Medscape is available in 5 Language Editions – Choose your Edition here.


Progressive Supranuclear Palsy Clinical Presentation

  • Author: Eric R Eggenberger, MS, DO, FAAN; Chief Editor: Selim R Benbadis, MD  more...
Updated: Jul 11, 2016


The first clinicopathologic descriptions of progressive supranuclear palsy (PSP) were published in 1963 and 1964 and proved to be remarkably accurate.[21] Only in the past 15 years has there been a renewed focus on this disorder among neurologists and basic scientists.

The onset of PSP is insidious and usually includes a prolonged phase of vague fatigue, headaches, arthralgias, dizziness, and depression. Patients also experience subtle personality changes, memory problems, and pseudobulbar symptoms; family members are often a more accurate source of such information than the patient is. The initial symptoms can often involve unexplained imbalance or falls. Over time, dysarthria, dysphagia, and visual symptoms ensue.

In a neuropathologic study, the most common symptoms at disease onset were postural instability and falls (63%); dysarthria (35%); bradykinesia (13%); and visual disturbances such as diplopia, blurred vision, burning eyes, and light sensitivity (13%).[27]

The cardinal manifestations of PSP are as follows:

  • Supranuclear ophthalmoplegia (see Physical Examination)
  • Pseudobulbar palsy
  • Prominent neck dystonia
  • Parkinsonism
  • Behavioral, cognitive, and gait disturbances that cause imbalance
  • Frequent falls/impaired postural reflexes

Although presentations vary and early predominance of a particular symptom is not unusual, over time, a wider spectrum of symptoms inevitably ensues. Several other features have been reported, including sleep disturbance with insomnia, clumsiness, impaired handwriting, and oscillopsia. Although the full constellation of symptoms occurring in a progressive fashion over time is characteristic, the vertical gaze palsy is the most distinctive single clinical feature.

Other features that can be prominent include the following:

  • Focal or segmental dystonia in the form of limb dystonia or blepharospasm [28]
  • Asymmetric apraxia resembling corticobasal degeneration [29]
  • Micturition disturbances, including urinary incontinence (common in the later stages) [30, 31]
  • Progressive apraxia of speech, nonfluent aphasia, or a combination thereof [32]
  • Photophobia (as compared with control subjects) [33]

Physical Examination

The physical examination emphasizes the clinical features previously outlined. PSP is characterized primarily by motor, visual, and cognitive symptoms. Documentation of cognitive function with attention to executive function is important.

Motor symptoms

Often, the earliest manifestations of PSP relate to imbalance and dysarthria. The imbalance is part of an extrapyramidal syndrome that includes poor postural reflexes, axial rigidity greater than appendicular rigidity, and dysarthria (monotone with slight hypophonic quality). Resting tremor is unusual. Additionally, otolith dysfunction may also contribute to imbalance and falls.

The early appearance of gait and balance dysfunction in PSP may be contrasted with the course of idiopathic Parkinson disease, in which imbalance tends to occur late in the disease. The gait in individuals with PSP tends to be more widely based and unstable; these individuals have a tendency to fall in any direction because of impaired postural reflexes.

Bradykinesia with masked facies and a startled expression are frequent findings (see the image below). Retrocollis may be present; with lid retraction, it enhances the astonished, worried appearance. Increased rigidity without cogwheeling or tremor completes the motor picture.

Characteristic facial appearance of patient with p Characteristic facial appearance of patient with progressive supranuclear palsy.

Visual symptoms

The cranial nerve examination should include detailed analysis of ocular motility. Slow vertical saccades and square wave jerks are early signs in most patients. The classic gaze palsy in PSP is supranuclear ophthalmoplegia. Supranuclear in this context refers to a lesion that is situated above the ocular motor nuclei, thus sparing the ocular motor nuclei, nerve fascicles, and neuromuscular junctional and extraocular muscles.

Examination features serve to establish that the infranuclear structures are intact and that the lesion lies within the supranuclear domain. A supranuclear vertical gaze limitation is improved after extravolitional pathway activation, such as the vestibular ocular reflex (VOR) or the Bell phenomenon.

The Bell phenomenon consists of upward eye deviation behind closed lids. This can be assessed clinically by holding the eyelid partially open and instructing the patient to try forcefully closing the eye. The vertical VOR can be activated by manually flexing and extending the neck while the patient views a distant target. If the extent of the vertical eye movement limitation is improved with either of these maneuvers, then the lesion is supranuclear in origin.

