and keratinocytes leads to large, clumped melanosomes in hair shafts, and, as a result, the hair has a silvery-gray sheen. These results can be highlighted in Fontana-Masson–stained sections. Light microscopy shows irregular, large aggregations of melanin pigment in hair.

Celik et al[43] investigated the light and scanning electron microscopic examination of hair in persons with Griscelli syndrome and found that the hair showed a normal cuticular pattern but nodular structures were present as abnormal findings.

Electron microscopic examination of the skin shows many mature melanosomes in melanocytes accompanied by few melanosomes in adjoining keratinocytes. Peripheral leukocytes lack giant granules.[28]

Previous
 
 
Contributor Information and Disclosures
Author

Noah S Scheinfeld, JD, MD, FAAD Assistant Clinical Professor, Department of Dermatology, Weil Cornell Medical College; Consulting Staff, Department of Dermatology, St Luke's Roosevelt Hospital Center, Beth Israel Medical Center, New York Eye and Ear Infirmary; Assistant Attending Dermatologist, New York Presbyterian Hospital; Assistant Attending Dermatologist, Lenox Hill Hospital, North Shore-LIJ Health System; Private Practice

Noah S Scheinfeld, JD, MD, FAAD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Abbvie<br/>Received income in an amount equal to or greater than $250 from: Optigenex<br/>Received salary from Optigenex for employment.

Coauthor(s)

Ann M Johnson, MD Assistant Professor of Clinical Radiology, University of Pennsylvania School of Medicine; Director, Body MRI, Department of Radiology, Children’s Hospital of Philadelphia

Ann M Johnson, MD is a member of the following medical societies: American Roentgen Ray Society, Radiological Society of North America, Society for Pediatric Radiology, International Society for Magnetic Resonance in Medicine, Society of Computed Body Tomography and Magnetic Resonance

Disclosure: Nothing to disclose.

Specialty Editor Board

David F Butler, MD Section Chief of Dermatology, Central Texas Veterans Healthcare System; Professor of Dermatology, Texas A&M University College of Medicine; Founding Chair, Department of Dermatology, Scott and White Clinic

David F Butler, MD is a member of the following medical societies: American Medical Association, Alpha Omega Alpha, Association of Military Dermatologists, American Academy of Dermatology, American Society for Dermatologic Surgery, American Society for MOHS Surgery, Phi Beta Kappa

Disclosure: Nothing to disclose.

Jeffrey J Miller, MD Associate Professor of Dermatology, Pennsylvania State University College of Medicine; Staff Dermatologist, Pennsylvania State Milton S Hershey Medical Center

Jeffrey J Miller, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, Society for Investigative Dermatology, Association of Professors of Dermatology, North American Hair Research Society

Disclosure: Nothing to disclose.

Chief Editor

Dirk M Elston, MD Professor and Chairman, Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina College of Medicine

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Additional Contributors

Julie C Harper, MD Assistant Program Director, Assistant Professor, Department of Dermatology, University of Alabama at Birmingham

Julie C Harper, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Received honoraria from Stiefel for speaking and teaching; Received honoraria from Allergan for speaking and teaching; Received honoraria from Intendis for speaking and teaching; Received honoraria from Coria for speaking and teaching; Received honoraria from Sanofi-Aventis for speaking and teaching.

References
  1. Griscelli C, Prunieras M. Pigment dilution and immunodeficiency: a new syndrome. Int J Dermatol. 1978 Dec. 17(10):788-91. [Medline].

  2. Aslan D, Sari S, Derinoz O, Dalgic B. Griscelli syndrome: description of a case with Rab27A mutation. Pediatr Hematol Oncol. 2006 Apr-May. 23(3):255-61. [Medline].

  3. Bahadoran P, Busca R, Chiaverini C, et al. Characterization of the molecular defects in Rab27a, caused by RAB27A missense mutations found in patients with Griscelli syndrome. J Biol Chem. 2003 Mar 28. 278(13):11386-92. [Medline].

  4. Bizario JC, Feldmann J, Castro FA, et al. Griscelli syndrome: characterization of a new mutation and rescue of T-cytotoxic activity by retroviral transfer of RAB27A gene. J Clin Immunol. 2004 Jul. 24(4):397-410. [Medline].

  5. Takagishi Y, Murata Y. Myosin Va mutation in rats is an animal model for the human hereditary neurological disease, Griscelli syndrome type 1. Ann N Y Acad Sci. 2006 Nov. 1086:66-80. [Medline].

  6. Harper MT, van den Bosch MT, Hers I, Poole AW. Absence of platelet phenotype in mice lacking the motor protein Myosin va. PLoS One. 2013. 8(1):e53239. [Medline]. [Full Text].

