Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Tinea Capitis

  • Author: Marc Zachary Handler, MD; Chief Editor: Dirk M Elston, MD  more...
 
Updated: May 13, 2016
 

Background

Tinea capitis is a disease caused by superficial fungal infection of the skin of the scalp, eyebrows, and eyelashes, with a propensity for attacking hair shafts and follicles (see the image below). The disease is considered to be a form of superficial mycosis or dermatophytosis. Several synonyms are used, including ringworm of the scalp and tinea tonsurans. In the United States and other regions of the world, the incidence of tinea capitis is increasing.

Gray-patch ringworm (microsporosis) is an ectothri Gray-patch ringworm (microsporosis) is an ectothrix infection or prepubertal tinea capitis seen here in an African American male child. Gray patch refers to the scaling with lack of inflammation, as noted in this patient. Hairs in the involved areas assume a characteristic dull, grayish, discolored appearance. Infected hairs are broken and shorter. Papular lesions around hair shafts spread and form typical patches of ring forms, as shown. Culture from the lesional hair grew Microsporum canis.

See 15 Rashes You Need to Know: Common Dermatologic Diagnoses, a Critical Images slideshow, for help identifying and treating various rashes.

Also, see the 15 Back-to-School Illnesses You Should Know slideshow to help identify conditions that may occur in young patients after they return to the classroom.

Dermatophytosis includes several distinct clinical entities, depending on the anatomic site and etiologic agents involved. Clinically, the conditions include tinea capitis, tinea favosa (favus resulting from infection by Trichophyton schoenleinii), tinea corporis (ringworm of glabrous skin), tinea imbricata (ringworm resulting from infection by Trichophyton concentricum), tinea cruris (ringworm of the groin), tinea unguium or onychomycosis (ringworm of the nail), tinea pedis (ringworm of the feet), tinea barbae (ringworm of the beard), and tinea manuum (ringworm of the hand).

Clinical presentation of tinea capitis varies from a scaly noninflamed dermatosis resembling seborrheic dermatitis to an inflammatory disease with scaly erythematous lesions and hair loss or alopecia that may progress to severely inflamed deep abscesses termed kerion, with the potential for scarring and permanent alopecia. The type of disease elicited depends on interaction between the host and the etiologic agents.

The term tinea originally indicated larvae of insects that fed on clothes and books. Subsequently, it meant parasitic infestation of the skin. By the mid 16th century, the term was used to describe diseases of the hairy scalp. The term ringworm referred to skin diseases that assumed a ring form, including tinea. The causative agents of tinea infections of the beard and scalp were described first by Remak and Schönlein, then by Gruby, during the 1830s. Approximately 50 years later, in Sabouraud's dissertation, the endothrix type of tinea capitis infection was demonstrated, and it was known that multiple species of fungi cause the disease. Simple culture methods were described and treatment using x-ray epilation was reported in 1904. Effective treatment of tinea capitis by griseofulvin became available in the 1950s.

Next

Pathophysiology

Tinea capitis is caused by fungi of species of genera Trichophyton and Microsporum. Tinea capitis is the most common pediatric dermatophyte infection worldwide. The age predilection is believed to result from the presence of Pityrosporum orbiculare (Pityrosporum ovale), which is part of normal flora, and from the fungistatic properties of fatty acids of short and medium chains in postpubertal sebum.

Causative agents of tinea capitis include keratinophilic fungi termed dermatophytes. These molds usually are present in nonliving cornified layers of skin and its appendages and sometimes are capable of invading the outermost layer of skin, stratum corneum, or other keratinized skin appendages derived from epidermis, such as hair and nails.

Dermatophytes are among the most common infectious agents of humans, causing a variety of clinical conditions that are collectively termed dermatophytosis. From the site of inoculation, the fungal hyphae grow centrifugally in the stratum corneum. The fungus continues downward growth into the hair, invading keratin as it is formed. The zone of involvement extends upwards at the rate at which hair grows, and it is visible above the skin surface by days 12-14. Infected hairs are brittle, and by the third week, broken hairs are evident.