Measurement of ocular alignment in the cardinal positions of gaze at near and distance viewing often discloses the source of any diplopic symptoms. Examination of the eyelid position and movements may yield critical information. The characteristic facies, especially when associated with dysarthria, may provide a nearly pathognomonic clinical picture. Examination of pursuit movements and the extent of ocular rotations is important.

Although visual symptoms tend to be a relatively early finding, they may not be present at onset; rarely, they are absent entirely. The slowing of vertical saccades and fast phases previously mentioned (see above) is often the earliest eye sign. Later, the classic vertical supranuclear ophthalmoparesis occurs; this typically involves downgaze before upgaze.

As a supranuclear process, vertical eye movements can still be generated by the VOR until late in the course of the disease, though the Bell phenomenon is often absent (supraduction with eye closure). Later in the disease course, this ophthalmoparesis affects horizontal as well as vertical eye movements. Complete ophthalmoparesis may ensue late in the course.

Nearly continuous square wave jerks are commonly observed with fixation. These are small (< 5°) horizontal movements that take the eyes conjugately off the target and then return them to the target after a brief 180- to 200-msec latency. Although occasional square wave jerks are common in elderly individuals and may be normal if unaccompanied by other symptoms, more continuous square wave jerks are often associated with underlying central nervous system (CNS) disease.

Convergence eye movements are often impaired, and convergence insufficiency may produce episodic diplopia at near distances. Impaired binocular fusional capacity may produce diplopia related to decompensated phorias. Impaired VOR suppression has also been noted.

Several eyelid signs frequently occur in individuals with PSP, including lid retraction, eyelid opening or closing apraxia, blepharospasm, or lid lag. Loss of the fast component of the optokinetic nystagmus can precede gaze palsy. Pupillary abnormalities include decreased pupillary diameter in darkness when compared with controls.[34]

Cognitive symptoms

Cognitive dysfunction and personality change are common in patients with PSP, but they are generally milder in degree than those seen in patients with primary dementing illnesses such as Alzheimer disease. Slowed cognitive processing, sequencing and planning difficulties, mild memory difficulty, and apathy are typical. These are generally more prominent later in the course of the disease.

Litvan et al administered the Neuropsychiatric Inventory (NPI) to 22 patients with PSP, 50 patients with Alzheimer disease, and 40 control subjects.[35] The NPI focuses on the presence of delusions, hallucinations, agitation, dysphoria, anxiety, euphoria, apathy, disinhibition, irritability, and abnormal motor behavior. The presence of high apathy scores coupled with low agitation and anxiety scale scores was used to correctly identify patients with PSP 85% of the time.[35]

Clinical diagnostic criteria

Litvan et al tested the accuracy of 4 proposed clinical diagnostic criteria for PSP and found that none of the criteria demonstrated both high sensitivity and high predictive value.[36, 37] A regression analysis approach revealed that vertical supranuclear palsy with downgaze abnormalities and postural instability with unexplained falls were the most useful diagnostic features.

In these studies, the authors applied the proposed diagnostic criteria to autopsy-proven cases, including 24 cases of PSP, 29 cases of Lewy body disease, 10 cases of cortical-basal ganglionic degeneration, 7 cases of postencephalitic parkinsonism, 16 cases of multiple system atrophy, 7 cases of Pick disease, and 12 cases of other parkinsonian or dementing illnesses.[36, 37]

Mandatory inclusion criteria consisted of a progressive disease course including the aforementioned diagnostic features.[36, 37] Mandatory exclusion criteria included a history of encephalitis, hallucinations, cerebellar signs, noniatrogenic dysautonomia, unilateral dystonia, alien hand syndrome, early cortical dementia, or documented focal lesions. These criteria performed better than previous guidelines (sensitivity, 57%; positive predictive value [PPV], 85%). When applied to data from the last clinic visit, they had a sensitivity of 66% and a PPV of 76%.

The participants in a National Institute of Neurological Disorders and Stroke (NINDS)/Society for PSP conference formulated clinical research criteria for the diagnosis of PSP.[1] They based these new criteria on literature review and then validated them using a clinical data set from autopsy-confirmed cases of PSP.

