Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Multiple Sclerosis Medication

  • Author: Christopher Luzzio, MD; Chief Editor: Jasvinder Chawla, MD, MBA  more...
 
Updated: Jun 16, 2016
 

Medication Summary

Treatment and management of multiple sclerosis should be targeted toward relieving symptoms of the disease, treating acute exacerbations, shortening the duration of an acute relapse, reducing frequency of relapses, and preventing disease progression.

Drugs approved for use in MS that reduce the frequency of exacerbations or slow disability progression are referred to as disease-modifying drugs (DMDs). These DMDs can be further classified as immunomodulating (or receptor modulating) or immunosuppressives. Some immunosuppressants are also FDA-approved as antineoplastic agents.

Drugs that treat MS-related symptoms (eg, acute exacerbations, cognitive dysfunction, fatigue, spasticity, bowel and bladder problems, and pain) but do not modify the course of the disease are referred to as symptom-management medications.

Next

Immunomodulators

Class Summary

Immunomodulators or receptor modulators are indicated for the treatment of patients with relapsing forms of MS. They help to slow the accumulation of physical disability and decrease the frequency of clinical exacerbations.

Interferon beta-1b (Betaseron, Extavia)

 

Interferon beta-1b was the first medication approved by the FDA for MS. It is approved for the treatment of relapsing forms of MS to reduce the frequency of clinical exacerbations. It has shown efficacy in patients who have experienced a first clinical episode and have MRI features consistent with MS.[10]

The exact mechanism by which interferon beta-1b exerts its effects is unknown. Interferon beta inhibits the expression of pro-inflammatory cytokines, including interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha and TNF-beta, interferon gamma (IFN-γ), and IL-6. IFN-γ is believed to be a major factor responsible for triggering the autoimmune reaction leading to MS.

Dalfampridine (Ampyra)

 

Dalfampridine, a broad-spectrum potassium blocker is approved as a treatment to improve walking in patients with MS. The improvement in walking was demonstrated by an increase in walking speed.[117]

Interferon beta-1a (Avonex, Rebif)

 

Interferon beta-1a is approved for the treatment of patients with relapsing forms of MS. It helps to slow the accumulation of physical disability and decrease the frequency of clinical exacerbations.

The exact mechanism by which interferon beta-1a exerts its effects is not fully defined. Interferon beta inhibits the expression of proinflammatory cytokines, including interferon gamma (IFN-γ), which is believed to be a major factor responsible for triggering the autoimmune reaction leading to MS.

Alemtuzumab (Lemtrada)

 

Alemtuzumab is a recombinant monoclonal antibody against CD52 (lymphocyte antigen). This action promotes antibody-dependent cell lysis. It is indicated for relapsing forms of multiple sclerosis. Because of the risk for severe and lasting autoimmune adverse effects, use is reserved for patients who have an inadequate response to 2 or more other drugs for MS.

Peginterferon beta-1a (Plegridy)

 

Precise mechanism by which peginterferon beta-1a exerts its effects in patients with multiple sclerosis is unknown. Interferons are thought to alter response to surface antigen and may enhance immune cell activities. It is indicated for treatment of relapsing forms of multiple sclerosis.

Natalizumab (Tysabri)

 

Natalizumab is indicated as monotherapy for MS to delay the accumulation of physical disability and reduce the frequency of clinical exacerbations. Natalizumab is a recombinant humanized monoclonal antibody that binds with alpha-4 integrins and inhibits their adherence to their counterreceptors. The specific mechanism by which natalizumab exerts its effects in MS has not been defined.

Natalizumab has a black-box warning for progressive multifocal leukoencephalopathy (PML). Because of the risk of PML, natalizumab is available only through a special restricted distribution prescribing program called the Tysabri Outreach Unified Commitment to Health (TOUCH).

Glatiramer acetate (Copaxone)

 

Glatiramer acetate is approved for the reduction of the frequency of relapses in patients with relapsing-remitting MS, including patients who have experienced a first clinical episode and have MRI features consistent with MS. Glatiramer acetate's mechanism of action is unknown, but this agent is thought to modify immune processes believed to be responsible for the pathogenesis of MS.[12] The recommended dosage is 20 mg/day administered subcutaneously. The sites for injection include the arms, abdomen, hips, and thighs.

Fingolimod (Gilenya)

 

Fingolimod is the first oral therapy for relapsing forms of MS approved by the FDA. Like other disease-modifying drugs (DMDs) for MS, fingolimod can reduce the frequency of clinical exacerbations and delay the accumulation of physical disability. The recommended dosage for fingolimod is 0.5 mg once a day.[16]

The mechanism by which fingolimod exerts therapeutic effects in MS is unknown, but it appears to be fundamentally different from that of other MS medications. Its activity may involve a reduction of lymphocyte migration into the central nervous system.

Teriflunomide (Aubagio)

 

Teriflunomide is an oral immunomodulatory agent that elicits anti-inflammatory effects by inhibiting dihydroorotate dehydrogenase, a mitochondrial enzyme involved in pyrimidine synthesis. It is indicated for relapsing forms of MS.

Dimethyl fumarate (Tecfidera)

 

Dimethyl fumarate (DMF) is an oral Nrf2 pathway activator indicated for relapsing forms of multiple sclerosis. DMF is metabolized rapidly by presystemic hydrolysis by esterases in the GI tract, blood, and tissues (before it reaches systemic circulation) and is converted to its active metabolite, monomethyl fumarate (MMF). MMF activates the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, a transcription factor encoded by the NFE2L2 gene. The Nrf2 antioxidant response pathway is a cellular defense against oxidative stress. MMF has been identified as a nicotinic acid receptor agonist in vitro.

Daclizumab (Zinbryta)

 

Humanized monoclonal antibody that binds to the high-affinity interleukin-2 (IL-2) receptor subunit (CD25). It is indicated for relapsing forms of MS.

Previous
Next

Corticosteroids

Class Summary

Corticosteroids are used to reduce inflammation and expedite recovery from acute relapses. The most commonly used corticosteroids in MS include methylprednisolone, dexamethasone and prednisone. Short courses of intravenous methylprednisolone with or without a short prednisone taper have been used.

Methylprednisolone (Solu-Medrol, Depo-Medrol

 

Methylprednisolone is given for acute exacerbations of MS. By reversing increased capillary permeability and suppressing polymorphonuclear neutrophil (PMN) activity, methylprednisolone may decrease inflammation. In addition, it may alter the expression of some proinflammatory cytokines.

Dexamethasone (Baycadron, Dexamethasone Intensol)

 

Dexamethasone can be given for acute exacerbations of MS. It stabilizes cell and lysosomal membranes, increases surfactant synthesis, increases serum vitamin A concentration, and inhibits prostaglandin and proinflammatory cytokines. Dexamethasone is available as an injection that can be administered intravenously or intramuscularly and in various oral formulations (tablets, elixir, and solution).

Prednisone (Sterapred)

 

Prednisone prevents or suppresses inflammation and immune responses when administered at pharmacological doses. Prednisone's actions include inhibition of leukocyte infiltration at the site of inflammation, interference in the function of mediators of inflammatory response, and suppression of humoral immune responses. Oral prednisone tapers are commonly administered with or without methylprednisolone.