Three types of in vivo hair invasion are recognized.

Ectothrix invasion is characterized by the development of arthroconidia on the exterior of the hair shaft. The cuticle of the hair is destroyed, and infected hairs usually fluoresce a bright greenish-yellow color under a Wood lamp ultraviolet light. Common agents include Microsporum canis, Microsporum gypseum, Trichophyton equinum, and Trichophyton verrucosum.

Endothrix hair invasion is characterized by the development of arthroconidia within the hair shaft only. The cuticle of the hair remains intact and infected hairs do not fluoresce under a Wood lamp ultraviolet light. All endothrix-producing agents are anthropophilic (eg, Trichophyton tonsurans, Trichophyton violaceum).[1]

Favus, usually caused by T schoenleinii, produces favuslike crusts or scutula and corresponding hair loss.

Previous
Next

Epidemiology

Frequency

United States

Occurrence of the disease is no longer registered by public health agencies; therefore, true incidence is unknown. The reported peak incidence occurs in school-aged African American male children, at rates of 12.9%.[2] In Northern California, the reported incidence among the pediatric population is 0.34%.[3]

Tinea capitis is predominantly a disease of preadolescent children. Typical age of onset is between 5 and 10 years.[2] Tinea capitis accounts for up to 92.5% of dermatophytoses in children younger than 10 years. The disease is rare in adults, although occasionally, it may be found in elderly patients. Tinea capitis occurrence is widespread in some urban areas in the United States.

International

Tinea capitis is widespread in some urban areas, particularly in children of Afro-Caribbean extraction, in North America, Central America, and South America. It is common in parts of Africa and India.[4, 5, 6, 7] In Ethiopia, the incidence of tinea capitis is 8.7% among children aged 4-14 years.[8] In Southeast Asia, the rate of infection has been reported to have decreased dramatically from 14% (average of male and female children) to 1.2% in the last 50 years because of improved general sanitary conditions and personal hygiene. In northern Europe, the disease is sporadic.

In the United Kingdom and North America, T tonsurans accounts for greater than 90% of cases of infection .[9] In the nonurban communities, sporadic infections acquired from puppies and kittens are due to M canis, which accounts for less than 10% of cases in the United Kingdom. Occasional infection from other animal hosts (eg, T verrucosum from cattle) occurs in rural areas.

Sex

The incidence of tinea capitis may vary by sex, depending on the causative fungal organism. Microsporum audouinii –related tinea capitis has been reported to be up to 5 times more common in boys than in girls. After puberty, however, the reverse is true, possibly because of women having greater exposure to infected children and possibly because of hormonal factors. In infection by M canis, the ratio varies, but the infection rate usually is higher in boys. Girls and boys are affected equally by Trichophyton infections of the scalp, but in adults, women are infected more frequently than are men.

Age

Tinea capitis occurs primarily in children and occasionally in other age groups. It is seen most commonly in children aged between 5 and 10 years.[2] Mean age of onset is in patients aged 6.9-8.1 years.[3]

Previous
Next

Prognosis

Tinea capitis carries a positive prognosis, with the vast majority of those treated obtaining resolution of the infection. Those who have maintained untreated or resistant-to-treatment tinea capitis are at risk for abscess development, referred to as a kerion.[10]  

Continuous shedding of fungal spores may last several months despite active treatment; therefore, keeping patients with tinea capitis out of school is impractical. The causes of treatment failure include reinfection, relative insensitivity of the organism, suboptimal absorption of the medication, and lack of compliance with the long courses of treatment. T tonsurans and Microsporum species are typical offending agents in persistent positive cases. If fungi can still be isolated from the lesional skin at the completion of treatment, but clinical signs have improved, the recommendation is to continue the original regimen for another month.

Classification and severity of tinea capitis depend on the site of formation of their arthroconidia.

Ectothrix infection is defined as fragmentation of the mycelium into conidia around the hair shaft or just beneath the cuticle of the hair, with destruction of the cuticle. Inflammatory tinea related to exposure to a kitten or puppy usually is a fluorescent small spore ectothrix. Some mild ringworm or prepubertal tinea capitis infections are of the ectothrix type, also termed the gray-patch type (microsporosis; see the image below). Some ectothrix infections involute during the normal course of disease without treatment. Depending on the extent of associated inflammation, lesions may heal with scarring.