In this system, criteria for possible PSP are as follows:

  • Gradually progressive disorder with onset when the individual is aged 40 years or older
  • Either vertical supranuclear palsy or both slowing of vertical saccades and prominent postural instability with falls in the first year of onset
  • No evidence of other diseases that can explain the clinical features

Criteria for probable PSP are vertical supranuclear palsy with prominent postural instability, falls in the first year of onset, and other features of possible PSP, as follows:

  • Symmetric proximal greater than distal akinesia or rigidity
  • Abnormal neck posture, especially retrocollis
  • Poor or absent response of parkinsonism to levodopa therapy
  • Early dysphagia and dysarthria
  • Early cognitive impairment with at least 2 of the following: apathy, abstract thought impairment, decreased verbal fluency, imitation behavior, or frontal release signs

Criteria for definite PSP are as follows:

  • History of probable or possible PSP
  • Histopathologic evidence that is typical of the disease

The proposed criteria for possible PSP are highly sensitive, whereas those for probable PSP are highly specific; thus, each set of criteria is useful for different analyses and studies. It is to be hoped that these attempts at clinical diagnosis will be supplanted by a reliable and objective diagnostic test in the future.

The presence of prominent cerebellar signs, hallucinations, or dysautonomia in the absence of drug effect, early cortical dementia features, or unilateral dystonia casts doubt on the diagnosis of PSP and should prompt consideration of other neurodegenerative conditions.



The primary complications of PSP are related to the following:

  • Impaired balance
  • Decreased cognition
  • Immobility in late disease

Complications related to falls include orthopedic injury and other posttraumatic problems. Immobility in late disease leads to infectious complications such as pneumonia, urinary tract infection, and sepsis.

Contributor Information and Disclosures

Eric R Eggenberger, MS, DO, FAAN Professor, Vice-Chairman, Department of Neurology and Ophthalmology, Colleges of Osteopathic Medicine and Human Medicine, Michigan State University; Director of Michigan State University Ocular Motility Laboratory; Director of National Multiple Sclerosis Society Clinic, Michigan State University College of Human Medicine

Eric R Eggenberger, MS, DO, FAAN is a member of the following medical societies: American Academy of Neurology, American Academy of Ophthalmology, American Osteopathic Association, North American Neuro-Ophthalmology Society

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Biogen; Genzyme; Novartis; Teva <br/>Received research grant from: Biogen; Genzyme; Novartis<br/>Received consulting fee from Biogen for consulting; Received consulting fee from Teva for consulting; Received consulting fee from Acorda for consulting; Received grant/research funds from Novartis for independent contractor; Received honoraria from Genentech for speaking and teaching; Received honoraria from Genzyme for speaking and teaching.


David Clark, DO Clinical Assistant Professor of Neurology, Western University of Health Sciences; Neuro-ophthalmologist, Oregon Neurology Associates

David Clark, DO is a member of the following medical societies: American Academy of Neurology, American Osteopathic Association, North American Neuro-Ophthalmology Society

Disclosure: Received honoraria from Teva for speaking and teaching; Received honoraria from Biogen Idec for speaking and teaching.

Chief Editor

Selim R Benbadis, MD Professor, Director of Comprehensive Epilepsy Program, Departments of Neurology and Neurosurgery, Tampa General Hospital, University of South Florida College of Medicine

Selim R Benbadis, MD is a member of the following medical societies: American Academy of Neurology, American Medical Association, American Academy of Sleep Medicine, American Clinical Neurophysiology Society, American Epilepsy Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cyberonics; Eisai; Lundbeck; Sunovion; UCB; Upsher-Smith<br/>Serve(d) as a speaker or a member of a speakers bureau for: Cyberonics; Eisai; Glaxo Smith Kline; Lundbeck; Sunovion; UCB<br/>Received research grant from: Cyberonics; Lundbeck; Sepracor; Sunovion; UCB; Upsher-Smith.


Nestor Galvez-Jimenez, MD, MSc, MHA Chairman, Department of Neurology, Program Director, Movement Disorders, Department of Neurology, Division of Medicine, Cleveland Clinic Florida

Nestor Galvez-Jimenez, MD, MSc, MHA is a member of the following medical societies: American Academy of Neurology, American College of Physicians, and Movement Disorders Society

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Reference Salary Employment

Zeba F Vanek, MD, MBBS, DCN Associate Professor of Neurology, David Geffen School of Medicine at UCLA; Director, UCLA Spasticity Clinic

Zeba F Vanek, MD, MBBS, DCN is a member of the following medical societies: Movement Disorders Society

Disclosure: Nothing to disclose.

  1. Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1994 Nov. 44(11):2015-9. [Medline].

  2. Drayer BP, Olanow W, Burger P, et al. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology. 1986 May. 159(2):493-8. [Medline].

  3. Schonfeld SM, Golbe LI, Sage JI, et al. Computed tomographic findings in progressive supranuclear palsy: correlation with clinical grade. Mov Disord. 1987. 2(4):263-78. [Medline].

  4. Stern MB, Braffman BH, Skolnick BE, et al. Magnetic resonance imaging in Parkinson''s disease and parkinsonian syndromes. Neurology. 1989 Nov. 39(11):1524-6. [Medline].

