Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Hydrocephalus

  • Author: Stephen L Nelson, Jr, MD, PhD, FAAP; Chief Editor: Jasvinder Chawla, MD, MBA  more...
 
Updated: Apr 13, 2016
 

Practice Essentials

Hydrocephalus can be defined broadly as a disturbance of cerebrospinal fluid (CSF) formation, flow, or absorption, leading to an increase in volume occupied by this fluid in the central nervous system (CNS).[1] This condition could also be termed a hydrodynamic CSF disorder. See the image below.

Noncommunicating obstructive hydrocephalus caused Noncommunicating obstructive hydrocephalus caused by obstruction of the foramina of Luschka and Magendie. This MRI sagittal image demonstrates dilatation of lateral ventricles with stretching of corpus callosum and dilatation of the fourth ventricle.

Signs and symptoms

Clinical features of hydrocephalus are influenced by the patient's age, the cause of the hydrocephalus, the location of the obstruction, its duration, and its rapidity of onset.

Symptoms in infants include poor feeding, irritability, reduced activity, and vomiting.

Symptoms in children and adults include the following:

  • Slowing of mental capacity, cognitive deterioration
  • Headaches (initially in the morning)
  • Neck pain, suggesting tonsillar herniation
  • Vomiting, more significant in the morning
  • Blurred vision: A consequence of papilledema and, later, of optic atrophy
  • Double vision: Related to unilateral or bilateral sixth nerve palsy
  • Difficulty in walking secondary to spasticity: Preferentially affects the lower limbs because the periventricular pyramidal tract is stretched by the hydrocephalus
  • Drowsiness

Children may also exhibit stunted growth and sexual maturation from third ventricle dilatation. Adults may also have nausea that is not exacerbated by head movements; incontinence (urinary first, fecal later if condition remains untreated) indicates significant destruction of the frontal lobes and advanced disease.

Symptoms of normal pressure hydrocephalus (NPH) include the following:

  • Gait disturbance: Usually the first symptom and may precede other symptoms by months or years; magnetic gait is used to emphasize the tendency of the feet to remain "stuck to the floor" despite patients’ best efforts to move them
  • Dementia (of varying degrees): Should be a late finding in pure (shunt-responsive) NPH; presents as an impairment of recent memory or as a "slowing of thinking"; spontaneity and initiative are decreased
  • Urinary incontinence: May present as urgency, frequency, or a diminished awareness of the need to urinate
  • Other symptoms that can occur: Personality changes and Parkinsonism
  • Rarely: Headaches; seizures are extremely rare—consider an alternative diagnosis

See Clinical Presentation for more detail.

Diagnosis

Examination in infants may reveal the following findings:

  • Head enlargement (head circumference ≥98th percentile for age)
  • Dysjunction of sutures
  • Dilated scalp veins
  • Tense fontanelle
  • Setting-sun sign: Characteristic of increased intracranial pressure (ICP); downward deviation of ocular globes, retracted upper lids, visible white sclerae above iris
  • Increased limb tone (spasticity preferentially affects the lower limbs)

Children and adults may demonstrate the following findings on physical examination:

  • Papilledema
  • Failure of upward gaze: Due to pressure on the tectal plate through the suprapineal recess; the limitation of upward gaze is of supranuclear origin
  • Unsteady gait
  • Large head
  • Unilateral or bilateral sixth nerve palsy (secondary to increased ICP)

Children may also exhibit the Macewen sign, in which a "cracked pot" sound is noted on percussion of the head.

Patients with NPH may exhibit the following findings on examination:

  • Normal muscle strength; no sensory loss
  • Increased reflexes and Babinski response in one or both feet: Search for vascular risk factors (causing associated brain microangiopathy or vascular Parkinsonism), which are common in NPH patients
  • Variable difficulty in walking: May have mild imbalance to inability to walk or to stand; the classic gait impairment consists of short steps, wide base, externally rotated feet, and lack of festination (hastening of cadence with progressively shortening stride length, a hallmark of the gait impairment of Parkinson disease)
  • Frontal release signs (in late stages): Appearance of sucking and grasping reflexes

Testing

No specific blood tests are recommended in the workup for hydrocephalus. However, consider genetic testing and counseling when X-linked hydrocephalus is suspected, and evaluate the CSF in posthemorrhagic and postmeningitic hydrocephalus for protein concentration and to exclude residual infection.

