Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Erythrokeratodermia Variabilis et Progressiva  Differential Diagnoses

  • Author: Gabriele Richard, MD, FACMG; Chief Editor: Dirk M Elston, MD  more...
 
Updated: Nov 04, 2015
 
 

Diagnostic Considerations

Also consider the following:

  • Progressive symmetric erythrokeratodermia (PSEK): PSEK is considered an autosomal dominant or recessive genodermatosis with a less well-defined clinical presentation than erythrokeratodermia variabilis (EKV). The disease causes fixed, slowly progressive, symmetric, and well-defined hyperkeratotic plaques, which predominantly appear on the extensor surface of the extremities, trunk, and face. In contrast to EKV, no independent, migrating red patches are present, the hyperkeratosis develops on an erythematous base, and the palms and soles are affected more often. There is considerable phenotypic variability of PSEK and erythrokeratodermia variabilis. Moreover, EKV and PSEK have been observed within the same family[6] , and the same disease-causing GJB4 (Connexin 30.3) mutation (p.Gly12Asp) has been reported in patients diagnosed with EKV or PSEK.[35] These findings indicate that a subset of PSEK cases belong to the clinical spectrum of EKV. However, many other PSEK cases do not have identifiable mutations in the connexin genes and likely represent a heterogeneous group of other disorders that remain to be better defined on a clinical and molecular level.[30, 31, 32] A frameshift mutation in the LOR gene encoding loricrin (ie, 709insC) on band 1q was identified in a Japanese family with PSEK-like features and mutilating palmoplantar keratoderma (ie, pseudo-ainhum), which is usually not seen in PSEK. This observation is consistent with other LOR gene mutations in mutilating palmoplantar keratoderma with ichthyosis (Camisa-type of palmoplantar keratoderma; Vohwinkel syndrome with ichthyosis, OMIM 603324) and these disorders are now classified as loricrin keratoderma, an entity distinct from PSEK.[36, 37] In 2006, a genetic locus for PSEK has been suggested on 21q11.2-q21.2.[38]
  • Spinocerebellar ataxia and erythrokeratoderma (type Giroux-Barbeau; OMIM 133190): This disorder was originally described in a large French-Canadian pedigree. Affected individuals manifested during childhood with symmetrical, well-demarcated, fleeting erythematous patches and scaling or hyperkeratotic plaques on the dorsum of the hands and feet and on limbs. While the skin lesions disappear in the third decade of life, progressive gait ataxia due to cerebellar atrophy manifests in the fourth and fifth decades. Linkage studies and exome sequencing uncovered a pathogenic missense variant (ie, L168F) in the ELOVL4 gene that completely co-segregates with the disorder. ELOVL4 encodes an enzyme of the elongase family responsible for the elongation of very long-chain fatty acids, which are crucial for peroxisome β-oxidation and formation of the skin barrier.[1, 39]
  • Greither disease (ie, keratosis palmoplantaris transgrediens et progrediens): This is now known to be a variant of epidermolytic ichthyosis (aka epidermolytic hyperkeratosis, EHK, bullous congenital ichthyosiform erythroderma). Two unrelated families have been described with mutations in the keratin 1 (KRT1) gene.
  • Erythrokeratolysis hiemalis (OMIM 148370, keratolytic winter erythema, Oudtshoorn skin)
  • Ichthyosis linearis circumflexa (a manifestation of Netherton syndrome)
  • Annular epidermolytic ichthyosis (as subtype of epidermolytic ichthyosis [epidermolytic hyperkeratosis, EHK, bullous ichthyosiform erythroderma])
  • MEDNIK (mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia) syndrome: Erythema and hyperkeratosis resembling erythrokeratodermia variabilis have been reported in a novel, autosomal recessive genetic syndrome observed in the Bas St-Laurent region of Quebec. Besides skin findings, patients have sensorineural hearing loss, peripheral neuropathy, psychomotor retardation, congenital chronic diarrhea, and an elevation of very long-chain fatty acids. This disorder was mapped to 7q22, and a splice site mutation in the AP1S1 gene encoding the small subunit of the AP1 complex has been identified.[40] Originally, this syndrome was reported as "EKV 3 (Kamouraska type)," although that this syndromic disorder is obviously clinically and genetically distinct from erythrokeratodermia variabilis.