Gray-patch ringworm (microsporosis) is an ectothri Gray-patch ringworm (microsporosis) is an ectothrix infection or prepubertal tinea capitis seen here in an African American male child. Gray patch refers to the scaling with lack of inflammation, as noted in this patient. Hairs in the involved areas assume a characteristic dull, grayish, discolored appearance. Infected hairs are broken and shorter. Papular lesions around hair shafts spread and form typical patches of ring forms, as shown. Culture from the lesional hair grew Microsporum canis.

Endothrix infections are noted in which arthrospores are present within the hair shaft in both anagen and telogen phases, contributing to the chronicity of the infections. Endothrix infections tend to progress, become chronic, and may last into adult life. Lesions can be eradicated by systemic antifungal treatment. Since the organisms usually remain superficial, little potential for mortality exists. Disseminated systemic disease has been reported in patients who are severely immunocompromised.

Previous
Next

Patient Education

Patient education is paramount in eradicating tinea capitis. The current recommendations of the Committee on Infectious Diseases of the American Academy of Pediatrics state that "Children receiving treatment for tinea capitis may attend school. Haircuts, shaving of the head, wearing a cap during treatment are not necessary."

Previous
 
 
Contributor Information and Disclosures
Author

Marc Zachary Handler, MD Chief Resident, Department of Dermatology, Rutgers New Jersey Medical School

Marc Zachary Handler, MD is a member of the following medical societies: American Medical Association, Dermatological Society of New Jersey, New York Academy of Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Robert A Schwartz, MD, MPH Professor and Head of Dermatology, Professor of Pathology, Pediatrics, Medicine, and Preventive Medicine and Community Health, Rutgers New Jersey Medical School; Visiting Professor, Rutgers University School of Public Affairs and Administration

Robert A Schwartz, MD, MPH is a member of the following medical societies: Alpha Omega Alpha, New York Academy of Medicine, American Academy of Dermatology, American College of Physicians, Sigma Xi

Disclosure: Nothing to disclose.

Matthew P Stephany University of Nebraska College of Medicine

Matthew P Stephany is a member of the following medical societies: American Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Michael J Wells, MD, FAAD Associate Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine

Michael J Wells, MD, FAAD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American Medical Association, Texas Medical Association

Disclosure: Nothing to disclose.

Paul Krusinski, MD Director of Dermatology, Fletcher Allen Health Care; Professor, Department of Internal Medicine, University of Vermont College of Medicine

Paul Krusinski, MD is a member of the following medical societies: American Academy of Dermatology, American College of Physicians, Society for Investigative Dermatology

Disclosure: Nothing to disclose.

Chief Editor

Dirk M Elston, MD Professor and Chairman, Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina College of Medicine

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Additional Contributors

Grace F Kao, MD Clinical Professor of Dermatopathology, Department of Dermatology, University of Maryland School of Medicine and George Washington University Medical School; Director, Dermatopathology Section, Department of Pathology and Laboratory Medicine, Veterans Affairs Maryland Healthcare System, Baltimore, Maryland

Grace F Kao, MD is a member of the following medical societies: American Academy of Dermatology, American Society of Dermatopathology, International Society of Dermatopathology

Disclosure: Nothing to disclose.

Franklin Flowers, MD Department of Dermatology, Professor Emeritus Affiliate Associate Professor of Pathology, University of Florida College of Medicine

Franklin Flowers, MD is a member of the following medical societies: American College of Mohs Surgery

Disclosure: Nothing to disclose.

References
  1. Fu M, Ge Y, Chen W, Feng S, She X, Li X, et al. Tinea faciei in a newborn due to Trichophyton tonsurans. J Biomed Res. 2013 Jan. 27(1):71-4. [Medline]. [Full Text].