Obtain electroencephalography in patients with seizures.

Imaging studies

The following imaging studies may be used to evaluate patients with suspected hydrocephalus:

  • Computed tomography (CT) scanning: To assess size of ventricles and other structures
  • Magnetic resonance imaging (MRI): To assess for Chiari malformation or cerebellar or periaqueductal tumors
  • Ultrasonography through anterior fontanelle in infants: To assess for subependymal and intraventricular hemorrhage; to follow infants for possible progressive hydrocephalus
  • Skull radiography: To detect erosion of sella turcica, or "beaten copper cranium" (or "beaten silver cranium")—the latter can also be seen in craniosynostosis; (after shunt insertion) to confirm correct positioning of installed hardware
  • MRI cine: To measure CSF stroke volume (SV) in the cerebral aqueduct; however, such measurements don’t appear to be useful in predicting response to shunting [2]
  • Diffusion tensor imaging (DTI): To detect differences in fractional anisotropy and mean diffusivity of the brain parenchyma surrounding the ventricles; allows recognition of microstructural changes in periventricular white matter region that may be too subtle on conventional MRI [3]
  • Radionuclide cisternography (in NPH): To assess the prognosis with regard to possible shunting—however, due to its poor sensitivity in predicting shunt response when the ventricular to total intracranial activity (V/T) ratio is less than 32%, this test is no longer commonly used

See Workup for more detail.

Management

Surgery

Surgical treatment is the preferred therapeutic option in patients with hydrocephalus.[4] Most patients eventually undergo shunt placements, such as the following:

  • Ventriculoperitoneal (VP) shunt (most common)
  • Ventriculoatrial (VA) shunt (or "vascular shunt")
  • Lumboperitoneal shunt: Only used for communicating hydrocephalus, CSF fistula, or pseudotumor cerebri)
  • Torkildsen shunt (rarely): Effective only in acquired obstructive hydrocephalus
  • Ventriculopleural shunt (second-line therapy): Used if other shunt types contraindicated

Rapid-onset hydrocephalus with ICP is an emergency. The following procedures can be done, depending on each specific case:

  • Ventricular tap in infants
  • Open ventricular drainage in children and adults
  • Lumbar puncture (LP) in posthemorrhagic and postmeningitic hydrocephalus
  • VP or VA shunt

Repeat LPs can be performed for cases of hydrocephalus after intraventricular hemorrhage (which can resolve spontaneously). If reabsorption does not resume when the CSF protein content is less than 100 mg/dL, spontaneous resorption is unlikely to occur. LPs can be performed only in cases of communicating hydrocephalus.

Alternatives to shunting include the following:

  • Choroid plexectomy or choroid plexus coagulation
  • Opening of a stenosed aqueduct
  • Endoscopic fenestration of the floor of the third ventricle (however, contraindicated in communicating hydrocephalus)

Conservative management

Medical treatment is not effective in long-term treatment of chronic hydrocephalus; it is used as a temporizing measure to delay surgical intervention. Medical therapy may be tried in premature infants with posthemorrhagic hydrocephalus (in the absence of acute hydrocephalus). Normal CSF absorption may resume spontaneously during this interim period.

Medication as treatment for hydrocephalus is controversial and should be used only as a temporary measure for posthemorrhagic hydrocephalus in neonates. Such agents include carbonic anhydrase inhibitors (eg, acetazolamide) and loop diuretics (eg, furosemide).

See Treatment and Medication for more detail.

Next

Background

Hydrocephalus can be defined broadly as a disturbance of formation, flow, or absorption of cerebrospinal fluid (CSF) that leads to an increase in volume occupied by this fluid in the CNS.[1] This condition also could be termed a hydrodynamic disorder of CSF. Acute hydrocephalus occurs over days, subacute hydrocephalus occurs over weeks, and chronic hydrocephalus occurs over months or years. Conditions such as cerebral atrophy and focal destructive lesions also lead to an abnormal increase of CSF in CNS. In these situations, loss of cerebral tissue leaves a vacant space that is filled passively with CSF. Such conditions are not the result of a hydrodynamic disorder and therefore are not classified as hydrocephalus. An older misnomer used to describe these conditions was hydrocephalus ex vacuo.