Previous
Next

Immunosuppressants

Class Summary

Immunosuppressants are used for their ability to suppress immune reactions. Agents such as methotrexate have shown some effectiveness in delaying progression of impairment of the upper extremities in patients with secondary progressive MS. Azathioprine has been studied in clinical trials and has shown modest effects on relapses and progression of disease. Methotrexate and azathioprine have not been approved by the US Food and Drug Administration for use in MS.

Azathioprine (Azasan, Imuran)

 

This immunosuppressive antimetabolite drug is an imidazolyl derivative of 6-mercaptopurine. It is cleaved in vivo to mercaptopurine and converted to 6-thiouric acid by xanthine oxidase. Azathioprine is generally used in the treatment of transplant rejection or severe, active, erosive rheumatoid arthritis, but it has been used off-label for MS.[128]

Methotrexate (Rheumatrex)

 

Methotrexate interferes with DNA synthesis, repair, and cellular replication. It inhibits dihydrofolic acid reductase, which participates in the synthesis of thymidylate and purine nucleotides. Methotrexate has been used off-label for MS.

Previous
Next

Antineoplastic Agents

Class Summary

Antineoplastic agents such as cyclophosphamide and mitoxantrone have been used in MS patients.

Mitoxantrone

 

Mitoxantrone is an immunosuppressive agent approved for the treatment of secondary progressive or aggressive relapsing-remitting MS. It is used for reducing neurologic disability and/or the frequency of clinical relapses in patients with secondary (long-term) progressive, progressive relapsing, or worsening relapsing-remitting MS (ie, patients whose neurologic status is significantly abnormal between relapses). Mitoxantrone is not indicated in the treatment of patients with primary progressive MS.

Mitoxantrone therapy can increase the risk of developing secondary acute myeloid leukemia (AML) in MS patients and in patients with cancer.[15]

Cyclophosphamide

 

Cyclophosphamide has been used for the treatment of progressive MS. Evidence of benefit is mixed. This agent has not been approved for MS but has been used off-label in MS patients. Cyclophosphamide is associated with leukemia, lymphoma, infection, and hemorrhagic cystitis.[129]

Previous
Next

Dopamine Agonists

Class Summary

Amantadine is approved for the prophylaxis and treatment of influenza A and Parkinson disease and has been used off-label to relieve fatigue in patients with MS. It has relatively few side effects and is well tolerated .

Amantadine (Symmetrel)

 

Amantadine is not FDA approved for use in MS, but dosages of 100 mg given orally twice a day have commonly been used for fatigue.[114] The mechanism by which amantadine counteracts fatigue in MS patients is unclear.

Previous
Next

Skeletal Muscle Relaxant

Class Summary

Pharmacologic treatment of spasticity includes baclofen (Lioresal, Gablofen) as a first-line agent. Baclofen can be titrated easily in divided doses. Patients using this medication may report fatigue or weakness as an adverse effect. Dantrolene (Dantrium) acts within muscles on excitation-contraction coupling; however, it is rarely used because it can cause liver damage.

Baclofen (Lioresal, Gablofen)

 

Baclofen is a skeletal muscle relaxant used as a first-line treatment for spasticity in patients with MS. It can effectively relieve spasms and has modest effects in improving performance. Intrathecal baclofen via an implanted pump can be effective against spasticity in suitable patients. The pump can be electronically regulated to deliver small amounts of baclofen at a constant or variable dose over a 24-hour period to increase efficacy and decrease side effects.

Dantrolene (Dantrium)

 

Dantrolene is a skeletal muscle relaxant that acts directly on skeletal muscle to decrease spasticity. Dantrolene is believed to decrease muscle contraction by directly interfering with calcium ion release from the sarcoplasmic reticulum within skeletal muscle cells. It affects all muscles of the body and is used less frequently than baclofen because of hepatotoxicity at higher doses and numerous drug interactions.

Previous
Next

Neuromuscular Blockers, Botulinum Toxins

Class Summary

The FDA has approved the use of botulinum toxin (Botox) for the treatment of upper limb spasticity in MS. The FDA has also approved this agent for the treatment of urinary incontinence due to detrusor overactivity associated with a neurologic condition (eg, MS) in adults who have an inadequate response to, or are intolerant of, an anticholinergic medication.

OnabotulinumtoxinA toxin (Botox)

 

OnabotulinumtoxinA toxin is an injectable neurotoxin that temporarily blocks connections between the nerves and the muscles, leading to short-term relaxation of the targeted muscle. The drug can be injected again when the muscle-relaxing effects have worn off, but not more frequently than every 3 months.

It is approved for the treatment of upper limb spasticity in adults to decrease the severity of increased muscle tone in elbow flexors (biceps), wrist flexors (flexor carpi radialis and flexor carpi ulnaris), and finger flexors (flexor digitorum profundus and flexor digitorum sublimis).

Previous
Next

Alpha2-Adrenergic Agonists

Class Summary

Tizanidine (Zanaflex) is a centrally active alpha2 -adrenergic agonist that is also used to treat spasticity in patients with MS. It can be used alone or in combination with baclofen.

Tizanidine (Zanaflex)

 

This centrally acting alpha-adrenergic agonist is presumed to decrease spasticity by increasing presynaptic inhibition of motor neurons. Tizanidine has effects similar to those of baclofen, but it produces less weakness and more sedation. This drug can be titrated starting with 2 mg, with maximum doses of 36 mg/day.

Previous
Next

Benzodiazepines

Class Summary

Benzodiazepines are used as second-line agents for the treatment of spasticity in patients with MS. Agents in the benzodiazepine class that are commonly used include diazepam and clonazepam. While these compounds can be useful adjunct medications, they can be sedating and habit-forming and are not FDA approved for use in MS.

For patients who also experience sleep disorders, the provider may take advantage of the sedating effects of the benzodiazepines to manage the spasticity and sleep problem with a single medication. For patients with cognitive impairment, benzodiazepines may be contraindicated due to their adverse CNS effects.

Clonazepam (Klonopin)

 

Clonazepam is a long-acting benzodiazepine that increases presynaptic gamma-aminobutyric acid (GABA) inhibition and reduces monosynaptic and polysynaptic reflexes. It suppresses muscle contractions by facilitating inhibitory GABA neurotransmission and other inhibitory transmitters.

Diazepam (Valium)

 

Diazepam modulates the postsynaptic effects of GABA-A transmission, resulting in an increase in presynaptic inhibition. It appears to act on part of the limbic system, the thalamus, and the hypothalamus to induce a calming effect. Diazepam also has been found to be an effective adjunct for the relief of skeletal muscle spasms caused by upper motor neuron disorders.

Previous
Next

Stimulants

Class Summary

Modafinil (Provigil), armodafinil (Nuvigil), dextroamphetamine (Dexedrine), and methylphenidate (Concerta, Metadate CD, Metadate ER, Ritalin, Ritalin SR) are wakefulness-promoting agents approved for the treatment of narcolepsy. These agents are also used for the treatment of fatigue without interfering with normal sleep architecture in patients with MS. Modafinil and methylphenidate have also been used as cognitive-enhancing drugs to treat cognitive dysfunction in MS.