  2. Abdel-Rahman SM, Farrand N, Schuenemann E, Stering TK, Preuett B, Magie R, et al. The prevalence of infections with Trichophyton tonsurans in schoolchildren: the CAPITIS study. Pediatrics. 2010 May. 125 (5):966-73. [Medline].

  3. Mirmirani P, Tucker LY. Epidemiologic trends in pediatric tinea capitis: a population-based study from Kaiser Permanente Northern California. J Am Acad Dermatol. 2013. 69(6):916-21. [Medline].

  4. Hogewoning A, Amoah A, Bavinck JN, Boakye D, Yazdanbakhsh M, Adegnika A, et al. Skin diseases among schoolchildren in Ghana, Gabon, and Rwanda. Int J Dermatol. 2013 Apr 4. [Medline].

  5. Pai VV, Hanumanthayya K, Tophakhane RS, Nandihal NW, Kikkeri NS. Clinical study of Tinea capitis in Northern Karnataka: A three-year experience at a single institute. Indian Dermatol Online J. 2013 Jan. 4(1):22-6. [Medline]. [Full Text].

  6. Fulgence KK, Abibatou K, Vincent D, Henriette V, Etienne AK, Kiki-Barro PC, et al. Tinea capitis in schoolchildren in southern Ivory Coast. Int J Dermatol. 2013 Apr. 52(4):456-60. [Medline].

  7. Thakur R. Tinea capitis in Botswana. Clin Cosmet Investig Dermatol. 2013. 6:37-41. [Medline]. [Full Text].

  8. Leiva-Salinas M, Marin-Cabanas I, Betlloch I, Tesfasmariam A, Reyes F, Belinchon I, et al. Tinea capitis in schoolchildren in a rural area in southern Ethiopia. Int J Dermatol. 2015 Jul. 54 (7):800-5. [Medline].

  9. Nasir S, Ralph N, O'Neill C, Cunney R, Lenane P, O'Donnell B. Trends in Tinea Capitis in an Irish Pediatric Population and a Comparison of Scalp Brushings Versus Scalp Scrapings as Methods of Investigation. Pediatr Dermatol. 2013 Feb 22. [Medline].

  10. Fuller LC, Child FJ, Midgley G, Higgins EM. Diagnosis and management of scalp ringworm. BMJ. 2003 Mar 8. 326 (7388):539-41. [Medline].

  11. Jain N, Doshi B, Khopkar U. Trichoscopy in alopecias: diagnosis simplified. Int J Trichology. 2013 Oct. 5(4):170-8. [Medline]. [Full Text].

  12. Park J, Kim JI, Kim HU, Yun SK, Kim SJ. Trichoscopic Findings of Hair Loss in Koreans. Ann Dermatol. 2015 Oct. 27 (5):539-50. [Medline].

  13. Lacarrubba F, Micali G, Tosti A. Scalp Dermoscopy or Trichoscopy. Curr Probl Dermatol. 2015 Feb. 47:21-32. [Medline].

  14. Sahin GO, Dadaci Z, Ozer TT. Two cases of tinea ciliaris with blepharitis due to Microsporum audouinii and Trichophyton verrucosum and review of the literature. Mycoses. 2014 Apr 13. [Medline].

  15. Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008 Nov-Dec. 166(5-6):335-52. [Medline].

  16. Kondo M, Nakano N, Shiraki Y, Hiruma M, Ikeda S, Sugita T. A Chinese-Japanese boy with black dot ringworm due to Trichophyton violaceum. J Dermatol. 2006 Mar. 33(3):165-8. [Medline].

  17. Akbaba M, Ilkit M, Sutoluk Z, Ates A, Zorba H. Comparison of hairbrush, toothbrush and cotton swab methods for diagnosing asymptomatic dermatophyte scalp carriage. J Eur Acad Dermatol Venereol. 2008 Mar. 22(3):356-62. [Medline].

  18. Friedlander SF, Pickering B, Cunningham BB, Gibbs NF, Eichenfield LF. Use of the cotton swab method in diagnosing Tinea capitis. Pediatrics. 1999 Aug. 104(2 Pt 1):276-9. [Medline].