Normal pressure hydrocephalus (NPH) describes a condition that rarely occurs in patients younger than 60 years.[5] Enlarged ventricles and normal CSF pressure at lumbar puncture (LP) in the absence of papilledema led to the term NPH. However, intermittent intracranial hypertension has been noted during monitoring of patients in whom NPH is suspected, usually at night. The classic Hakim triad of symptoms includes gait apraxia, incontinence, and dementia. Headache is not a typical symptom in NPH.

Benign external hydrocephalus is a self-limiting absorption deficiency of infancy and early childhood with raised intracranial pressure (ICP) and enlarged subarachnoid spaces. The ventricles usually are not enlarged significantly, and resolution within 1 year is the rule.

Communicating hydrocephalus occurs when full communication occurs between the ventricles and subarachnoid space. It is caused by overproduction of CSF (rarely), defective absorption of CSF (most often), or venous drainage insufficiency (occasionally). See the image below.

Communicating hydrocephalus with surrounding "atro Communicating hydrocephalus with surrounding "atrophy" and increased periventricular and deep white matter signal on fluid-attenuated inversion recovery (FLAIR) sequences. Note that apical cuts (lower row) do not show enlargement of the sulci, as is expected in generalized atrophy. Pathological evaluation of this brain demonstrated hydrocephalus with no microvascular pathology corresponding with the signal abnormality (which likely reflects transependymal exudate) and normal brain weight (indicating that the sulci enlargement was due to increased subarachnoid cerebrospinal fluid [CSF] conveying a pseudoatrophic brain pattern).

Noncommunicating hydrocephalus occurs when CSF flow is obstructed within the ventricular system or in its outlets to the arachnoid space, resulting in impairment of the CSF from the ventricular to the subarachnoid space. The most common form of noncommunicating hydrocephalus is obstructive and is caused by intraventricular or extraventricular mass-occupying lesions that disrupt the ventricular anatomy.[6] See the images below.

Noncommunicating obstructive hydrocephalus caused Noncommunicating obstructive hydrocephalus caused by obstruction of the foramina of Luschka and Magendie. This MRI sagittal image demonstrates dilatation of lateral ventricles with stretching of corpus callosum and dilatation of the fourth ventricle.
Noncommunicating obstructive hydrocephalus caused Noncommunicating obstructive hydrocephalus caused by obstruction of foramina of Luschka and Magendie. This MRI axial image demonstrates dilatation of the lateral ventricles.
Noncommunicating obstructive hydrocephalus caused Noncommunicating obstructive hydrocephalus caused by obstruction of foramina of Luschka and Magendie. This MRI axial image demonstrates fourth ventricle dilatation.

Congenital hydrocephalus applies to the ventriculomegaly that develops in the fetal and infancy periods, often associated with macrocephaly.[7] The most common causes of congenital hydrocephalus are obstruction of the cerebral aqueduct flow, Arnold-Chiari malformation or Dandy–Walker malformation.[8] these patients may stabilize in later years due to compensatory mechanisms but may decompensate, especially following minor head injuries. During these decompensations, determining the extent to which any new neurological deficits may be due to the new acute event, compared with hydrocephalus that may have gone unnoticed for many years, is difficult.

Previous
Next

Pathophysiology

Normal CSF production is 0.20-0.35 mL/min; most CSF is produced by the choroid plexus, which is located within the ventricular system, mainly the lateral and fourth ventricles. The capacity of the lateral and third ventricles in a healthy person is 20 mL. Total volume of CSF in an adult is 120 mL.

Normal route of CSF from production to clearance is the following: From the choroid plexus, the CSF flows to the lateral ventricle, then to the interventricular foramen of Monro, the third ventricle, the cerebral aqueduct of Sylvius, the fourth ventricle, the 2 lateral foramina of Luschka and 1 medial foramen of Magendie, the subarachnoid space, the arachnoid granulations, the dural sinus, and finally into the venous drainage.

ICP rises if production of CSF exceeds absorption. This occurs if CSF is overproduced, resistance to CSF flow is increased, or venous sinus pressure is increased. CSF production falls as ICP rises. Compensation may occur through transventricular absorption of CSF and also by absorption along nerve root sleeves. Temporal and frontal horns dilate first, often asymmetrically. This may result in elevation of the corpus callosum, stretching or perforation of the septum pellucidum, thinning of the cerebral mantle, or enlargement of the third ventricle downward into the pituitary fossa (which may cause pituitary dysfunction).