Differential Diagnoses

 
 
Contributor Information and Disclosures
Author

Gabriele Richard, MD, FACMG Chief Medical Officer, GeneDx, Inc

Gabriele Richard, MD, FACMG is a member of the following medical societies: American Society of Human Genetics, Society for Pediatric Dermatology

Disclosure: Receive salary for employment from GeneDx, a wholly owned subsidiary of BioReference Labs, a wholly owned subsidiary of Opko Health.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Harry Dao, Jr, MD Assistant Professor, Department of Dermatology, Baylor College of Medicine

Harry Dao, Jr, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Chief Editor

Dirk M Elston, MD Professor and Chairman, Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina College of Medicine

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Additional Contributors

Mark W Cobb, MD Consulting Staff, WNC Dermatological Associates

Mark W Cobb, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Dermatology, American Society of Dermatopathology

Disclosure: Nothing to disclose.

References
  1. Cadieux-Dion M, Turcotte-Gauthier M, Noreau A, Martin C, Meloche C, Gravel M, et al. Expanding the clinical phenotype associated with ELOVL4 mutation: study of a large French-Canadian family with autosomal dominant spinocerebellar ataxia and erythrokeratodermia. JAMA Neurol. 2014 Apr. 71 (4):470-5. [Medline].

  2. de Buy Wenninger LM. Erythrokeratodermie congenitale ichthyosiforme avec hyperepidermotrophie. Verslagen van vereeningingene. Nederl Tijdschr Geneesk. 1907. 1A:510-5.

  3. Mendes da Costa S. Erythro et keratodermia variabilis in a mother and a daughter. Acta Derm Venerol. 1925. 6:255-61.

  4. Noordhoek KJ. Over erythro-et keratodermia variabilis. Schiedam NV, ed. Drukkererije de Eendracht. Utrecht, The Netherlands: 1950.

  5. Barsky S, Bernstein G. Keratosis Rubra Figurata. Arch Dermatol. 1964. 90:373-4.

  6. Macfarlane AW, Chapman SJ, Verbov JL. Is erythrokeratoderma one disorder? A clinical and ultrastructural study of two siblings. Br J Dermatol. 1991 May. 124(5):487-91. [Medline].

  7. Boyden LM, Craiglow BG, Zhou J, Hu R, Loring EC, Morel KD, et al. Dominant De Novo Mutations in GJA1 Cause Erythrokeratodermia Variabilis et Progressiva, without Features of Oculodentodigital Dysplasia. J Invest Dermatol. 2015 Jun. 135 (6):1540-7. [Medline].

  8. Fuchs-Telem D, Pessach Y, Mevorah B, Shirazi I, Sarig O, Sprecher E. Erythrokeratoderma variabilis caused by a recessive mutation in GJB3. Clin Exp Dermatol. 2011 Jun. 36(4):406-11. [Medline].

  9. Wei S, Zhou Y, Zhang TD, Huang ZM, Zhang XB, Zhu HL, et al. Evidence for the absence of mutations at GJB3, GJB4 and LOR in progressive symmetrical erythrokeratodermia. Clin Exp Dermatol. 2011 Jun. 36(4):399-405. [Medline].

  10. Common JE, O'Toole EA, Leigh IM, et al. Clinical and genetic heterogeneity of erythrokeratoderma variabilis. J Invest Dermatol. 2005 Nov. 125(5):920-7. [Medline].

  11. Richard G, Brown N, Smith LE, et al. The spectrum of mutations in erythrokeratodermias--novel and de novo mutations in GJB3. Hum Genet. 2000 Mar. 106(3):321-9. [Medline].

  12. Richard G, Itin P, Bale SJ. Clinical heterogeneity in EKV. J Invest Dermatol. 1998. 110:616A.

  13. Feldmeyer L, Plantard L, Mevorah B, Huber M, Hohl D. Novel mutation of connexin 31 causing erythrokeratoderma variabilis. Br J Dermatol. 2005 May. 152(5):1072-4. [Medline].