  7. Al-Idrissi E, ElGhazali G, Alzahrani M, et al. Premature birth, respiratory distress, intracerebral hemorrhage, and silvery-gray hair: differential diagnosis of the 3 types of Griscelli syndrome. J Pediatr Hematol Oncol. 2010 Aug. 32(6):494-6. [Medline].

  8. Cagdas D, Ozgür TT, Asal GT, Tezcan I, Metin A, Lambert N, et al. Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr. 2012 Oct. 171(10):1527-31. [Medline].

  9. Janka GE. Familial and acquired hemophagocytic lymphohistiocytosis. Eur J Pediatr. 2007 Feb. 166(2):95-109. [Medline].

  10. Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006 Dec. 6(6):410-5. [Medline].

  11. Love PB, Patterson SS, Prose NS, Atwater AR. Griscelli syndrome associated with hemophagocytic lymphohistiocytosis. J Drugs Dermatol. 2012 Sep. 11(9):1126. [Medline].

  12. Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest. 2003 Aug. 112(3):450-6. [Medline].

  13. Hume AN, Collinson LM, Hopkins CR, et al. The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic. 2002 Mar. 3(3):193-202. [Medline].

  14. Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res. 2009 Jun. 22(3):268-82. [Medline].

  15. Westbroek W, Tuchman M, Tinloy B, et al. A novel missense mutation (G43S) in the switch I region of Rab27A causing Griscelli syndrome. Mol Genet Metab. 2008 Jun. 94(2):248-54. [Medline]. [Full Text].

  16. Neeft M, Wieffer M, de Jong AS, et al. Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells. Mol Biol Cell. 2005 Feb. 16(2):731-41. [Medline]. [Full Text].

  17. Westbroek W, Lambert J, De Schepper S, et al. Rab27b is up-regulated in human Griscelli syndrome type II melanocytes and linked to the actin cytoskeleton via exon F-Myosin Va transcripts. Pigment Cell Res. 2004 Oct. 17(5):498-505. [Medline].

  18. Gazit R, Aker M, Elboim M, et al. NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome. Blood. 2007 May 15. 109(10):4306-12. [Medline].

  19. Desnos C, Huet S, Darchen F. Should I stay or should I go?': myosin V function in organelle trafficking. Biol Cell. 2007 Aug. 99(8):411-23. [Medline].

  20. Vincent LM, Gilbert F, Dipace JI, et al. Novel 47.5-kb deletion in RAB27A results in severe Griscelli Syndrome Type 2. Mol Genet Metab. 2010 Jun 10. [Medline].

  21. Yılmaz M, Cağdaş D, Grandin V, Altıntaş DU, Tezcan I, de Saint Basile G, et al. Griscelli syndrome type 3-like phenotype with MYO-5A exon-F deletion. Pediatr Allergy Immunol. 2014 Oct 6. [Medline].

  22. Cetica V, Hackmann Y, Grieve S, Sieni E, Ciambotti B, Coniglio ML, et al. Patients with Griscelli syndrome and normal pigmentation identify RAB27A mutations that selectively disrupt MUNC13-4 binding. J Allergy Clin Immunol. 2014 Oct 10. [Medline].

  23. Manglani M, Adhvaryu K, Seth B. Griscelli syndrome - a case report. Indian Pediatr. 2004 Jul. 41(7):734-7. [Medline].

  24. Rath S, Jain V, Marwaha RK, Trehan A, Rajesh LS, Kumar V. Griscelli syndrome. Indian J Pediatr. 2004 Feb. 71(2):173-5. [Medline].

  25. Ramzan M, Yadav SP, Kharya G, et al. Hemophagocytic Lymphohistiocytosis in Infants: A Single Center Experience from India. Pediatr Hematol Oncol. 2014 Jan 2. [Medline].

  26. Raghuveer C, Murthy SC, Mithuna MN, Suresh T. Silvery Hair with Speckled Dyspigmentation: Chediak-Higashi Syndrome in Three Indian Siblings. Int J Trichology. 2015 Jul-Sep. 7 (3):133-5. [Medline].

  27. Jennane S, El Kababri M, Hessissen L, et al. [A hemophagocytic syndrome revealing a Griscelli syndrome type 2]. Ann Biol Clin (Paris). 2013 Jul-Aug. 71(4):461-4. [Medline].

  28. Dotta L, Parolini S, Prandini A, et al. Clinical, laboratory and molecular signs of immunodeficiency in patients with partial oculo-cutaneous albinism. Orphanet J Rare Dis. 2013 Oct 17. 8:168. [Medline]. [Full Text].

  29. Enders A, Zieger B, Schwarz K, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006 Jul 1. 108(1):81-7. [Medline].

