Medscape is available in 5 Language Editions – Choose your Edition here.


Chorea in Adults

  • Author: Stephanie M Vertrees, MD; Chief Editor: Selim R Benbadis, MD  more...
Updated: Oct 24, 2014


"Chorea" is a borrowed Latin word that derives from the Greek khoreia, a choral dance. The basic Greek word for dance (written with the Roman alphabet) is khoros.[1, 2]

The ad hoc Committee on Classification of the World Federation of Neurology has defined chorea as "a state of excessive, spontaneous movements, irregularly timed, non-repetitive, randomly distributed and abrupt in character. These movements may vary in severity from restlessness with mild intermittent exaggeration of gesture and expression, fidgeting movements of the hands, unstable dance-like gait to a continuous flow of disabling, violent movements."[3]

Patients with chorea exhibit motor impersistence (ie, they cannot maintain a sustained posture). When attempting to grip an object, they alternately squeeze and release ("milkmaid's grip"). When they attempt to protrude the tongue, the tongue often pops in and out ("harlequin's tongue"). Patients often drop objects involuntarily. Also common are attempts by patients to mask the chorea by voluntarily augmenting the choreiform movements with semipurposeful movements.[1]

Chorea involves both proximal and distal muscles. In most patients, normal tone is noted, but, in some instances, hypotonia is present. In a busy movement disorder center, levodopa-induced chorea is the most common movement disorder, followed by Huntington disease (HD).[1]

Any discussion of chorea must also address the related terms athetosis, choreoathetosis, and ballism (also known as ballismus).

The term athetosis comes from the Greek word athetos (not fixed).[1, 2] It is a slow form of chorea. Because of the slowness, the movements have a writhing (ie, squirming, twisting, or snakelike) appearance. Choreoathetosis is essentially an intermediate form (ie, a bit more rapid than the usual athetosis, slower than the usual chorea, or a mingling of chorea and athetosis within the same patient at different times or in different limbs). Given that the only difference between chorea, choreoathetosis, and athetosis is the speed of movement, some neurologists argue that the term athetosis is unnecessary and even confusing. They argue a simpler nomenclature would delineate fast, intermediate, and slow chorea. While the authors of this article understand the basis of that argument, they also believe that in some cases, the writhing movements are extremely prominent, even apart from the speed of the movement. Thus, the authors of this article advocate retaining this descriptive term.

Ballism or ballismus is considered a very severe form of chorea in which the movements have a violent, flinging quality. In Greek, ballismos means "a jumping about or dancing."[2] Ballism has been defined as "continuous, violent, coordinated involuntary activity involving the axial and proximal appendicular musculature such that the limbs are flung about." This movement disorder most often involves only one side of the body (ie, hemiballism or hemiballismus). Occasionally, bilateral movements occur (ie, biballism or paraballism). Many patients with hemiballism have choreiform movements and vice versa, and hemiballism often evolves into hemichorea. Currently, ballism should be viewed as a severe form of chorea.[1, 4, 5, 6, 7, 8]



A simple model of basal ganglia function states that dopaminergic and GABAergic impulses from the substantia nigra and motor cortex, respectively, are funneled through the pallidum into the motor thalamus and motor cortex. These impulses are modulated in the striatum via two segregated, parallel, direct and indirect loops through the medial pallidum and lateral pallidum/subthalamic nucleus. Subthalamic nucleus activity drives the medial pallidum to inhibit cortex-mediated impulses, thereby inducing parkinsonism. Absent subthalamic nucleus inhibition enhances motor activity through the motor thalamus, resulting in abnormal involuntary movements such as dystonia, chorea, and tics. A classic example of loss of subthalamic inhibitory drive is ballism.[1]

The most well-studied choreatic syndrome is Huntington chorea; therefore, the pathophysiology of HD as it applies to chorea is the focus of the discussion that follows.