Modafinil (Provigil)

 

Modafinil is listed in Schedule IV of the Controlled Substances Act. It promotes wakefulness, and is used for treatment of fatigue without interfering with normal sleep architecture. Patients should be observed for signs of use or abuse, as the drug has psychoactive and euphoric effects similar to those seen with other scheduled CNS stimulants (eg, methylphenidate). The mechanism of action of modafinil is unknown.

Armodafinil (Nuvigil)

 

Armodafinil elicits wakefulness-promoting actions similar to those of sympathomimetic agents, although its pharmacologic profile is not identical to sympathomimetic amines. It is indicated to improve wakefulness in individuals with excessive sleepiness associated with narcolepsy, obstructive sleep apnea–hypopnea syndrome (OSAHS), or shift-work sleep disorder. It is also used for treatment of fatigue without interfering with normal sleep architecture. It may also be used as a cognitive-enhancing drug to treat cognitive dysfunction in MS.

Methylphenidate (Concerta, Daytrana, Metadate CD, Metadate ER, Methylin, Methylin ER, Ritalin, Ritalin LA, Ritalin SR)

 

Methylphenidate is a piperidine derivative. It stimulates the cerebral cortex and subcortical structures.

Dextroamphetamine (Dexedrine, ProCentra)

 

This agent increases the amount of circulating dopamine and norepinephrine in the cerebral cortex by blocking the reuptake of norepinephrine or dopamine from synapses.

Previous
Next

Anticonvulsants, Other

Class Summary

Gabapentin is an anticonvulsant drug that is particularly useful in patients who experience spasticity and neuropathic pain. Anticonvulsants (eg, carbamazepine, phenytoin) can also be used for the treatment of secondary pain in MS. Topiramate (Topamax) is an anticonvulsant that can be used for MS patients with tremor or spasms and has also been used for paroxysmal symptoms.

Gabapentin (Neurontin)

 

Gabapentin is a membrane stabilizer, a structural analogue of the inhibitory neurotransmitter GABA. Paradoxically, gabapentin is thought not to exert an effect on GABA receptors. It is used to manage pain and provide sedation in patients with neuropathic pain.

Carbamazepine (Tegretol, Tegretol XR)

 

Carbamazepine is a sodium channel blocker that typically provides substantial or complete relief of pain in 80% of individuals with MS within 24-48 hours. It reduces sustained high-frequency repetitive neural firing and is a potent enzyme inducer that can induce its own metabolism.

Pregabalin (Lyrica)

 

Pregabalin is a structural derivative of GABA with an unknown mechanism of action. It is used to relieve neuropathic pain.

Topiramate (Topamax)

 

The exact mechanism of topiramate's anticonvulsant effects is unknown. Topiramate's actions involve several mechanisms, including reduction of the duration of abnormal discharges and the number of action potentials within each discharge. This is probably secondary to its ability to block voltage-sensitive sodium channels. Topiramate also increases the frequency at which GABA activates GABA-A receptors. Finally, it inhibits excitatory transmission by antagonizing some types of glutamate receptors.

Previous
Next

Anticonvulsants, Hydantoins

Class Summary

Anticonvulsants, such as phenytoin, can also be used for the treatment of secondary pain in MS.

Phenytoin (Dilantin, Phenytek)

 

Phenytoin blocks sodium channels nonspecifically and therefore reduces neuronal excitability in sensitized C-nociceptors. It is effective in neuropathic pain, but it suppresses insulin secretion and may precipitate hyperosmolar coma in patients with diabetes.

Previous
Next

Selective Serotonin/Norepinephrine Reuptake Inhibitors

Class Summary

Selective serotonin/norepinephrine reuptake inhibitors (SNRIs) are principally used as antidepressants; however, duloxetine is also indicated for relief of several types of pain.

Duloxetine (Cymbalta)

 

A potent inhibitor of neuronal serotonin and norepinephrine uptake, duloxetine is used as an antidepressant and for relief of neuropathic pain.

Previous
Next

Nonsteroidal Anti-Inflammatory Drugs

Class Summary

Pharmacologic agents used for the treatment of secondary pain in MS are nonsteroidal anti-inflammatory drugs (NSAIDs) or other analgesics. Ibuprofen has also been cited as potentially having beneficial effects with paroxysmal symptoms. The use of narcotics seldom is indicated. Commonly used NSAIDs include ibuprofen (Motrin, Advil) and naproxen (Naprosyn, Aleve, Anaprox, Anaprox DS, Naprelan).

Ibuprofen (Motrin, Advil)

 

Ibuprofen is the drug of choice for patients with mild to moderate pain. It inhibits inflammatory reactions and pain by decreasing prostaglandin synthesis.

Naproxen (Naprosyn, Aleve, Anaprox, Anaprox DS, Naprelan)

 

Naproxen is used for relief of mild to moderate pain. It inhibits inflammatory reactions and pain by decreasing activity of cyclo-oxygenase, which is responsible for prostaglandin synthesis.

Previous
Next

Antispasmodic Agents, Urinary

Class Summary

Treatment of bladder dysfunction in MS patients includes suppressing urgency and ensuring effective urinary drainage. Antispasmodic agents that help decrease muscle spasms of the bladder and the frequent urge to urinate caused by spasms include oxybutynin (Ditropan, Ditropan XL) or tolterodine (Detrol, Detrol LA).

Tolterodine (Detrol, Detrol LA)

 

Tolterodine is a competitive muscarinic receptor antagonist. Both urinary bladder contraction and salivation are mediated via cholinergic muscarinic receptors.

Oxybutynin (Ditropan, Ditropan XL)

 

Oxybutynin is an antispasmodic that exerts a direct effect on smooth muscle and inhibits the muscarinic effects of acetylcholine on smooth muscle. This results in relaxation of bladder smooth muscle. It is indicated for the relief of urinary symptoms in patients with uninhibited and reflex neurogenic bladder. It is metabolized by the liver and excreted renally.

Previous
Next

Acetylcholinesterase Inhibitors, Central

Class Summary

Multiple sclerosis may affect cognition, and cognition-enhancing drugs have been met with some success in MS patients. Treatments used in Alzheimer disease, such as donepezil (Aricept), may have some potential beneficial effects; however, it has not been proven in clinical trials. Donepezil is not FDA-approved for use in MS. Depression may also contribute to cognitive dysfunction and should be treated if it is diagnosed.

Donepezil (Aricept)

 

Donepezil selectively inhibits acetylcholinesterase, the enzyme responsible for the destruction of acetylcholine, and improves the availability of acetylcholine.

Previous
Next

Laxatives

Class Summary

Pharmacologic management of constipation in patients with MS includes the use of stool softeners. Stool softeners, such as docusate sodium (Colace), work by decreasing surface tension, allowing water to enter the stool.

Docusate sodium (Colace, DSS, Philips Liqui-Gels, Silace, Soflax)

 

Docusate sodium allows the incorporation of water and fat into stools, causing stools to soften. By its surface active properties, docusate sodium keeps stools soft for easy, natural passage. Docusate sodium is not a laxative and, thus, is not habit-forming. Tachyphylaxis may occur with long-term use. This agent is effective acutely and does not induce defecation.