  19. Bonifaz A, Isa-Isa R, Araiza J, Cruz C, Hernández MA, Ponce RM. Cytobrush-culture method to diagnose tinea capitis. Mycopathologia. 2007 Jun. 163(6):309-13. [Medline].

  20. Trovato MJ, Schwartz RA, Janniger CK. Tinea capitis: current concepts in clinical practice. Cutis. 2006 Feb. 77(2):93-9. [Medline].

  21. Slowinska M, Rudnicka L, Schwartz RA, et al. Comma hairs: a dermatoscopic marker for tinea capitis: a rapid diagnostic method. J Am Acad Dermatol. 2008 Nov. 59(5 Suppl):S77-9. [Medline].

  22. Shemer A, Plotnik IB, Davidovici B, Grunwald MH, Magun R, Amichai B. Treatment of tinea capitis - griseofulvin versus fluconazole - a comparative study. J Dtsch Dermatol Ges. 2013 Apr 10. [Medline].

  23. Shemer A, Plotnik IB, Davidovici B, Grunwald MH, Magun R, Amichai B. Treatment of tinea capitis - griseofulvin versus fluconazole - a comparative study. J Dtsch Dermatol Ges. 2013 Apr 10. [Medline].

  24. Bhanusali D, Coley M, Silverberg JI, Alexis A, Silverberg NB. Treatment outcomes for tinea capitis in a skin of color population. J Drugs Dermatol. 2012 Jul. 11 (7):852-6. [Medline].

  25. Elewski BE. Cutaneous mycoses in children. Br J Dermatol. 1996 Jun. 134 Suppl 46:7-11: discussion 37-8. [Medline].

  26. Chen S, Ran Y, Dai Y, Lama J, Hu W, Zhang C. Administration of Oral Itraconazole Capsule with Whole Milk Shows Enhanced Efficacy As Supported by Scanning Electron Microscopy in a Child with Tinea Capitis Due to Microsporum canis. Pediatr Dermatol. 2015 Oct 8. [Medline].

  27. Williams JV, Honig PJ, McGinley KJ, Leyden JJ. Semiquantitative study of tinea capitis and the asymptomatic carrier state in inner-city school children. Pediatrics. 1995 Aug. 96(2 Pt 1):265-7. [Medline].

  28. White JM, Higgins EM, Fuller LC. Screening for asymptomatic carriage of Trichophyton tonsurans in household contacts of patients with tinea capitis: results of 209 patients from South London. J Eur Acad Dermatol Venereol. 2007 Sep. 21(8):1061-4. [Medline].

  29. Pomeranz AJ, Sabnis SS, McGrath GJ, Esterly NB. Asymptomatic dermatophyte carriers in the households of children with tinea capitis. Arch Pediatr Adolesc Med. 1999 May. 153(5):483-6. [Medline].

  30. Gupta AK, Cooper EA, Bowen JE. Meta-analysis: griseofulvin efficacy in the treatment of tinea capitis. J Drugs Dermatol. 2008 Apr. 7(4):369-72. [Medline].

  31. Fleece D, Gaughan JP, Aronoff SC. Griseofulvin versus terbinafine in the treatment of tinea capitis: a meta-analysis of randomized, clinical trials. Pediatrics. 2004 Nov. 114(5):1312-5. [Medline].

  32. Gonzalez U, Seaton T, Bergus G, Jacobson J, Martinez-Monzon C. Systemic antifungal therapy for tinea capitis in children. Cochrane Database Syst Rev. 2007 Oct 17. CD004685. [Medline].

  33. Gupta AK, Hofstader SL, Adam P, Summerbell RC. Tinea capitis: an overview with emphasis on management. Pediatr Dermatol. 1999 May-Jun. 16(3):171-89. [Medline].

  34. Koumantaki-Mathioudaki E, Devliotou-Panagiotidou D, Rallis E, et al. Is itraconazole the treatment of choice in Microsporum canis tinea capitis?. Drugs Exp Clin Res. 2005. 31 Suppl:11-5. [Medline].