Huntington disease is caused by an expanded CAG trinucleotide repeat in the gene that encodes the protein huntingtin. Mutant huntingtin is thought to cause neuronal degeneration through transcription dysregulation as well as mitochondrial impairment.[9, 10, 11, 12]

Dopaminergic mechanism

In Huntington chorea, the content of striatal dopamine is normal, indicating that the major pathological alterations lay in the surviving — but diseased — medium-sized, spiny, striatal dopaminergic neurons. Pharmacologic agents that either deplete dopamine (eg, reserpine and tetrabenazine) or block dopamine receptors (eg, neuroleptic medications) improve chorea, which gives further support to this observation. Given that drugs that decrease the striatal content of dopamine improve chorea, increasing the amount of dopamine worsens chorea, such as in the levodopa-induced chorea seen in persons with Parkinson disease (PD).[13, 14]

Cholinergic mechanism [15]

The concept that a critical striatal balance between acetylcholine (Ach) and dopamine is essential for normal striatal function received its greatest acceptance in the understanding of PD. In the early days of PD therapy, anticholinergic medications were used frequently, especially when tremor was the predominant symptom. Other PD symptoms, such as bradykinesia and rigidity, often improved as well.

The development of chorea in patients treated with anticholinergic medications, such as trihexyphenidyl, is a common clinical observation. Furthermore, the intravenous administration of physostigmine (a centrally acting anticholinesterase) can temporarily reduce chorea. The same treatment can also promptly overcome anticholinergic-induced chorea.

Patients with HD have a patchy reduction of choline acetyltransferase in the basal ganglia. This enzyme catalyzes the synthesis of ACh. A marked reduction of muscarinic cholinergic receptor sites has also been reported. These two observations could explain the variability of patients' response to physostigmine and the limited efficacy of Ach precursors such as choline and lecithin.

Serotonergic mechanism

Fluctuations in striatal serotonin may play a role in the genesis of many abnormal movements. Selective serotonin reuptake inhibitors, such as fluoxetine, may induce or aggravate parkinsonism, akinesia, myoclonus, or tremor. The role of serotonin (5-hydroxytryptamine [5-HT]) in choreiform movements is less clear since the striatum has a relatively high concentration of serotonin. Pharmacologic attempts to either stimulate or inhibit serotonin receptors in persons with Huntington chorea have shown no effect, indicating that serotonin's contribution to the pathogenesis of chorea is limited.

GABAergic mechanism

The most consistent biochemical lesion in patients with Huntington chorea appears to be a loss of neurons in the basal ganglia that synthesize and contain GABA.[16] The significance of this remains unknown. A variety of pharmacologic techniques have been attempted to increase CNS GABA levels. Valproic acid, which acts in part via a GABAergic mechanism, has, in a limited number of uncontrolled cases, ameliorated not only the agitation sometimes seen in persons with HD but also the movement problem.[17] However, no systematic studies have been conducted on the use of GABAergic agents to treat HD.

Substance P and somatostatin

Substance P levels have been shown to be markedly lower in persons with Huntington disease (HD), while somatostatin levels are higher. The significance of this remains unknown as well.


Endocannabinoids are thought to play a role in HD. Loss of the cannabinoid CB1 receptor from the medium spiny neurons is one of the earliest neurochemical changes seen in HD. Reuptake inhibition of anandamine, an endogenous cannabinoid, has been shown to alleviate motor symptoms in animal models of HD and other neurodegenerative disorders such as PD and MS.[18, 19, 16]


This movement disorder usually involves only one side of the body (ie, hemiballism). Hemiballism is usually attributed to lesions of the contralateral subthalamic nucleus, although infarction in the caudate, striatum, lenticular nucleus, or thalamus has also been associated with hemiballism.[1, 4]

Lesions of the subthalamic nucleus can cause contralateral hemiballism-hemichorea by reducing the normal excitatory drive from the subthalamic nucleus to the internal segment of the globus pallidus. This reduces the inhibitory output of the globus pallidus on the thalamus, and this disinhibition gives rise to excessive excitatory drive to the cortex, which is expressed as contralateral hyperkinetic movements. Confusingly, however, this disorder often appears in the absence of a lesion in the subthalamic nucleus.[1, 20]

Klawans[21, 22] suggested that increased dopaminergic transmission might play a role in the pathophysiology of this disorder. This hypothesis is supported by the observation that dopamine-receptor blockers and catecholamine-depleting agents often improve hemiballism. While hemiballism and hemichorea are distinguishable on the basis of the type and distribution of movements, they represent two different symptoms on a spectrum of the same disease process. Why one patient with basal ganglia dysfunction develops hemiballism and another with similar pathologic changes develops hemichorea is not understood. On the cellular and molecular level, ballism can be caused by multiple pathologies including ischemia, infection, demyelination, and tumor.[5, 6, 23, 24, 25, 26, 7, 8]




United States

Although no data are available regarding the incidence of chorea, the incidences of several disorders in which chorea is the main clinical feature are well known.