Psyllium (Fiberall, Konsyl, Metamucil)

 

Psyllium is administered orally and absorbs liquid in the GI tract, thereby altering intestinal fluid and electrolyte transport. Absorption of liquid also causes expansion of the stool, and the resultant bulk facilitates peristalsis and bowel motility.

Methylcellulose (Citrucel)

 

Methylcellulose increases the bulk of the stool and thereby stimulates peristalsis, which increases bowel motility and decreases GI transit time. These actions of methylcellulose result in easy passage of stool in patients with chronic constipation.

Previous
Next

Antidiarrheals

Class Summary

Diarrhea, if it occurs, typically is not related to MS per se; it is more likely due to fecal impaction, diet, irritation of the bowel, or overuse of laxatives or stool softeners, or it is an adverse effect of medications. Diphenoxylate and atropine (Lomotil) is an antidiarrheal that helps slow the muscles of the bowel.

Diphenoxylate and atropine (Lomotil)

 

Diphenoxylate appears to exert its effect locally and centrally on the smooth muscle cells of the GI tract to inhibit GI motility and slow excess GI propulsion. A subtherapeutic dose of anticholinergic atropine sulfate is added to discourage overdosage, in which case diphenoxylate may clinically mimic the effects of codeine.

Previous
 
Contributor Information and Disclosures
Author

Christopher Luzzio, MD Clinical Assistant Professor, Department of Neurology, University of Wisconsin at Madison School of Medicine and Public Health

Christopher Luzzio, MD is a member of the following medical societies: American Academy of Neurology

Disclosure: Nothing to disclose.

Coauthor(s)

Fernando Dangond, MD, FAAN Head of US Medical Affairs, Neurodegenerative Diseases, EMD Serono, Inc

Fernando Dangond, MD, FAAN is a member of the following medical societies: American Academy of Neurology, American Medical Association

Disclosure: Received salary from EMD Serono, Inc. for employment.

Chief Editor

Jasvinder Chawla, MD, MBA Chief of Neurology, Hines Veterans Affairs Hospital; Professor of Neurology, Loyola University Medical Center

Jasvinder Chawla, MD, MBA is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American Clinical Neurophysiology Society, American Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Martin K Childers, DO, PhD Professor, Department of Neurology, Wake Forest University School of Medicine; Professor, Rehabilitation Program, Institute for Regenerative Medicine, Wake Forest Baptist Medical Center

Martin K Childers, DO, PhD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation, American Congress of Rehabilitation Medicine, American Osteopathic Association, Christian Medical & Dental Society, and Federation of American Societies for Experimental Biology

Disclosure: Allergan pharma Consulting fee Consulting

Edmond A Hooker II, MD, DrPH, FAAEM Assistant Professor, Department of Emergency Medicine, University of Cincinnati College of Medicine

Edmond A Hooker II, MD, DrPH, FAAEM is a member of the following medical societies: American Academy of Emergency Medicine, American Public Health Association, Society for Academic Emergency Medicine, and Southern Medical Association

Disclosure: Nothing to disclose.

J Stephen Huff, MD Associate Professor of Emergency Medicine and Neurology, Department of Emergency Medicine, University of Virginia School of Medicine

J Stephen Huff, MD is a member of the following medical societies: American Academy of Emergency Medicine, American Academy of Neurology, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Marjorie Lazoff, MD Editor-in-Chief, Medical Computing Review

Marjorie Lazoff, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Emergency Physicians, American Medical Informatics Association, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Consuelo T Lorenzo, MD Physiatrist, Department of Physical Medicine and Rehabilitation, Alegent Health, Immanuel Rehabilitation Center

Consuelo T Lorenzo, MD is a member of the following medical societies: American Academy of Physical Medicine and Rehabilitation

Disclosure: Nothing to disclose.

William J Nowack, MD Associate Professor, Epilepsy Center, Department of Neurology, University of Kansas Medical Center

William J Nowack, MD is a member of the following medical societies: American Academy of Neurology, American Clinical Neurophysiology Society, American Epilepsy Society, American Medical Electroencephalographic Association, American Medical Informatics Association, and Biomedical Engineering Society

Disclosure: Nothing to disclose.

Richard Salcido, MD Chairman, Erdman Professor of Rehabilitation, Department of Physical Medicine and Rehabilitation, University of Pennsylvania School of Medicine

Richard Salcido, MD is a member of the following medical societies: American Academy of Pain Medicine, American Academy of Physical Medicine and Rehabilitation, American College of Physician Executives, American Medical Association, and American Paraplegia Society

Disclosure: Nothing to disclose.

Daniel D Scott, MD, MA Associate Professor, Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine; Attending Physician, Department of Physical Medicine and Rehabilitation, Denver Veterans Affairs Medical Center, Eastern Colorado Health Care System

Daniel D Scott, MD, MA is a member of the following medical societies: Alpha Omega Alpha, American Academy of Physical Medicine and Rehabilitation, American Association of Neuromuscular and Electrodiagnostic Medicine, American Paraplegia Society, Association of Academic Physiatrists, National Multiple Sclerosis Society, and Physiatric Association of Spine, Sports and Occupational Rehabilitation

Disclosure: Nothing to disclose.

Fu-Dong Shi, MD, PhD Director of Neuroimmunology Laboratory, Barrow Neurological Institute, St Joseph's Hospital and Medical Center

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Florian P Thomas, MD, MA, PhD, Drmed Director, Spinal Cord Injury Unit, St Louis Veterans Affairs Medical Center; Director, National MS Society Multiple Sclerosis Center; Director, Neuropathy Association Center of Excellence, Professor, Department of Neurology and Psychiatry, Associate Professor, Institute for Molecular Virology, and Department of Molecular Microbiology and Immunology, St Louis University School of Medicine

Florian P Thomas, MD, MA, PhD, Drmed is a member of the following medical societies: American Academy of Neurology, American Neurological Association, American Paraplegia Society, Consortium of Multiple Sclerosis Centers, and National Multiple Sclerosis Society

Disclosure: Nothing to disclose.

Timothy Vollmer, MD Consulting Staff, Department of Emergency Medicine, Geisinger Medical Center

Disclosure: Nothing to disclose.

Sandra F Williamson, MS, ANP-C, CRRN Clinic Coordinator, Department of Rehabilitation Medicine, Denver Veterans Affairs Medical Center

Sandra F Williamson, MS, ANP-C, CRRN is a member of the following medical societies: Phi Beta Kappa, Phi Kappa Phi, and Sigma Theta Tau International

Disclosure: Nothing to disclose.

References
  1. Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol. 2005 Dec. 58(6):840-6. [Medline].

  2. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar. 13(3):227-31. [Medline].

  3. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996 Apr. 46(4):907-11. [Medline].

  4. McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001 Jul. 50(1):121-7. [Medline].

  5. Cortese I, Chaudhry V, So YT, Cantor F, Cornblath DR, Rae-Grant A. Evidence-based guideline update: Plasmapheresis in neurologic disorders: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2011 Jan 18. 76(3):294-300. [Medline]. [Full Text].