  30. Li W, He M, Zhou H, Bourne JW, Liang P. Mutational data integration in gene-oriented files of the Hermansky-Pudlak Syndrome database. Hum Mutat. 2006 May. 27(5):402-7. [Medline].

  31. Cagdas D, Ozgür TT, Asal GT, Tezcan I, Metin A, Lambert N, et al. Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr. 2012 Jun 19. [Medline].

  32. Rajadhyax M, Neti G, Crow Y, Tyagi A. Neurological presentation of Griscelli syndrome: obstructive hydrocephalus without haematological abnormalities or organomegaly. Brain Dev. 2007 May. 29(4):247-50. [Medline].

  33. Ashrafi MR, Mohseni M, Yazdani S, et al. Bilateral basal ganglia involvement in a patient with Griscelli syndrome. Eur J Paediatr Neurol. 2006 Jul. 10(4):207-9. [Medline].

  34. Dinakar C, Lewin S, Kumar KR, Harshad SR. Partial albinism, immunodeficiency, hypergammaglobulinemia and Dandy-Walker cyst--a Griscelli syndrome variant. Indian Pediatr. 2003 Oct. 40(10):1005-8. [Medline].

  35. Al-Idrissi E, Elghazali G, Alzahrani M, et al. Premature Birth, Respiratory Distress, Intracerebral Hemorrhage, and Silvery-gray Hair: Differential Diagnosis of the 3 Types of Griscelli Syndrome. J Pediatr Hematol Oncol. 2010 Aug. 32(6):494-6. [Medline].

  36. Kharkar V, Pande S, Mahajan S, Dwiwedi R, Khopkar U. Griscelli syndrome: a new phenotype with circumscribed pigment loss?. Dermatol Online J. 2007 May 1. 13(2):17. [Medline].

  37. Gronskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J Rare Dis. 2007 Nov 2. 2:43. [Medline].

  38. Akcakus M, Koklu E, Narin N, Kose M. Clinical and microscopic hair features of Griscelli syndrome associated with asymmetric crying facies in an infant. Pediatr Dev Pathol. 2007 Jun 13. 1.

  39. Bryceson YT, Pende D, Maul-Pavicic A, et al. A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes. Blood. 2012 Mar 22. 119(12):2754-63. [Medline].

  40. Haraldsson A, Weemaes CM, Bakkeren JA, Happle R. Griscelli disease with cerebral involvement. Eur J Pediatr. 1991 Apr. 150(6):419-22. [Medline].

  41. Valente NY, Machado MC, Boggio P, et al. Polarized light microscopy of hair shafts aids in the differential diagnosis of Chédiak-Higashi and Griscelli-Prunieras syndromes. Clinics (Sao Paulo). 2006 Aug. 61(4):327-32. [Medline].

  42. Smith VV, Anderson G, Malone M, Sebire NJ. Light microscopic examination of scalp hair samples as an aid in the diagnosis of paediatric disorders: retrospective review of more than 300 cases from a single centre. J Clin Pathol. 2005 Dec. 58(12):1294-8. [Medline].

  43. Celik HH, Tore H, Tunali S, Tatar I, Aldur MM. Light and scanning electron microscopic examination of hair in Griscelli syndrome. Saudi Med J. 2007 Aug. 28(8):1275-7. [Medline].

  44. Cesaro S, Locatelli F, Lanino E, et al. Hematopoietic stem cell transplantation for hemophagocytic lymphohistiocytosis: a retrospective analysis of data from the Italian Association of Pediatric Hematology Oncology (AIEOP). Haematologica. 2008 Nov. 93(11):1694-701. [Medline].

  45. Trottestam H, Beutel K, Meeths M, et al. Treatment of the X-linked lymphoproliferative, Griscelli and Chédiak-Higashi syndromes by HLH directed therapy. Pediatr Blood Cancer. 2009 Feb. 52(2):268-72. [Medline].

  46. Mehdizadeh M, Zamani G. Griscelli syndrome: a case report. Pediatr Hematol Oncol. 2007 Oct-Nov. 24(7):525-9. [Medline].

  47. Sandrock K, Zieger B. Current Strategies in Diagnosis of Inherited Storage Pool Defects. Transfus Med Hemother. 2010. 37(5):248-258. [Medline]. [Full Text].

  48. Kose O, Kurekci AE, Safali M, Akin R, Koseoglu V, Tezcan I. Development of in situ melanoma after allogeneic bone marrow transplantation in Griscelli syndrome type II. Pediatr Transplant. 2007 Nov. 11(7):792-5. [Medline].

  49. Navarrete CL, Araníbar L, Mardones F, Avila R, Velozo L. Cutaneous granulomas in Griscelli type 2 syndrome. Int J Dermatol. 2015 Dec 23. [Medline].

Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.