  35. Friedlander SF, Aly R, Krafchik B, et al. Terbinafine in the treatment of Trichophyton tinea capitis: a randomized, double-blind, parallel-group, duration-finding study. Pediatrics. 2002 Apr. 109(4):602-7. [Medline].

  36. Krafchik B, Pelletier J. An open study of tinea capitis in 50 children treated with a 2-week course of oral terbinafine. J Am Acad Dermatol. 1999 Jul. 41(1):60-3. [Medline].

  37. Ghannoum MA, Wraith LA, Cai B, Nyirady J, Isham N. Susceptibility of dermatophyte isolates obtained from a large worldwide terbinafine tinea capitis clinical trial. Br J Dermatol. 2008 Sep. 159(3):711-3. [Medline].

  38. Elewski BE, Caceres HW, DeLeon L, et al. Terbinafine hydrochloride oral granules versus oral griseofulvin suspension in children with tinea capitis: results of two randomized, investigator-blinded, multicenter, international, controlled trials. J Am Acad Dermatol. 2008 Jul. 59(1):41-54. [Medline].

  39. Tey HL, Tan AS, Chan YC. Meta-analysis of randomized, controlled trials comparing griseofulvin and terbinafine in the treatment of tinea capitis. J Am Acad Dermatol. 2011 Apr. 64(4):663-70. [Medline].

  40. Friedlander SF, Aly R, Krafchik B, et al. Terbinafine in the treatment of Trichophyton tinea capitis: a randomized, double-blind, parallel-group, duration-finding study. Pediatrics. 2002 Apr. 109(4):602-7. [Medline].

  41. Gupta AK, Lyons DC. The Rise and Fall of Oral Ketoconazole. J Cutan Med Surg. 2015 Jul-Aug. 19 (4):352-7. [Medline].

 
Previous
Next
 
Gray-patch ringworm (microsporosis) is an ectothrix infection or prepubertal tinea capitis seen here in an African American male child. Gray patch refers to the scaling with lack of inflammation, as noted in this patient. Hairs in the involved areas assume a characteristic dull, grayish, discolored appearance. Infected hairs are broken and shorter. Papular lesions around hair shafts spread and form typical patches of ring forms, as shown. Culture from the lesional hair grew Microsporum canis.
Typical lesions of kerion celsi on the vertex scalp of a young Chinese boy. Note numerous bright yellow purulent areas on skin surface, surrounded by adjacent edematous, erythematous, alopecic areas. Culture from the lesion grew Trichophyton mentagrophytes. Courtesy of Skin Diseases in Chinese by Yau-Chin Lu, MD. Permission granted by Medicine Today Publishing Co, Taipei, Taiwan, 1981.
Discrete patches of hair loss or alopecia caused by Trichophyton violaceum infection of the vertex scalp of a young Taiwanese boy. Courtesy of Skin Diseases in Chinese by Yau-Chin Lu, MD. Permission granted by Medicine Today Publishing Co, Taipei, Taiwan, 1981.
Photomicrograph depicting an endoectothrix invasion of a hair shaft by Microsporum audouinii. Intrapilary hyphae and spores around the hair shaft are seen (hematoxylin and eosin stain with Periodic acid-Schiff counterstain, magnification X 250).
Fungal hyphae and yeast cells of Trichophyton rubrum seen on the stratum corneum of tinea capitis. Periodic acid-Schiff stain, magnification 250X.
Pronounced inflammatory tissue reaction with follicular pustule formation surrounding a hair follicle seen in a patient with clinical form of infection, termed kerion celsi. No fungal hyphae or spores were identified in the lesion in either tissue sections or culture. Fluorescein-labeled Trichophyton mentagrophytes antiserum cross-reacted with antigens of dermatophyte in the infected hairs within the pustule (hematoxylin and eosin stain, magnification X 75).
Wood lamp examination of a gray-patch area on the scalp. In Microsporum canis infection, scalp hairs emit a diagnostic brilliant green fluorescence. Trichophyton tonsurans does not fluoresce with Wood lamp.
Tinea capitis, presenting as alopecia with scale, in an African American child.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.