The mechanism of NPH has not been elucidated completely. Current theories include increased resistance to flow of CSF within the ventricular system or subarachnoid villi; intermittently elevated CSF pressure, usually at night; and ventricular enlargement caused by an initial rise in CSF pressure; the enlargement is maintained despite normal pressure because of the Laplace law. Although pressure is normal, the enlarged ventricular area reflects increased force on the ventricular wall.

Previous
Next

Frequency

United States

The incidence of congenital hydrocephalus is 3 per 1,000 live births; the incidence of acquired hydrocephalus is not known exactly due to the variety of disorders that may cause it.

International

Incidence of acquired hydrocephalus is unknown. About 100,000 shunts are implanted each year in the developed countries, but little information is available for other countries.

Previous
Next

Mortality/Morbidity

In untreated hydrocephalus, death may occur by tonsillar herniation secondary to raised ICP with compression of the brain stem and subsequent respiratory arrest.

Shunt dependence occurs in 75% of all cases of treated hydrocephalus and in 50% of children with communicating hydrocephalus. Patients are hospitalized for scheduled shunt revisions or for treatment of shunt complications or shunt failure. Poor development of cognitive function in infants and children, or loss of cognitive function in adults, can complicate untreated hydrocephalus. It may persist after treatment. Visual loss can complicate untreated hydrocephalus and may persist after treatment.

Previous
Next

Epidemiology

Sex

Generally, incidence is equal in males and females. The exception is Bickers-Adams syndrome, an X-linked hydrocephalus transmitted by females and manifested in males. NPH has a slight male preponderance.

Age

Incidence of human hydrocephalus presents a bimodal age curve. One peak occurs in infancy and is related to the various forms of congenital malformations. Another peak occurs in adulthood, mostly resulting from NPH. Adult hydrocephalus represents approximately 40% of total cases of hydrocephalus.

The outcome of pediatric hydrocephalus has been studied frequently, but much remains unresolved about long-term and social outcomes.[9]

Previous
 
 
Contributor Information and Disclosures
Author

Stephen L Nelson, Jr, MD, PhD, FAAP Section Head of Pediatric Neurology, Associate Professor of Pediatrics, Neurology, and Psychiatry, Tulane University School of Medicine

Stephen L Nelson, Jr, MD, PhD, FAAP is a member of the following medical societies: Academic Pediatric Association, American Academy of Neurology, American Academy of Pediatrics, American Medical Association, Association of Military Surgeons of the US, Child Neurology Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Jasvinder Chawla, MD, MBA Chief of Neurology, Hines Veterans Affairs Hospital; Professor of Neurology, Loyola University Medical Center

Jasvinder Chawla, MD, MBA is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American Clinical Neurophysiology Society, American Medical Association

Disclosure: Nothing to disclose.

Additional Contributors

Anthony M Murro, MD Professor, Laboratory Director, Department of Neurology, Medical College of Georgia, Georgia Regents University

Anthony M Murro, MD is a member of the following medical societies: American Academy of Neurology, American Epilepsy Society

Disclosure: Nothing to disclose.

Acknowledgements

Alberto J Espay, MD, MSc Associate Professor, Director of Clinical Research, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati College of Medicine

Alberto J Espay, MD, MSc is a member of the following medical societies: American Academy of Neurology and Movement Disorders Society

Disclosure: Abbott Consulting fee Consulting; Chelsea therapeutics Consulting fee Consulting; Novartis Honoraria Speaking and teaching; TEVA Consulting fee Consulting; NIH Grant/research funds K23 Career Development Award; Eli Lilly Consulting fee Consulting; Great Lakes Neurotechnologies Other; Michael J Fox Foundation Grant/research funds Other; Lippincott Williams & Wilkins Royalty Book; American Academy of Neurology Honoraria Speaking and teaching

Eugenia-Daniela Hord, MD Instructor, Departments of Anesthesia and Neurology, Massachusetts General Hospital Pain Center, Harvard Medical School

Eugenia-Daniela Hord, MD is a member of the following medical societies: American Academy of Neurology and American Pain Society

Disclosure: Nothing to disclose.

References
  1. Rekate HL. A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol. 2009 Mar. 16(1):9-15. [Medline].

  2. Kahlon B, Annertz M, Stahlberg F, Rehncrona S. Is aqueductal stroke volume, measured with cine phase-contrast magnetic resonance imaging scans useful in predicting outcome of shunt surgery in suspected normal pressure hydrocephalus?. Neurosurgery. 2007 Jan. 60(1):124-9; discussion 129-30. [Medline].