  14. Gottfried I, Landau M, Glaser F, et al. A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Hum Mol Genet. 2002 May 15. 11(11):1311-6. [Medline].

  15. Macari F, Landau M, Cousin P, et al. Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet. 2000 Nov. 67(5):1296-301. [Medline].

  16. Plantard L, Huber M, Macari F, Meda P, Hohl D. Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis. Hum Mol Genet. 2003 Dec 15. 12(24):3287-94. [Medline].

  17. Renner R, Paasch U, Simon JC, Froster UG, Heinritz W. A new mutation in the GJB3 gene in a patient with erythrokeratodermia variabilis. J Eur Acad Dermatol Venereol. 2008 Jun. 22(6):750-1. [Medline].

  18. Richard G, Brown N, Rouan F, et al. Genetic heterogeneity in erythrokeratodermia variabilis: novel mutations in the connexin gene GJB4 (Cx30.3) and genotype-phenotype correlations. J Invest Dermatol. 2003 Apr. 120(4):601-9. [Medline].

  19. Richard G, Smith LE, Bailey RA, et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet. 1998 Dec. 20(4):366-9. [Medline].

  20. Terrinoni A, Leta A, Pedicelli C, et al. A novel recessive connexin 31 (GJB3) mutation in a case of erythrokeratodermia variabilis. J Invest Dermatol. 2004 Mar. 122(3):837-9. [Medline].

  21. Wilgoss A, Leigh IM, Barnes MR, et al. Identification of a novel mutation R42P in the gap junction protein beta-3 associated with autosomal dominant erythrokeratoderma variabilis. J Invest Dermatol. 1999 Dec. 113(6):1119-22. [Medline].

  22. Wang ZX, Lu WS, Li H, Lin D, Zhou FS, Sun LD, et al. A novel GJB3 (Cx31) missense mutation in a Chinese patient with erythrokeratodermia variabilis. J Eur Acad Dermatol Venereol. 2011 Jan. 25(1):113-5. [Medline].

  23. Scott CA, O'Toole EA, Mohungoo MJ, Messenger A, Kelsell DP. Novel and recurrent connexin 30.3 and connexin 31 mutations associated with erythrokeratoderma variabilis. Clin Exp Dermatol. 2011 Jan. 36(1):88-90. [Medline].

  24. Glatz M, van Steensel MA, van Geel M, Steijlen PM, Wolf P. An unusual missense mutation in the GJB3 gene resulting in severe erythrokeratodermia variabilis. Acta Derm Venereol. 2011 Oct. 91(6):714-5. [Medline].

  25. Sugiura K, Arima M, Matsunaga K, Akiyama M. The novel GJB3 mutation p.Thr202Asn in the M4 transmembrane domain underlies erythrokeratodermia variabilis. Br J Dermatol. 2015 Jul. 173 (1):309-11. [Medline].

  26. Ikeya S, Urano S, Sakabe J, Ito T, Tokura Y. Erythrokeratodermia variabilis: first Japanese case documenting GJB3 mutation. J Dermatol. 2013 May. 40 (5):402-3. [Medline].

  27. Liu H, Liu H, Fu XA, Yu YX, Zhou GZ, Lu XM, et al. Mutation analysis of GJB3 and GJB4 in Chinese patients with erythrokeratodermia variabilis. J Dermatol. 2012 Apr. 39 (4):400-1. [Medline].

  28. Torres T, Velho G, Sanches M, Selores M. A case of erythrokeratodermia variabilis with connexin 31 gene mutation (Cx31F137L). Int J Dermatol. 2012 Apr. 51 (4):494-6. [Medline].

  29. Wang W, Liu LH, Chen G, Gao M, Zhu J, Zhou FS, et al. A missense mutation in the GJB3 gene responsible for erythrokeratodermia variabilis in a Chinese family. Clin Exp Dermatol. 2012 Dec. 37 (8):919-21. [Medline].

  30. Arita K, Akiyama M, Tsuji Y, Onozuka T, Shimizu H. Erythrokeratoderma variabilis without connexin 31 or connexin 30.3 gene mutation: immunohistological, ultrastructural and genetic studies. Acta Derm Venereol. 2003. 83(4):266-70. [Medline].