  6. Sanford M, Lyseng-Williamson KA. Subcutaneous recombinant interferon-ß-1a (Rebif®): a review of its use in the treatment of relapsing multiple sclerosis. Drugs. 2011 Oct 1. 71(14):1865-91. [Medline].

  7. Betaseron [package insert]. Montville, NJ: Bayer Healthcare Pharmaceuticals Inc. May 2010.

  8. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon ß-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014 Jul. 13(7):657-65. [Medline].

  9. Copaxone [package insert] [package insert]. North Wales, PA: Teva Pharmaceuticals USA. February 2009.

  10. Pucci E, Giuliani G, Solari A, et al. Natalizumab for relapsing remitting multiple sclerosis. Cochrane Database Syst Rev. 2011 Oct 5. CD007621. [Medline].

  11. Tysabri [package insert]. South San Francisco, CA: Biogen Idec Inc. 2011.

  12. Novantrone [package insert]. Rockland, MA: Serono, Inc. May 2012.

  13. Gilenya [package insert]. East Hanover, NJ: Novartis. September 2010.

  14. Aubagio (teriflunomide) [package insert]. Cambridge, MA: Genentech Corp. September, 2012. Available at [Full Text].

  15. Jeffrey S. FDA approves third oral agent for MS. March 27, 2013. Medscape Medical News. Available at http://www.medscape.com/viewarticle/781450. Accessed: April 2, 2013.

  16. US Food and Drug Administration. FDA approves new multiple sclerosis treatment: Tecfidera. March 27, 2013. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm345528.htm. Accessed: April 2, 2013.

  17. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012 Sep 20. 367(12):1098-107. [Medline]. [Full Text].

  18. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012 Sep 20. 367(12):1087-97. [Medline]. [Full Text].

  19. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24. 380(9856):1819-28. [Medline].

  20. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012 Nov 24. 380(9856):1829-39. [Medline].

  21. Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, et al. Alemtuzumab more effective than interferon ß-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology. 2012 Apr 3. 78(14):1069-78. [Medline].

  22. Jeffrey S. FDA Approves Interferon Autoinjector for MS. Available at http://www.medscape.com/viewarticle/777065. Accessed: February 20, 2013.

  23. Windhagen A, Newcombe J, Dangond F, et al. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995 Dec 1. 182(6):1985-96. [Medline]. [Full Text].

  24. Huan J, Culbertson N, Spencer L, et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res. 2005 Jul 1. 81(1):45-52. [Medline].

  25. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008 Jun. 223:87-113. [Medline]. [Full Text].

  26. Minagar A, Jy W, Jimenez JJ, et al. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology. 2001 May 22. 56(10):1319-24. [Medline].

  27. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005 Aug 15. 202(4):473-7. [Medline]. [Full Text].

  28. Nielsen NM, Westergaard T, Rostgaard K, et al. Familial risk of multiple sclerosis: a nationwide cohort study. Am J Epidemiol. 2005 Oct 15. 162(8):774-8. [Medline].

  29. Nischwitz S, Muller-Myhsok B, Weber F. Risk conferring genes in multiple sclerosis. FEBS Lett. 2011 Dec 1. 585(23):3789-97. [Medline].

  30. Yeo TW, De Jager PL, Gregory SG, et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol. 2007 Mar. 61(3):228-36. [Medline]. [Full Text].

  31. Salvetti M, Giovannoni G, Aloisi F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 2009 Jun. 22(3):201-6. [Medline].

  32. Kampman MT, Brustad M. Vitamin D: a candidate for the environmental effect in multiple sclerosis - observations from Norway. Neuroepidemiology. 2008. 30(3):140-6. [Medline].

  33. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006 Dec 20. 296(23):2832-8. [Medline].

  34. Kampman MT, Brustad M. Vitamin D: a candidate for the environmental effect in multiple sclerosis - observations from Norway. Neuroepidemiology. 2008. 30(3):140-6. [Medline].

  35. Islam T, Gauderman WJ, Cozen W, Mack TM. Childhood sun exposure influences risk of multiple sclerosis in monozygotic twins. Neurology. 2007 Jul 24. 69(4):381-8. [Medline].

  36. Zamboni P, Galeotti R, Menegatti E, et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009 Apr. 80(4):392-9. [Medline]. [Full Text].

  37. Zivadinov R, Schirda C, Dwyer MG, et al. Chronic cerebrospinal venous insufficiency and iron deposition on susceptibility-weighted imaging in patients with multiple sclerosis: a pilot case-control study. Int Angiol. 2010 Apr. 29(2):158-75. [Medline].

  38. Study To Evaluate Treating Chronic Cerebrospinal Venous Insufficiency (CCSVI) in Multiple Sclerosis Patients. Available at http://clinicaltrials.gov/ct2/show/NCT01089686. Accessed: 10/4/2010.

  39. Zamboni P, Galeotti R, Menegatti E, et al. A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. J Vasc Surg. 2009 Dec. 50(6):1348-58.e1-3. [Medline].

  40. Laupacis A, Lillie E, Dueck A, et al. Association between chronic cerebrospinal venous insufficiency and multiple sclerosis: a meta-analysis. CMAJ. 2011 Nov 8. 183(16):E1203-12. [Medline]. [Full Text].

  41. Centers for Disease Control and Prevention. FAQs about Hepatitis B Vaccine (Hep B) and Multiple Sclerosis. [Full Text].

  42. National Multiple Sclerosis Society. Vaccination. Available at http://www.nationalmssociety.org/living-with-multiple-sclerosis/healthy-living/vaccinations/index.aspx. Accessed: November 17, 2011.

  43. Noonan CW, Williamson DM, Henry JP, et al. The prevalence of multiple sclerosis in 3 US communities. Prev Chronic Dis. 2010 Jan. 7(1):A12. [Medline]. [Full Text].

  44. National Multiple Sclerosis Society. Who Gets MS?. Available at http://www.nationalmssociety.org/about-multiple-sclerosis/what-we-know-about-ms/who-gets-ms/index.aspx. Accessed: 10/04/2010.

  45. Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurol Sci. 2001 Apr. 22(2):117-39. [Medline].

  46. Aguirre-Cruz L, Flores-Rivera J, De La Cruz-Aguilera DL, Rangel-Lopez E, Corona T. Multiple sclerosis in Caucasians and Latino Americans. Autoimmunity. 2011 Nov. 44(7):571-5. [Medline].

  47. Matsuda PN, Shumway-Cook A, Bamer AM, Johnson SL, Amtmann D, Kraft GH. Falls in multiple sclerosis. PM R. 2011 Jul. 3(7):624-32; quiz 632. [Medline].

  48. Roodhooft JM. Ocular problems in early stages of multiple sclerosis. Bull Soc Belge Ophtalmol. 2009. 65-8. [Medline].

  49. Braley TJ, Chervin RD. Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep. 2010 Aug. 33(8):1061-7. [Medline].

  50. Optic Neuritis Study Group. The clinical profile of optic neuritis. Experience of the Optic Neuritis Treatment Trial. Optic Neuritis Study Group. Arch Ophthalmol. 1991 Dec. 109(12):1673-8. [Medline].