  5. Savoiardo M, Girotti F, Strada L, Ciceri E. Magnetic resonance imaging in progressive supranuclear palsy and other parkinsonian disorders. J Neural Transm Suppl. 1994. 42:93-110. [Medline].

  6. Paviour DC, Price SL, Stevens JM, et al. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology. 2005 Feb 22. 64(4):675-9. [Medline].

  7. Aldrich MS, Foster NL, White RF, et al. Sleep abnormalities in progressive supranuclear palsy. Ann Neurol. 1989 Jun. 25(6):577-81. [Medline].

  8. Santamaria J, Iranzo A. Alteraciones del sueno en los trastornos del movimiento. Neurologia. 1997. 12 (Suppl 3):35-47.

  9. Gross RA, Spehlmann R, Daniels JC. Sleep disturbances in progressive supranuclear palsy. Electroencephalogr Clin Neurophysiol. 1978 Jul. 45(1):16-25. [Medline].

  10. Laffont F, Autret A, Minz M, Beillevaire T, Gilbert A, Cathala HP, et al. [Polygraphic sleep recordings in 9 cases of Steele-Richardson's disease (author's transl)]. Rev Neurol (Paris). 1979 Feb. 135(2):127-41. [Medline].

  11. Polo KB, Jabbari B. Botulinum toxin-A improves the rigidity of progressive supranuclear palsy. Ann Neurol. 1994 Feb. 35(2):237-9. [Medline].

  12. Golbe LI. Progressive Supranuclear Palsy. Curr Treat Options Neurol. 2001 Nov. 3(6):473-477. [Medline].

  13. Boeve BF. Progressive supranuclear palsy. Parkinsonism Relat Disord. 2012 Jan. 18 Suppl 1:S192-4. [Medline].

  14. Williams DR, Lees AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009 Mar. 8(3):270-9. [Medline].

  15. Conrad C, Andreadis A, Trojanowski JQ, et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann Neurol. 1997 Feb. 41(2):277-81. [Medline].

  16. Liao K, Wagner J, Joshi A, Estrovich I, Walker MF, Strupp M, et al. Why do patients with PSP fall? Evidence for abnormal otolith responses. Neurology. 2008 Mar 4. 70(10):802-9. [Medline].

  17. Golbe LI, Rubin RS, Cody RP, et al. Follow-up study of risk factors in progressive supranuclear palsy. Neurology. 1996 Jul. 47(1):148-54. [Medline].

  18. Tetrud JW, Golbe LI, Forno LS, Farmer PM. Autopsy-proven progressive supranuclear palsy in two siblings. Neurology. 1996 Apr. 46(4):931-4. [Medline].

  19. Kaat LD, Boon AJ, Azmani A, Kamphorst W, Breteler MM, Anar B, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology. 2009 Jul 14. 73(2):98-105. [Medline].

  20. de Yebenes JG, Sarasa JL, Daniel SE, Lees AJ. Familial progressive supranuclear palsy. Description of a pedigree and review of the literature. Brain. 1995 Oct. 118 ( Pt 5):1095-103. [Medline].

  21. Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogenous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol. 1964 Apr. 10:333-59. [Medline].

  22. Golbe LI, Davis PH, Schoenberg BS, Duvoisin RC. Prevalence and natural history of progressive supranuclear palsy. Neurology. 1988 Jul. 38(7):1031-4. [Medline].

  23. Jackson JA, Jankovic J, Ford J. Progressive supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol. 1983 Mar. 13(3):273-8. [Medline].

  24. Mastaglia FL, Grainger K, Kee F, et al. Progressive supranuclear palsy (the Steele-Richardson-Olszewski syndrome) clinical and electrophysiological observations in eleven cases. Proc Aust Assoc Neurol. 1973. 10(0):35-44. [Medline].

  25. Maher ER, Lees AJ. The clinical features and natural history of the Steele-Richardson- Olszewski syndrome (progressive supranuclear palsy). Neurology. 1986 Jul. 36(7):1005-8. [Medline].

  26. Kristensen MO. Progressive supranuclear palsy--20 years later. Acta Neurol Scand. 1985 Mar. 71(3):177-89. [Medline].

  27. Litvan I, Mangone CA, McKee A, et al. Natural history of progressive supranuclear palsy (Steele-Richardson- Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1996 Jun. 60(6):615-20. [Medline].

  28. Barclay CL, Lang AE. Dystonia in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 1997 Apr. 62(4):352-6. [Medline].