  • Huntington disease (HD) is an autosomal dominant, neurodegenerative disorder in which the defective gene is located on the short arm of chromosome 4. The estimated prevalence of HD in the United States is 5-10 cases per 100,000 people. [1]
  • Wilson disease is an autosomal recessive, multisystem disease caused by a mutation in the ATP7B gene, which resides on the long arm (q) of chromosome 13 (13q14.3). This gene codes for an ATPase, which is involved with the transport of copper. Although the gene prevalence (heterozygous carriers who inherited only 1 abnormal gene) has been estimated to be as high as 1%, the disease prevalence is only 30 cases per 1 million people. [1, 27, 28]
  • Benign hereditary chorea, a fairly rare disorder in which most of the pedigrees have clearly demonstrated dominant inheritance, has a prevalence of approximately 1 case per 500,000 people. [1, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]


See the list below:

  • In 1872, George Huntington first described HD inheritance in successive generations of natives of Long Island, New York. All of the affected individuals descended from ancestors who had emigrated from East Anglia, England, to the New World in 1649. This disorder is now dispersed widely around the globe.
  • HD is best known in white populations. All cases of the disorder are probably part of the line originating in East Anglia.
  • In addition, informative genotypes were obtained from a vast family lineage carrying the gene; they are located in and around Lake Maracaibo, Venezuela.


Chorea can commence at any age. In children, postpump chorea and infectious, inflammatory, and striatal lesions may account for many cases.

  • For Huntington disease (HD), the typical age at onset is in the 40s or 50s. Cases have been recognized in patients younger than 5 years, but generally no more than 10% of the cases show onset prior to age 20. Patients with early onset usually inherited the disease from their father, while patients with later onset are more likely to have inherited the gene from their mother. The relatively low rate of expression in childhood is succeeded by a virtually exponential upsweep in the rate of appearance through the 20s and 30s to reach a plateau that is sustained from the 40s to the 70s. Although 27% of cases are first recognized in patients older than 50 years, most of the cases are documented in patients younger than 60 years. Onset has been recorded as late as the eighth decade. [1, 42]
  • Neuroacanthocytosis, perhaps the most common form of hereditary chorea, usually manifests clinically in the 30s or 40s (age range is 8-62 y). It should be differentiated from late-onset HD through careful pedigree analysis and neurogenetic testing. [1, 27, 43]
  • Senile chorea manifests gradually in middle-to-late life.
  • In general, on the basis of age at onset, benign hereditary chorea may be divided into 3 types: (1) early infancy, (2) approximately 1 year of age, and (3) late childhood or adolescence. The most common type is the second; children are usually around 1 year old when they begin to walk. Benign hereditary chorea is now known to be caused by a mutation in the TITF1 gene. Interestingly, this gene contains the code for a transcription factor essential for the organogenesis of the basal ganglia, lungs, and thyroid. [30, 44]
Contributor Information and Disclosures

Stephanie M Vertrees, MD Fellow in Public Health, Weill Cornell Medical College-Hospital for Special Surgery Fellowship in Medical Ethics; Fellow in Neuromuscular Medicine, Hospital for Special Surgery

Stephanie M Vertrees, MD is a member of the following medical societies: American Academy of Neurology, American Medical Womens Association

Disclosure: Nothing to disclose.