  51. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov. 33(11):1444-52. [Medline].

  52. Lonergan R, Kinsella K, Duggan M, Jordan S, Hutchinson M, Tubridy N. Discontinuing disease-modifying therapy in progressive multiple sclerosis: can we stop what we have started?. Mult Scler. 2009 Dec. 15(12):1528-31. [Medline].

  53. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011 Feb. 69(2):292-302. [Medline]. [Full Text].

  54. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29. 338(5):278-85. [Medline].

  55. Prashanth LK, Taly AB, Sinha S, Arunodaya GR, Swamy HS. Wilson's disease: diagnostic errors and clinical implications. J Neurol Neurosurg Psychiatry. 2004 Jun. 75(6):907-9. [Medline]. [Full Text].

  56. Barkhof F, Filippi M, Miller DH, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain. 1997 Nov. 120 ( Pt 11):2059-69. [Medline].

  57. Bonhomme GR, Waldman AT, Balcer LJ, et al. Pediatric optic neuritis: brain MRI abnormalities and risk of multiple sclerosis. Neurology. 2009 Mar 10. 72(10):881-5. [Medline].

  58. Filippi M. Enhanced magnetic resonance imaging in multiple sclerosis. Mult Scler. 2000 Oct. 6(5):320-6. [Medline].

  59. Filippi M, Bozzali M, Horsfield MA, et al. A conventional and magnetization transfer MRI study of the cervical cord in patients with MS. Neurology. 2000 Jan 11. 54(1):207-13. [Medline].

  60. Filippi M, Yousry TA, Alkadhi H, Stehling M, Horsfield MA, Voltz R. Spinal cord MRI in multiple sclerosis with multicoil arrays: a comparison between fast spin echo and fast FLAIR. J Neurol Neurosurg Psychiatry. 1996 Dec. 61(6):632-5. [Medline]. [Full Text].

  61. Grossman RI, Barkhof F, Filippi M. Assessment of spinal cord damage in MS using MRI. J Neurol Sci. 2000 Jan 15. 172 Suppl 1:S36-9. [Medline].

  62. Neema M, Goldberg-Zimring D, Guss ZD, et al. 3 T MRI relaxometry detects T2 prolongation in the cerebral normal-appearing white matter in multiple sclerosis. Neuroimage. 2009 Jul 1. 46(3):633-41. [Medline]. [Full Text].

  63. Poonawalla AH, Hou P, Nelson FA, Wolinsky JS, Narayana PA. Cervical Spinal Cord Lesions in Multiple Sclerosis: T1-weighted Inversion-Recovery MR Imaging with Phase-Sensitive Reconstruction. Radiology. 2008 Jan. 246(1):258-264. [Medline].

  64. Stankiewicz JM, Glanz BI, Healy BC, et al. Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis. J Neuroimaging. 2011 Apr. 21(2):e50-6. [Medline]. [Full Text].

  65. Vaneckova M, Seidl Z, Krasensky J, et al. Patients' stratification and correlation of brain magnetic resonance imaging parameters with disability progression in multiple sclerosis. Eur Neurol. 2009. 61(5):278-84. [Medline].

  66. Wattjes MP, Barkhof F. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?. Neuroradiology. 2009 May. 51(5):279-92. [Medline].

  67. [Guideline] Traboulsee, A. et al. Revised Recommendations of the CMSC Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-up of Multiple Sclerosis. Consortim of Multiple Sclerosis Centers. Available at http://c.ymcdn.com/sites/www.mscare.org/resource/collection/9C5F19B9-3489-48B0-A54B-623A1ECEE07B/MRIprotocol2015.pdf. Accessed: August 13, 2015.

  68. Agosta F, Absinta M, Sormani MP, et al. In vivo assessment of cervical cord damage in MS patients: a longitudinal diffusion tensor MRI study. Brain. 2007 Aug. 130:2211-9. [Medline].

  69. Fazekas F, Offenbacher H, Fuchs S, et al. Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology. 1988 Dec. 38(12):1822-5. [Medline].

  70. Colorado RA, Shukla K, Zhou Y, Wolinsky JS, Narayana PA. Multi-task functional MRI in multiple sclerosis patients without clinical disability. Neuroimage. 2012 Jan 2. 59(1):573-81. [Medline]. [Full Text].

  71. Wang J, Xiao Y, Luo M, Zhang X, Luo H. Statins for multiple sclerosis. Cochrane Database Syst Rev. 2010 Dec 8. CD008386. [Medline].

  72. Arnold DL, Matthews PM, Francis G, Antel J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med. 1990 Apr. 14(1):154-9. [Medline].

  73. Henning A, Schar M, Kollias SS, Boesiger P, Dydak U. Quantitative magnetic resonance spectroscopy in the entire human cervical spinal cord and beyond at 3T. Magn Reson Med. 2008 Jun. 59(6):1250-8. [Medline].

  74. Marliani AF, Clementi V, Albini-Riccioli L, Agati R, Leonardi M. Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 Tesla. Magn Reson Med. 2007 Jan. 57(1):160-3. [Medline].

  75. Berg D, Maurer M, Warmuth-Metz M, Rieckmann P, Becker G. The correlation between ventricular diameter measured by transcranial sonography and clinical disability and cognitive dysfunction in patients with multiple sclerosis. Arch Neurol. 2000 Sep. 57(9):1289-92. [Medline].

  76. Walter U, Wagner S, Horowski S, Benecke R, Zettl UK. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology. 2009 Sep 29. 73(13):1010-7. [Medline].

  77. Vazquez-Marrufo M, Gonzalez-Rosa JJ, Vaquero E, et al. Quantitative electroencephalography reveals different physiological profiles between benign and remitting-relapsing multiple sclerosis patients. BMC Neurol. 2008 Nov 24. 8:44. [Medline]. [Full Text].

  78. Jeffrey S. TOPIC: Teriflunomide Delays Clinically Definite MS. Medscape Medical News. Available at http://www.medscape.com/viewarticle/803177. Accessed: May 8, 2013.

  79. Rodriguez M, Karnes WE, Bartleson JD, Pineda AA. Plasmapheresis in acute episodes of fulminant CNS inflammatory demyelination. Neurology. 1993 Jun. 43(6):1100-4. [Medline].

  80. Spelman T, Mekhael L, Burke T, Butzkueven H, Hodgkinson S, Havrdova E, et al. Risk of early relapse following the switch from injectables to oral agents for multiple sclerosis. Eur J Neurol. 2016 Jan 19. [Medline].

  81. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology. 1993 Apr. 43(4):655-61. [Medline].

  82. Jacobs LD, Cookfair DL, Rudick RA, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996 Mar. 39(3):285-94. [Medline].

  83. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet. 1998 Nov 7. 352(9139):1498-504. [Medline].

  84. Panitch H, Goodin DS, Francis G, et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology. 2002 Nov 26. 59(10):1496-506. [Medline].

  85. Schwid SR, Panitch HS. Full results of the Evidence of Interferon Dose-Response-European North American Comparative Efficacy (EVIDENCE) study: a multicenter, randomized, assessor-blinded comparison of low-dose weekly versus high-dose, high-frequency interferon beta-1a for relapsing multiple sclerosis. Clin Ther. 2007 Sep. 29(9):2031-48. [Medline].