  29. Gibb WR, Luthert PJ, Marsden CD. Corticobasal degeneration. Brain. 1989 Oct. 112 ( Pt 5):1171-92. [Medline].

  30. Sakakibara R, Hattori T, Tojo M, et al. Micturitional disturbance in progressive supranuclear palsy. J Auton Nerv Syst. 1993 Nov. 45(2):101-6. [Medline].

  31. Tolosa E, Espuna M, Valls J. Bladder dysfunction in PSP and other parkinsonian disorders. Mov Disord. 1997. 12:272.

  32. Josephs KA, Duffy JR. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol. 2008 Dec. 21(6):688-92. [Medline].

  33. Cooper AD, Josephs KA. Photophobia, visual hallucinations, and REM sleep behavior disorder in progressive supranuclear palsy and corticobasal degeneration: a prospective study. Parkinsonism Relat Disord. 2009 Jan. 15(1):59-61. [Medline].

  34. Schmidt C, Herting B, Prieur S, Junghanns S, Schweitzer K, Globas C. Pupil diameter in darkness differentiates progressive supranuclear palsy (PSP) from other extrapyramidal syndromes. Mov Disord. 2007 Oct 31. 22(14):2123-6. [Medline].

  35. Litvan I, Mega MS, Cummings JL, Fairbanks L. Neuropsychiatric aspects of progressive supranuclear palsy. Neurology. 1996 Nov. 47(5):1184-9. [Medline].

  36. Litvan I, Agid Y, Jankovic J, et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology. 1996 Apr. 46(4):922-30. [Medline].

  37. Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996 Jul. 47(1):1-9. [Medline].

  38. Borroni B, Malinverno M, Gardoni F, Alberici A, Parnetti L, Premi E, et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology. 2008 Nov 25. 71(22):1796-803. [Medline].

  39. Righini A, Antonini A, De Notaris R, et al. MR imaging of the superior profile of the midbrain: differential diagnosis between progressive supranuclear palsy and Parkinson disease. AJNR Am J Neuroradiol. 2004 Jun-Jul. 25(6):927-32. [Medline].

  40. Boelmans K, Holst B, Hackius M, Finsterbusch J, Gerloff C, Fiehler J, et al. Brain iron deposition fingerprints in Parkinson's disease and progressive supranuclear palsy. Mov Disord. 2012 Jan 30. [Medline].

  41. Foster NL, Gilman S, Berent S, et al. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol. 1988 Sep. 24(3):399-406. [Medline].

  42. Foster NL, Gilman S, Berent S, et al. Progressive subcortical gliosis and progressive supranuclear palsy can have similar clinical and PET abnormalities. J Neurol Neurosurg Psychiatry. 1992 Aug. 55(8):707-13. [Medline].

  43. Blin J, Baron JC, Dubois B, et al. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations. Arch Neurol. 1990 Jul. 47(7):747-52. [Medline].

  44. Mishina M, Ishii K, Mitani K, et al. Midbrain hypometabolism as early diagnostic sign for progressive supranuclear palsy. Acta Neurol Scand. 2004 Aug. 110(2):128-35. [Medline].

  45. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson''s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990 Oct. 28(4):547-55. [Medline].

  46. Arnold G, Tatsch K, Oertel WH, et al. Clinical progressive supranuclear palsy: differential diagnosis by IBZM- SPECT and MRI. J Neural Transm Suppl. 1994. 42:111-8. [Medline].

  47. Sixel-Döring F, Schweitzer M, Mollenhauer B, Trenkwalder C. Polysomnographic findings, video-based sleep analysis and sleep perception in progressive supranuclear palsy. Sleep Med. 2009 Apr. 10(4):407-15. [Medline].

  48. Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008 May 15. 23(7):942-9. [Medline].

  49. Zampieri C, Di Fabio RP. Improvement of gaze control after balance and eye movement training in patients with progressive supranuclear palsy: a quasi-randomized controlled trial. Arch Phys Med Rehabil. 2009 Feb. 90(2):263-70. [Medline].

  50. 23rd Meeting of the European Neurological Society (ENS). Abstract P729. Presented June 10, 2013.

  51. Keller DM. Botulinum Toxin Benefits Many PSP Patients With Dystonia. Medscape Medical News. Available at Accessed: July 7, 2013.

Sagittal T1-weighted image shows atrophy of midbrain, preservation of pontine volume, and atrophy of the tectum, suggestive of progressive supranuclear palsy (Steele-Olszewski-Richardson disease).
Characteristic facial appearance of patient with progressive supranuclear palsy.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.