Stephen A Berman, MD, PhD, MBA Professor of Neurology, University of Central Florida College of Medicine

Stephen A Berman, MD, PhD, MBA is a member of the following medical societies: Alpha Omega Alpha, American Academy of Neurology, Phi Beta Kappa

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Selim R Benbadis, MD Professor, Director of Comprehensive Epilepsy Program, Departments of Neurology and Neurosurgery, Tampa General Hospital, University of South Florida College of Medicine

Selim R Benbadis, MD is a member of the following medical societies: American Academy of Neurology, American Medical Association, American Academy of Sleep Medicine, American Clinical Neurophysiology Society, American Epilepsy Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cyberonics; Eisai; Lundbeck; Sunovion; UCB; Upsher-Smith<br/>Serve(d) as a speaker or a member of a speakers bureau for: Cyberonics; Eisai; Glaxo Smith Kline; Lundbeck; Sunovion; UCB<br/>Received research grant from: Cyberonics; Lundbeck; Sepracor; Sunovion; UCB; Upsher-Smith.

Additional Contributors

Stephen T Gancher, MD Adjunct Associate Professor, Department of Neurology, Oregon Health Sciences University

Stephen T Gancher, MD is a member of the following medical societies: American Academy of Neurology, American Neurological Association, International Parkinson and Movement Disorder Society

Disclosure: Nothing to disclose.


The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous authors Eric Dinnerstein, MD, Maria Alejandra Herrera, MD, and Nestor Galvez-Jimenez, MD, MSc, MHA, to the development and writing of this article.

  1. Berman SA. Chorea. Joseph AB, Young RR, eds. Movement Disorders in Neurology and Neuropsychiatry. 2nd ed. Malden, Mass: Blackwell Science; 1999. 481-94.

  2. Dorland WA, ed. Dorlands Illustrated Medical Dictionary. 30th ed. Philadelphia, Pa: WB Saunders; 2003.

  3. Barbeau A, Duvoisin RC, Gerstenbrand F, Lakke JP, Marsden CD, Stern G. Classification of extrapyramidal disorders. Proposal for an international classification and glossary of terms. J Neurol Sci. 1981 Aug. 51(2):311-27. [Medline].

  4. Dewey RB Jr, Jankovic J. Hemiballism-hemichorea. Clinical and pharmacologic findings in 21 patients. Arch Neurol. 1989 Aug. 46(8):862-7. [Medline].

  5. Fukui T, Hasegawa Y, Seriyama S, et al. Hemiballism-hemichorea induced by subcortical ischemia. Can J Neurol Sci. 1993 Nov. 20(4):324-8. [Medline].

  6. Glass JP, Jankovic J, Borit A. Hemiballism and metastatic brain tumor. Neurology. 1984 Feb. 34(2):204-7. [Medline].

  7. Sanchez-Ramos JR, Factor SA, Weiner WJ, Marquez J. Hemichorea-hemiballismus associated with acquired immune deficiency syndrome and cerebral toxoplasmosis. Mov Disord. 1989. 4(3):266-73. [Medline].

  8. Vidakovic A, Dragasevic N, Kostic VS. Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry. 1994 Aug. 57(8):945-9. [Medline].

  9. Chen-Plotkin AS, Sadri-Vakili G, Yohrling GJ, Braveman MW, Benn CL, Glajch KE, et al. Decreased association of the transcription factor Sp1 with genes downregulated in Huntingtons disease. Neurobiol Dis. 2006 May. 22(2):233-41. [Medline].

  10. Smith KM, Matson S, Matson WR, Cormier K, Del Signore SJ, Hagerty SW. Dose ranging and efficacy study of high-dose coenzyme Q10 formulations in Huntingtons disease mice. Biochim Biophys Acta. 2006 Jun. 1762(6):616-26. [Medline].

  11. Stack EC, Smith KM, Ryu H, Cormier K, Chen M, Hagerty SW, et al. Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntingtons disease mice. Biochim Biophys Acta. 2006 Mar. 1762(3):373-80. [Medline].

  12. Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, et al. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntingtons disease. J Neurosci. 2007 Jun 27. 27(26):6972-83. [Medline].

  13. Leavitt BR, Hayden MR. Is tetrabenazine safe and effective for suppressing chorea in Huntingtons disease?. Nat Clin Pract Neurol. 2006 Oct. 2(10):536-7. [Medline].

  14. Savani AA, Login IS. Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology. 2007 Mar 6. 68(10):797; author reply 797. [Medline].