  86. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology. 1995 Jul. 45(7):1268-76. [Medline].

  87. Johnson KP, Brooks BR, Ford CC, et al. Sustained clinical benefits of glatiramer acetate in relapsing multiple sclerosis patients observed for 6 years. Copolymer 1 Multiple Sclerosis Study Group. Mult Scler. 2000 Aug. 6(4):255-66. [Medline].

  88. Khan O, Rieckmann P, Boyko A, Selmaj K, Zivadinov R. Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol. 2013 Jun. 73(6):705-13. [Medline].

  89. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006 Mar 2. 354(9):899-910. [Medline].

  90. Cadavid D, Jurgensen S, Lee S. Impact of natalizumab on ambulatory improvement in secondary progressive and disabled relapsing-remitting multiple sclerosis. PLoS One. 2013. 8(1):e53297. [Medline]. [Full Text].

  91. Chun J, Brinkmann V. A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med. 2011 Sep. 12(64):213-28. [Medline].

  92. Hughes S. Shorter washout reduces MS relapse switching off natalizumab. Medscape Medical News. October 7, 2013. [Full Text].

  93. Hughes S. Shorter Washout Better for Natalizumab-to-Fingolimod Switch. Medscape Medical News. Available at http://www.medscape.com/viewarticle/822567. Accessed: April 1, 2014.

  94. Cohen M, Maillart E, Tourbah A, De Sèze J, Vukusic S, Brassat D, et al. Switching From Natalizumab to Fingolimod in Multiple Sclerosis: A French Prospective Study. JAMA Neurol. 2014 Feb 24. [Medline].

  95. O'Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011 Oct 6. 365(14):1293-303. [Medline].

  96. Semedo, D. Aubagio (Teriflunomide) Slows Brain Atrophy in Patients with Relapsing Multiple Sclerosis. Multiple Sclerosis News Today. Available at http://multiplesclerosisnewstoday.com/2015/10/08/aubagio-teriflunomide-slows-brain-atrophy-patients-relapsing-multiple-sclerosis/. October 8, 2015; Accessed: October 14, 2015.

  97. A study comparing the effectiveness and safety of teriflunomide and interferon beta-1a in patients with relapsing multiple sclerosis (TENERE). 4th Cooperative Meeting of the Consortium of Multiple Sclerosis Centers (CMSC)/Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS). June 2, 2012 (ClinicalTrials.gov identifier: NCT00883337).

  98. A multicenter double-blind parallel-group placebo-controlled study of the efficacy and safety of teriflunomide in patients with relapsing multiple sclerosis who are treated with interferon-beta. (ClinicalTrials.gov identifier: NCT01252355).

  99. Fox EJ, Sullivan HC, Gazda SK, et al. A single-arm, open-label study of alemtuzumab in treatment-refractory patients with multiple sclerosis. Eur J Neurol. 2012 Feb. 19(2):307-11. [Medline].

  100. Anderson P. Alemtuzumab Benefits Hard-to-Treat MS Patients. Medscape Medical News. Available at http://www.medscape.com/viewarticle/805173. Accessed: June 12, 2013.

  101. Harrison DM, Gladstone DE, Hammond E, et al. Treatment of relapsing-remitting multiple sclerosis with high-dose cyclophosphamide induction followed by glatiramer acetate maintenance. Mult Scler. 2012 Feb. 18(2):202-9. [Medline].

  102. Rojas JI, Romano M, Ciapponi A, Patrucco L, Cristiano E. Interferon beta for primary progressive multiple sclerosis. Cochrane Database Syst Rev. 2009 Jan 21. CD006643. [Medline].

  103. Goodkin DE, Rudick RA, VanderBrug Medendorp S, et al. Low-dose (7.5 mg) oral methotrexate reduces the rate of progression in chronic progressive multiple sclerosis. Ann Neurol. 1995 Jan. 37(1):30-40. [Medline].

  104. Kappos L, Radue EW, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010 Feb 4. 362(5):387-401. [Medline].

  105. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010 Feb 4. 362(5):402-15. [Medline].

  106. Khatri B, Barkhof F, Comi G, et al. Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol. 2011 Jun. 10(6):520-9. [Medline].

  107. Killestein J, Rudick RA, Polman CH. Oral treatment for multiple sclerosis. Lancet Neurol. 2011 Nov. 10(11):1026-34. [Medline].

  108. Multiple Sclerosis Association of America (MSAA). MS Research Update. Available at http://mymsaa.org/PDFs/MSAA_Research_Update_2013.pdf. Accessed: March 27, 2013.

  109. Bielekova B, Richert N, Herman ML, et al. Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology. 2011 Nov 22. 77(21):1877-86. [Medline]. [Full Text].

  110. Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011 Nov 19. 378(9805):1779-87. [Medline].

  111. Anderson P. Myelin peptide skin patch safe, reduces MS activity. Medscape Medical News. July 29, 2013. [Full Text].

  112. Walczak A, Siger M, Ciach A, Szczepanik M, Selmaj K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 2013 Jul 1. 1-6. [Medline].

  113. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N Engl J Med. 1998 Jul 30. 339(5):285-91. [Medline].

  114. Tsui A, Lee MA. Multiple sclerosis and pregnancy. Curr Opin Obstet Gynecol. 2011 Dec. 23(6):435-9. [Medline].

  115. Krupp LB, Christodoulou C, Melville P, et al. Multicenter randomized clinical trial of donepezil for memory impairment in multiple sclerosis. Neurology. 2011 Apr 26. 76(17):1500-7. [Medline]. [Full Text].

  116. Attarian HP, Brown KM, Duntley SP, Carter JD, Cross AH. The relationship of sleep disturbances and fatigue in multiple sclerosis. Arch Neurol. 2004 Apr. 61(4):525-8. [Medline].

  117. MacAllister WS, Krupp LB. Multiple sclerosis-related fatigue. Phys Med Rehabil Clin N Am. 2005 May. 16(2):483-502. [Medline].

  118. Solaro C, Uccelli MM. Management of pain in multiple sclerosis: a pharmacological approach. Nat Rev Neurol. 2011 Aug 16. 7(9):519-27. [Medline].

  119. Goodman AD, Brown TR, Krupp LB, et al. Sustained-release oral fampridine in multiple sclerosis: a randomised, double-blind, controlled trial. Lancet. 2009 Feb 28. 373(9665):732-8. [Medline].

  120. Ampyra [package insert]. Hawthorne, NY: Acorda Therapeutics, Inc. 2010.

  121. Nicholas RS, Friede T, Hollis S, Young CA. Anticholinergics for urinary symptoms in multiple sclerosis. Cochrane Database Syst Rev. 2009 Jan 21. CD004193. [Medline].

  122. US Food and Drug Administration. FDA approves Botox to treat specific form of urinary incontinence. August 25, 2011. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm269509.htm. Accessed: November 28, 2011.

  123. Beck RW, Cleary PA, Anderson MM Jr, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med. 1992 Feb 27. 326(9):581-8. [Medline].