  31. Nakamura M. Erythrokeratoderma variabilis without GJB3 or GJB4 mutation: a review of Japanese patients. Br J Dermatol. 2007 Aug. 157(2):410-1. [Medline].

  32. Zhou F, Fu H, Liu L, Cui Y, Zhang Z, Chang R, et al. No exonic mutations at GJB2, GJB3, GJB4, GJB6, ARS (Component B), and LOR genes responsible for a Chinese patient affected by progressive symmetric erythrokeratodermia with pseudoainhum. Int J Dermatol. 2014 Sep. 53 (9):1111-3. [Medline].

  33. Morley SM, White MI, Rogers M, et al. A new, recurrent mutation of GJB3 (Cx31) in erythrokeratodermia variabilis. Br J Dermatol. 2005 Jun. 152(6):1143-8. [Medline].

  34. Di WL, Monypenny J, Common JE, et al. Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet. 2002 Aug 15. 11(17):2005-14. [Medline].

  35. van Steensel MA, Oranje AP, van der Schroeff JG, Wagner A, van Geel M. The missense mutation G12D in connexin30.3 can cause both erythrokeratodermia variabilis of Mendes da Costa and progressive symmetric erythrokeratodermia of Gottron. Am J Med Genet A. 2009 Feb 15. 149A(4):657-61. [Medline].

  36. Korge BP, Ishida-Yamamoto A, Punter C, et al. Loricrin mutation in Vohwinkel's keratoderma is unique to the variant with ichthyosis. J Invest Dermatol. 1997 Oct. 109(4):604-10. [Medline].

  37. Maestrini E, Monaco AP, McGrath JA, et al. A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel's syndrome. Nat Genet. 1996 May. 13(1):70-7. [Medline].

  38. Cui Y, Yang S, Gao M, et al. Identification of a novel locus for progressive symmetric erythrokeratodermia to a 19.02-cM interval at 21q11.2-21q21.2. J Invest Dermatol. 2006 Sep. 126(9):2136-9. [Medline].

  39. Bourassa CV, Raskin S, Serafini S, Teive HA, Dion PA, Rouleau GA. A New ELOVL4 Mutation in a Case of Spinocerebellar Ataxia With Erythrokeratodermia. JAMA Neurol. 2015 Aug. 72 (8):942-3. [Medline].

  40. Montpetit A, Cote S, Brustein E, et al. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet. 2008 Dec. 4(12):e1000296. [Medline].

  41. Magyarlaki M, Drobnitsch I, Zombai E, Schneider I. [A case of erythrokeratodermia figurata variabilis successfully treated with tigason]. Z Hautkr. 1989 Oct 15. 64(10):881-2, 885-7. [Medline].

  42. van de Kerkhof PC, Steijlen PM, van Dooren-Greebe RJ, Happle R. Acitretin in the treatment of erythrokeratodermia variabilis. Dermatologica. 1990. 181(4):330-3. [Medline].

  43. Singh N, Thappa DM. Erythrokeratoderma variabilis responding to low-dose isotretinoin. Pediatr Dermatol. 2010 Jan-Feb. 27(1):111-3. [Medline].

  44. Yoo S, Simzar S, Han K, Takahashi S, Cotliar R. Erythrokeratoderma variabilis successfully treated with topical tazarotene. Pediatr Dermatol. 2006 Jul-Aug. 23(4):382-5. [Medline].

Previous
Next
 
Figurate erythema. Courtesy of M. King and J. Crawford.
Targetlike erythema. Courtesy of M. King and J. Crawford.
Generalized hyperkeratosis with scaling, accentuated skin lines, and figurate erythema. Courtesy of M. King and J. Crawford.
Thick hyperkeratotic plates with hystrixlike spines. Courtesy of M. King and J. Crawford.
Sharply demarcated, figurate, hyperkeratotic plaques in a symmetric distribution. Courtesy of M. King and J. Crawford.
Figurate hyperkeratotic plaque with erythematous patches. Courtesy of M. King and J. Crawford.
Plantar keratoderma with peeling. Courtesy of M. King and J. Crawford.
Diffuse glovelike palmar keratoderma. Courtesy of M. King and J. Crawford.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.