  15. Gomez-Anson B, Alegret M, Munoz E, Sainz A, Monte GC, Tolosa E. Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology. 2007 Mar 20. 68(12):906-10. [Medline].

  16. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntingtons disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntingtons disease. Neuroscience. 2000. 97(3):505-19. [Medline].

  17. Saft C, Lauter T, Kraus PH, Przuntek H, Andrich JE. Dose-dependent improvement of myoclonic hyperkinesia due to Valproic acid in eight Huntingtons Disease patients: a case series. BMC Neurol. 2006 Feb 28. 6:11. [Medline].

  18. Curtis MA, Faull RL, Glass M. A novel population of progenitor cells expressing cannabinoid receptors in the subependymal layer of the adult normal and Huntingtons disease human brain. J Chem Neuroanat. 2006 Apr. 31(3):210-5. [Medline].

  19. de Lago E, Fernandez-Ruiz J, Ortega-Gutierrez S, Cabranes A, Pryce G, Baker D, et al. UCM707, an inhibitor of the anandamide uptake, behaves as a symptom control agent in models of Huntingtons disease and multiple sclerosis, but fails to delay/arrest the progression of different motor-related disorders. Eur Neuropsychopharmacol. 2006 Jan. 16(1):7-18. [Medline].

  20. Dubinsky RM, Greenberg M, Di Chiro G, et al. Hemiballismus: study of a case using positron emission tomography with 18fluoro-2-deoxyglucose. Mov Disord. 1989. 4(4):310-9. [Medline].

  21. Klawans HL. Chorea. Can J Neurol Sci. 1987 Aug. 14(3 Suppl):536-40. [Medline].

  22. Evidente VG, Gwinn-Hardy K, Caviness JN, Alder CH. Risperidone is effective in severe hemichorea/hemiballismus. Mov Disord. 1999 Mar. 14(2):377-9. [Medline].

  23. Inzelberg R, Korczyn AD. Persistent hemiballism in Parkinsons disease. J Neurol Neurosurg Psychiatry. 1994 Aug. 57(8):1013-4. [Medline].

  24. Johnson WG, Fahn S. Treatment of vascular hemiballism and hemichorea. Neurology. 1977 Jul. 27(7):634-6. [Medline].

  25. Martinez-Martin P. Hemichorea-hemiballism in AIDS. Mov Disord. 1990. 5(2):180. [Medline].

  26. Riley D, Lang AE. Hemiballism in multiple sclerosis. Mov Disord. 1988. 3(1):88-94. [Medline].

  27. Jankovic J. Huntingtons disease, Wilsons disease, and neuroacanthocytosis. A Comprehensive Review of Movement Disorders for the Clinical Practitioner. 2nd Annual Course. New York, NY: Columbia University; 1992. 261-78.

  28. Petrukhin K, Lutsenko S, Chernov I, et al. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet. 1994 Sep. 3(9):1647-56. [Medline].

  29. Bird TD, Carlson CB, Hall JG. Familial essential (benign) chorea. J Med Genet. 1976 Oct. 13(5):357-62. [Medline].

  30. Breedveld GJ, van Dongen JW, Danesino C, et al. Mutations in TITF-1 are associated with benign hereditary chorea. Hum Mol Genet. 2002 Apr 15. 11(8):971-9. [Medline].

  31. Burns J, Neuhauser G, Tomasi L. Benign hereditary non-progressive chorea of early onset. Clinical genetics of the syndrome and report of a new family. Neuropadiatrie. 1976 Nov. 7(4):431-8. [Medline].

  32. Chun RW, Daly RF, Mansheim BJ Jr, Wolcott GJ. Benign familial chorea with onset in childhood. JAMA. 1973 Sep 24. 225(13):1603-7. [Medline].

  33. Damasio H, Antunes L, Damasio AR. Familial nonprogressive involuntary movements of childhood. Ann Neurol. 1977 Jun. 1(6):602-3. [Medline].

  34. Haerer AF, Currier RD, Jackson JF. Hereditary nonprogressive chorea of early onset. N Engl J Med. 1967 Jun 1. 276(22):1220-4. [Medline].