  3. Hattingen E, Jurcoane A, Melber J, Blasel S, Zanella FE, Neumann-Haefelin T. Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery. 2010 May. 66(5):917-24. [Medline].

  4. Hamilton MG. Treatment of hydrocephalus in adults. Semin Pediatr Neurol. 2009 Mar. 16(1):34-41. [Medline].

  5. Woodworth GF, McGirt MJ, Williams MA, Rigamonti D. Cerebrospinal fluid drainage and dynamics in the diagnosis of normal pressure hydrocephalus. Neurosurgery. 2009 May. 64(5):919-25; discussion 925-6. [Medline].

  6. Lacy M, Oliveira M, Austria E, Frim MD. Neurocognitive outcome after endoscopic third ventriculocisterostomy in patients with obstructive hydrocephalus. J Int Neuropsychol Soc. 2009 May. 15(3):394-8. [Medline].

  7. Garne E, Loane M, Addor MC, Boyd PA, Barisic I, Dolk H. Congenital hydrocephalus - prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol. 2009 Apr 30. [Medline].

  8. Partington MD. Congenital hydrocephalus. Neurosurg Clin N Am. 2001 Oct. 12(4):737-42, ix. [Medline].

  9. Vinchon M, Rekate HL, Kulkarni AV. Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS. 2012 Aug 27. 9(1):18. [Medline].

  10. DeBenedictis CN, Rubin SE, Kodsi SR. Esotropia in Children with Ventricular-Peritoneal Shunts. Strabismus. 2015 Sep. 23 (3):117-20. [Medline].

  11. Chauvet D, Sichez JP, Boch AL. [Early epidural hematoma after CSF shunt for obstructive hydrocephalus]. Neurochirurgie. 2009 Jun. 55(3):350-3. [Medline].

  12. Oertel JM, Mondorf Y, Baldauf J, Schroeder HW, Gaab MR. Endoscopic third ventriculostomy for obstructive hydrocephalus due to intracranial hemorrhage with intraventricular extension. J Neurosurg. 2009 May 8. [Medline].

  13. Espay AJ, Narayan RK, Duker AP, Barrett ET Jr, de Courten-Myers G. Lower-body parkinsonism: reconsidering the threshold for external lumbar drainage. Nat Clin Pract Neurol. 2008 Jan. 4(1):50-5. [Medline].

  14. [Guideline] Dormont D, Seidenwurm DJ, Davis PC. Dementia and movement disorders. American College of Radiology (ACR). 2007. [Full Text].

  15. Larsson A, Moonen M, Bergh AC, Lindberg S, Wikkelso C. Predictive value of quantitative cisternography in normal pressure hydrocephalus. Acta Neurol Scand. 1990 Apr. 81(4):327-32. [Medline].

  16. Walchenbach R, Geiger E, Thomeer RT, Vanneste JA. The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2002 Apr. 72(4):503-6. [Medline].

  17. Lee JH, Back DB, Park DH, Cha YH, Kang SH, Suh JK. Increased Vascular Endothelial Growth Factor in the Ventricular Cerebrospinal Fluid as a Predictive Marker for Subsequent Ventriculoperitoneal Shunt Infection : A Comparison Study among Hydrocephalic Patients. J Korean Neurosurg Soc. 2012 Jun. 51(6):328-33. [Medline]. [Full Text].

  18. Black PML. Hydrocephalus in adults. Youmans JR, ed. Neurological Surgery. Philadelphia: WB Saunders Company; 1996. 927-44.

  19. Chang CC, Kuwana N, Noji M, Tanabe Y, Koike Y, Ikegami T. Cerebral blood flow in patients with normal pressure hydrocephalus. Nucl Med Commun. 1999 Feb. 20(2):167-9. [Medline].

  20. Colak A, Albright AL, Pollack IF. Follow-up of children with shunted hydrocephalus. Pediatr Neurosurg. 1997 Oct. 27(4):208-10. [Medline].

  21. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004 Jun. 75(6):813-21. [Medline].

  22. Damasceno BP, Carelli EF, Honorato DC, Facure JJ. The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus. Arq Neuropsiquiatr. 1997 Jun. 55(2):179-85. [Medline].