  124. Myhr KM. Vitamin D treatment in multiple sclerosis. J Neurol Sci. 2009 Nov 15. 286(1-2):104-8. [Medline].

  125. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. November 30, 2010. Available at http://www.iom.edu/Reports/2010/Dietary-Reference-Intakes-for-Calcium-and-Vitamin-D.aspx. Accessed: December 29, 2011.

  126. Summerday NM, Brown SJ, Allington DR, Rivey MP. Vitamin D and multiple sclerosis: review of a possible association. J Pharm Pract. 2012 Feb. 25(1):75-84. [Medline].

  127. Jagannath VA, Fedorowicz Z, Asokan GV, Robak EW, Whamond L. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev. 2010 Dec 8. CD008422. [Medline].

  128. DeStefano F, Verstraeten T, Jackson LA, et al. Vaccinations and risk of central nervous system demyelinating diseases in adults. Arch Neurol. 2003 Apr. 60(4):504-9. [Medline].

  129. Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic S. Vaccinations and the risk of relapse in multiple sclerosis. Vaccines in Multiple Sclerosis Study Group. N Engl J Med. 2001 Feb 1. 344(5):319-26. [Medline].

  130. Farez MF, Correale J. Yellow fever vaccination and increased relapse rate in travelers with multiple sclerosis. Arch Neurol. 2011 Oct. 68(10):1267-71. [Medline].

  131. Azasan [package insert] [package insert]. Wilmington, NC: Salix pharmaceuticals Inc. August 2011.

  132. Cyclophosphamide [package insert]. Deerfield, IL: Baxter Healthcare Corporation. June 2004.

  133. Brooks M. New AAN guideline on psychiatric disorders in MS. Medscape Medical News. January 3, 2014. [Full Text].

  134. Hughes S. New Test to Identify PML Risk With Natalizumab in MS. Medscape Medical News. Available at http://www.medscape.com/viewarticle/832504. Accessed: October 7, 2014.

  135. Jeffrey S. No Cognitive Disadvantage in Pediatric- vs Adult-Onset MS. Medscape Medical News. Available at http://www.medscape.com/viewarticle/831536. Accessed: September 15, 2014.

  136. Keller DM. Fingolimod Reduces Annual Brain Volume Loss in MS. Medscape Medical News. Jun 6 2014. [Full Text].

  137. Minden SL, Feinstein A, Kalb RC, Miller D, Mohr DC, Patten SB, et al. Evidence-based guideline: Assessment and management of psychiatric disorders in individuals with MS: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013 Dec 27. [Medline].

  138. Rovira À, Wattjes MP, Tintoré M, Tur C, Yousry TA, Sormani MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015 Aug. 11 (8):471-82. [Medline].

  139. [Guideline] Multiple Sclerosis Coalition. The Use of Disease-Modifying Therapies in Multiple Sclerosis: Principles and Current Evidence: A Consensus Paper. The Consortium of Multiple Sclerosis Centers. Available at http://www.mscare.org/?page=dmt. July 2014;

  140. [Guideline] Filippi M, Rocca A, Arnold DL, Bakshi R, Barkhof F, De Stefano N, et al. Use of Imaging in Multiple Sclerosis. Gilhus NE, Barnes MP, Brainin M. European Handbook of Neurological Management. 2nd ed. Oxford (UK): Wiley-Blackwell; 2011. Vol 1: 35-51.

  141. Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015 Oct. 11 (10):597-606. [Medline].

  142. Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, et al. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2015 Oct 8. 373 (15):1418-28. [Medline]. [Full Text].

  143. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013 Jun 22. 381 (9884):2167-75. [Medline].

 
Previous
Next
 
The mechanism of demyelination in multiple sclerosis may be activation of myelin-reactive T cells in the periphery, which then express adhesion molecules, allowing their entry through the blood-brain barrier (BBB). T cells are activated following antigen presentation by antigen-presenting cells such as macrophages and microglia, or B cells. Perivascular T cells can secrete proinflammatory cytokines, including interferon gamma and tumor necrosis factor alpha. Antibodies against myelin also may be generated in the periphery or intrathecally. Ongoing inflammation leads to epitope spread and recruitment of other inflammatory cells (ie, bystander activation). The T cell receptor recognizes antigen in the context of human leukocyte antigen molecule presentation and also requires a second event (ie, co-stimulatory signal via the B7-CD28 pathway, not shown) for T cell activation to occur. Activated microglia may release free radicals, nitric oxide, and proteases that may contribute to tissue damage.
MRI of the head of a 35-year-old man with relapsing-remitting multiple sclerosis. MRI reveals multiple lesions with high T2 signal intensity and one large white matter lesion. These demyelinating lesions may sometimes mimic brain tumors because of the associated edema and inflammation.
MRI of the head of a 35-year-old man with relapsing-remitting multiple sclerosis. This MRI, performed 3 months after the one in the related image, shows a dramatic decrease in the size of lesions.
Inflammation in multiple sclerosis. Hematoxylin and eosin (H&E) stain shows perivascular infiltration of inflammatory cells. These infiltrates are composed of activated T cells, B cells, and macrophages.
Demyelination in multiple sclerosis. Luxol fast blue (LFB)/periodic acid-Schiff (PAS) stain confers an intense blue to myelin. Loss of myelin is demonstrated in this chronic plaque. Note that absence of inflammation may be demonstrated at the edge of chronic lesions.
Gadolinium-enhanced, T1-weighted image showing enhancement of the left optic nerve (arrow).
Corresponding axial images of the spinal cord showing enhancing plaque (arrow). The combination of optic neuritis and longitudinally extensive spinal cord lesions constitutes Devic neuromyelitis optica.
Table 1. 2010 Revised McDonald Criteria for the Diagnosis of Multiple Sclerosis [53]
Clinical Presentation Additional Data Needed for MS Diagnosis
  • Two or more attacks
  • Objective clinical evidence of 2 or more lesions with reasonable historical evidence of a prior attack
None; clinical evidence will suffice. Additional evidence (eg, brain MRI) desirable,



but must be consistent with MS



  • Two or more attacks
  • Objective clinical evidence of 1 lesion
Dissemination in space demonstrated by MRI or



Await further clinical attack implicating a different site



  • One attack
  • Objective clinical evidence of 2 or more lesions
Dissemination in time demonstrated by



MRI or second clinical attack



  • One attack
  • Objective clinical evidence of 1 lesion (clinically isolated syndrome)
Dissemination in space demonstrated by



MRI or await a second clinical attack implicating a different CNS site



and



Dissemination in time, demonstrated by MRI or second clinical attack



· Insidious neurologic progression suggestive of MS One year of disease progression and dissemination in space, demonstrated by 2 of the following:
  • One or more T2 lesions in brain, in regions characteristic of MS
  • Two or more T2 focal lesions in spinal cord
  • Positive CSF
Notes: An attack is defined as a neurologic disturbance of the kind seen in MS. It can be documented by subjective report or by objective observation, but it must last for at least 24 hours. Pseudoattacks and single paroxysmal episodes must be excluded. To be considered separate attacks, at least 30 days must elapse between onset of one event and onset of another event.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.