  35. Kuwert T, Lange HW, Langen KJ, et al. Normal striatal glucose consumption in two patients with benign hereditary chorea as measured by positron emission tomography. J Neurol. 1990 Apr. 237(2):80-4. [Medline].

  36. MacMillan JC, Morrison PJ, Nevin NC, Shaw DJ, Harper PS, Quarrell OW, et al. Identification of an expanded CAG repeat in the Huntington's disease gene (IT15) in a family reported to have benign hereditary chorea. J Med Genet. 1993 Dec. 30(12):1012-3. [Medline].

  37. Rice E, Terrence C. Computerized tomography in hereditary nonprogressive chorea. Arch Neurol. 1979 Apr. 36(4):249-50. [Medline].

  38. Robinson RO, Thornett CE. Benign hereditary chorea--response to steroids. Dev Med Child Neurol. 1985 Dec. 27(6):814-6. [Medline].

  39. Suchowersky O, Hayden MR, Martin WR, et al. Cerebral metabolism of glucose in benign hereditary chorea. Mov Disord. 1986. 1(1):33-44. [Medline].

  40. Wheeler PG, Weaver DD, Dobyns WB. Benign hereditary chorea. Pediatr Neurol. 1993 Sep-Oct. 9(5):337-40. [Medline].

  41. Yapijakis C, Kapaki E, Zournas C, Rentzos M, Loukopoulos D, Papageorgiou C. Exclusion mapping of the benign hereditary chorea gene from the Huntingtons disease locus: report of a family. Clin Genet. 1995 Mar. 47(3):133-8. [Medline].

  42. McKusick V. Huntington disease; HD. OMIM ID #143100. Online Mendelian Inheritance in Man. Available at Accessed: March 17, 2009.

  43. McKusick V. Choreoacanthocytosis; CHAC. OMIM ID #200150. Online Mendelian Inheritance in Man. Available at Accessed: March 17, 2009.

  44. McKusick V. Chorea, benign hereditary; BHC. OMIM ID #118700. Online Mendelian Inheritance in Man. Available at Accessed: March 17, 2009.

  45. Jones R, Stout JC, Labuschagne I, Say M, Justo D, Coleman A, et al. The potential of composite cognitive scores for tracking progression in Huntington's disease. J Huntingtons Dis. 2014. 3(2):197-207. [Medline].

  46. Klein C. The Wilson films--Huntington's chorea. Mov Disord. 2011 Dec. 26(14):2464-6. [Medline].

  47. Kobal J, Dobson-Stone C, Danek A, Fidler V, Zvan B, Zaletel M. Chorea-acanthocytosis presenting as dystonia. Acta Clin Croat. 2014 Mar. 53(1):107-12. [Medline].

  48. Alcock, NS. A note of the pathology of senile chorea (non-hereditary). Brain. 1936. 59:376-87.

  49. Friedman JH, Ambler M. A case of senile chorea. Mov Disord. 1990. 5(3):251-3. [Medline].

  50. Galvez-Jimenez N, Friedman J, Lang A. A consistent MRI pattern in three cases of senile chorea. Neurology. 1995. 45 (Supplement 4):A185.

  51. Giedd JN, Rapoport JL, Kruesi MJ, Parker C, Schapiro MB, Allen AJ, et al. Sydenhams chorea: magnetic resonance imaging of the basal ganglia. Neurology. 1995 Dec. 45(12):2199-202. [Medline].

  52. Swedo SE. Sydenhams chorea. A model for childhood autoimmune neuropsychiatric disorders. JAMA. 1994 Dec 14. 272(22):1788-91. [Medline].

  53. Beato R, Maia DP, Teixeira AL Jr, Cardoso F. Executive functioning in adult patients with Sydenham's chorea. Mov Disord. 2010 May 15. 25(7):853-7. [Medline].

  54. Gusella JF, MacDonald ME. Huntingtons disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci. July 2006. 31(pt 9):533-40.

  55. Nutting PA, Cole BR, Schimke RN. Benign, recessively inherited choreo-athetosis of early onset. J Med Genet. 1969 Dec. 6(4):408-10. [Medline].