  23. du Plessis AJ. Posthemorrhagic hydrocephalus and brain injury in the preterm infant: dilemmas in diagnosis and management. Semin Pediatr Neurol. 1998 Sep. 5(3):161-79. [Medline].

  24. Frim DM, Scott RM, Madsen JR. Surgical management of neonatal hydrocephalus. Neurosurg Clin N Am. 1998 Jan. 9(1):105-10. [Medline].

  25. Garvey MA, Laureno R. Hydrocephalus: obliterated perimesencephalic cisterns and the danger of sudden death. Can J Neurol Sci. 1998 May. 25(2):154-8. [Medline].

  26. Goumnerova LC, Frim DM. Treatment of hydrocephalus with third ventriculocisternostomy: outcome and CSF flow patterns. Pediatr Neurosurg. 1997 Sep. 27(3):149-52. [Medline].

  27. Hoppe-Hirsch E, Laroussinie F, Brunet L, et al. Late outcome of the surgical treatment of hydrocephalus. Childs Nerv Syst. 1998 Mar. 14(3):97-9. [Medline].

  28. Libenson MH, Kaye EM, Rosman NP, Gilmore HE. Acetazolamide and furosemide for posthemorrhagic hydrocephalus of the newborn. Pediatr Neurol. 1999 Mar. 20(3):185-91. [Medline].

  29. Mercuri E, Faundez JC, Cowan F, Dubowitz L. Acetazolamide without frusemide in the treatment of post-haemorrhagic hydrocephalus. Acta Paediatr. 1994 Dec. 83(12):1319-21. [Medline].

  30. Poca MA, Mataro M, Del Mar Matarin M, Arikan F, Junque C, Sahuquillo J. Is the placement of shunts in patients with idiopathic normal-pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J Neurosurg. 2004 May. 100(5):855-66. [Medline].

  31. Sainte-Rose C. Hydrocephalus in childhood. Youmans JR, ed. Neurological Surgery. Philadelphia: WB Saunders Company; 1996. 890-926.

  32. Sansone JM, Iskandar BJ. Endoscopic cerebral aqueductoplasty: a trans-fourth ventricle approach. J Neurosurg. 2005 Nov. 103(5 Suppl):388-92. [Medline].

  33. Shbeeb MI, O'Duffy JD, Michet CJ Jr, O'Fallon WM, Matteson EL. Evaluation of glucocorticosteroid injection for the treatment of trochanteric bursitis. J Rheumatol. 1996 Dec. 23(12):2104-6. [Medline].

  34. Tanaka A, Kimura M, Nakayama Y, Yoshinaga S, Tomonaga M. Cerebral blood flow and autoregulation in normal pressure hydrocephalus. Neurosurgery. 1997 Jun. 40(6):1161-5; discussion 1165-7. [Medline].

  35. Vogel TW, Bahuleyan B, Robinson S, Cohen AR. The role of endoscopic third ventriculostomy in the treatment of hydrocephalus. J Neurosurg Pediatr. 2013 Jul. 12(1):54-61. [Medline].

  36. Williams MA, Razumovsky AY, Hanley DF. Comparison of Pcsf monitoring and controlled CSF drainage diagnose normal pressure hydrocephalus. Acta Neurochir Suppl. 1998. 71:328-30. [Medline].

 
Previous
Next
 
Noncommunicating obstructive hydrocephalus caused by obstruction of the foramina of Luschka and Magendie. This MRI sagittal image demonstrates dilatation of lateral ventricles with stretching of corpus callosum and dilatation of the fourth ventricle.
Noncommunicating obstructive hydrocephalus caused by obstruction of foramina of Luschka and Magendie. This MRI axial image demonstrates dilatation of the lateral ventricles.
Noncommunicating obstructive hydrocephalus caused by obstruction of foramina of Luschka and Magendie. This MRI axial image demonstrates fourth ventricle dilatation.
Communicating hydrocephalus with surrounding "atrophy" and increased periventricular and deep white matter signal on fluid-attenuated inversion recovery (FLAIR) sequences. Note that apical cuts (lower row) do not show enlargement of the sulci, as is expected in generalized atrophy. Pathological evaluation of this brain demonstrated hydrocephalus with no microvascular pathology corresponding with the signal abnormality (which likely reflects transependymal exudate) and normal brain weight (indicating that the sulci enlargement was due to increased subarachnoid cerebrospinal fluid [CSF] conveying a pseudoatrophic brain pattern).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.