  56. Fisher M, Sargent J, Drachman D. Familial inverted choreoathetosis. Neurology. 1979 Dec. 29(12):1627-31. [Medline].

  57. Wheeler PG, Dobyns WB, Plager DA, Ellis FD. Familial remitting chorea, nystagmus, and cataracts. Am J Med Genet. 1993 Dec 1. 47(8):1215-7. [Medline].

  58. Evans BK, Jankovic J. Tuberous sclerosis and chorea. Ann Neurol. 1983 Jan. 13(1):106-7. [Medline].

  59. Ross CA, Margolis RL, Rosenblatt A, et al. Huntington disease and the related disorder, dentatorubral-pallidoluysian atrophy (DRPLA). Medicine (Baltimore). 1997 Sep. 76(5):305-38. [Medline].

  60. Sethi KD, Ray R, Roesel RA, et al. Adult-onset chorea and dementia with propionic acidemia. Neurology. 1989 Oct. 39(10):1343-5. [Medline].

  61. Hefter H, Mayer P, Benecke R. Persistent chorea after recurrent hypoglycemia. A case report. Eur Neurol. 1993. 33(3):244-7. [Medline].

  62. Linazasoro G, Urtasun M, Poza JJ, et al. Generalized chorea induced by nonketotic hyperglycemia. Mov Disord. 1993. 8(1):119-20. [Medline].

  63. Toghill PJ, Johnston AW, Smith JF. Choreoathetosis in porto-systemic encephalopathy. J Neurol Neurosurg Psychiatry. 1967 Aug. 30(4):358-63. [Medline].

  64. Blunt SB, Brooks DJ, Kennard C. Steroid-responsive chorea in childhood following cardiac transplantation. Mov Disord. 1994 Jan. 9(1):112-4. [Medline].

  65. Curless RG, Katz DA, Perryman RA, et al. Choreoathetosis after surgery for congenital heart disease. J Pediatr. 1994 May. 124(5 Pt 1):737-9. [Medline].

  66. Peters AC, Vielvoye GJ, Versteeg J, et al. ECHO 25 focal encephalitis and subacute hemichorea. Neurology. 1979 May. 29(5):676-81. [Medline].

  67. Sweeney BJ, Edgecombe J, Churchill DR, et al. Choreoathetosis/ballismus associated with pentamidine-induced hypoglycemia in a patient with the acquired immunodeficiency syndrome. Arch Neurol. 1994 Jul. 51(7):723-5. [Medline].

  68. Davous P, Rondot P, Marion MH, Gueguen B. Severe chorea after acute carbon monoxide poisoning. J Neurol Neurosurg Psychiatry. 1986 Feb. 49(2):206-8. [Medline].

  69. Schwartz A, Hennerici M, Wegener OH. Delayed choreoathetosis following acute carbon monoxide poisoning. Neurology. 1985 Jan. 35(1):98-9. [Medline].

  70. Abbruzzese G, Brusa G, DallAgata D, Morena M, Spadavecchia L, Favale E. Electrophysiological analysis of motor control in patients with vascular hemichorea. Ital J Neurol Sci. 1987 Aug. 8(4):357-62. [Medline].

  71. Jones HR Jr, Baker RA, Kott HS. Hypertensive putaminal hemorrhage presenting with hemichorea. Stroke. 1985 Jan-Feb. 16(1):130-1. [Medline].

  72. Margolin DI, Marsden CD. Episodic dyskinesias and transient cerebral ischemia. Neurology. 1982 Dec. 32(12):1379-80. [Medline].

  73. Tabaton M, Mancardi G, Loeb C. Generalized chorea due to bilateral small, deep cerebral infarcts. Neurology. 1985 Apr. 35(4):588-9. [Medline].

  74. Bae SH, Vates TS Jr, Kenton EJ 3d. Generalized chorea associated with chronic subdural hematomas. Ann Neurol. 1980 Oct. 8(4):449-50. [Medline].

  75. Pavlakis SG, Schneider S, Black K, Gould RJ. Steroid-responsive chorea in moyamoya disease. Mov Disord. 1991. 6(4):347-9. [Medline].

  76. Bruyn GW, Ferrari MD. Chorea and migraine: Hemicrania choreatica?. Cephalalgia. 1984 Jun. 4(2):119-24. [Medline].

  77. Kok J, Bosseray A, Brion JP, et al. Chorea in a child with Churg-Strauss syndrome. Stroke. 1993 Aug. 24(8):1263-4. [Medline].

  78. Kimura N, Sugihara R, Kimura A, Kumamoto T, Tsuda T. [A case of neuro-Behcets disease presenting with chorea]. Rinsho Shinkeigaku. 2001 Jan. 41(1):45-9. [Medline].

  79. Caviness VS Jr. Huntingtons disease. Dev Med Child Neurol. 1985 Dec. 27(6):826-9. [Medline].

  80. Cervera R, Asherson RA, Font J, et al. Chorea in the antiphospholipid syndrome. Clinical, radiologic, and immunologic characteristics of 50 patients from our clinics and the recent literature. Medicine (Baltimore). 1997 May. 76(3):203-12. [Medline].

  81. Walker FO, Hunt VP. Ballism: an association with ventriculoperitoneal shunting. Neurology. 1990 Jun. 40(6):1004. [Medline].

  82. Rosenblatt A, Liang KY, Zhou H, Abbott MH, Gourley LM, Margolis RL. The association of CAG repeat length with clinical progression in Huntington disease. Neurology. 2006 Apr 11. 66(7):1016-20. [Medline].

  83. Burton PD. Magnetic resonance imaging and brain iron: implications in the diagnosis and pathochemistry of movement disorders and dementia. Barrow Neurological Institute Quarterly. 1987. 3, No. 4:15-29.

  84. Rutledge JN, Hilal SK, Silver AJ, et al. Study of movement disorders and brain iron by MR. Am J Neuroradiol. 1987. 8:397-411.

  85. Montoya A, Price BH, Menear M, Lepage M. Brain imaging and cognitive dysfunctions in Huntingtons disease. J Psychiatry Neurosci. 2006 Jan. 31(1):21-9. [Medline].

  86. Hosokawa S, Ichiya Y, Kuwabara Y, et al. Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry. 1987 Oct. 50(10):1284-7. [Medline].

  87. Otsuka M, Ichiya Y, Kuwabara Y, et al. Cerebral glucose metabolism and striatal 18F-dopa uptake by PET in cases of chorea with or without dementia. J Neurol Sci. 1993 Apr. 115(2):153-7. [Medline].

  88. Tanaka M, Hirai S, Kondo S, et al. Cerebral hypoperfusion and hypometabolism with altered striatal signal intensity in chorea-acanthocytosis: a combined PET and MRI study. Mov Disord. 1998 Jan. 13(1):100-7. [Medline].

  89. Grove VE Jr, Quintanilla J, DeVaney GT. Improvement of Huntingtons disease with olanzapine and valproate. N Engl J Med. 2000 Sep 28. 343(13):973-4. [Medline].

  90. Shannon KM. Hemiballismus. Clin Neuropharmacol. 1990 Oct. 13(5):413-25. [Medline].

  91. Thompson TP, Kondziolka D, Albright AL. Thalamic stimulation for choreiform movement disorders in children. Report of two cases. J Neurosurg. 2000 Apr. 92(4):718-21. [Medline].

  92. Krauss JK, Loher TJ, Weigel R, et al. Chronic stimulation of the globus pallidus internus for treatment of non-dYT1 generalized dystonia and choreoathetosis: 2-year follow up. J Neurosurg. 2003 Apr. 98(4):785-92. [Medline].

  93. Moro E, Lang AE, Strafella AP, et al. Bilateral globus pallidus stimulation for Huntingtons disease. Ann Neurol. 2004 Aug. 56(2):290-4. [Medline].

  94. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, et al. Effect of fetal neural transplants in patients with Huntingtons disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006 Apr. 5(4):303-9. [Medline].

  95. Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, Bird TD, et al. Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology. 2007 Jun 12. 68(24):2093-8. [Medline].

  96. Souza Ad, Moloi MW. Involuntary movements due to vitamin B12 deficiency. Neurol Res. 2014 Dec. 36(12):1121-8. [Medline].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.