Medscape is available in 5 Language Editions – Choose your Edition here.


Pelizaeus-Merzbacher Disease Treatment & Management

  • Author: Jasvinder Chawla, MD, MBA; Chief Editor: Selim R Benbadis, MD  more...
Updated: Jul 11, 2016

Approach Considerations

No specific treatment for Pelizaeus-Merzbacher disease is known. Medical therapy is limited to supportive care, such as the use of physical therapy, orthotics, and antispasticity agents, including intrathecal baclofen. Regular physical medicine or orthopedic evaluations, physical therapy, and careful attention to posture and seating can help to minimize the development of joint contractures, dislocations, and kyphoscoliosis.

Patients who are severely affected (ie, those who have connatal Pelizaeus-Merzbacher disease) need special attention directed to airway protection and may need anticonvulsant therapy. Developmental assessment is important to maximize cognitive achievement and to assist in proper educational program assignment.

Pharmacologic therapy

When indicated, antiepileptic medications should be used. Antispasticity medications, such as baclofen, tizanidine, or benzodiazepines, may be beneficial.

Constipation is a common complication and may require the use of mild laxatives, such as senna, fiber supplements, or osmotic agents, such as polyethylene glycol 3350 (MiraLAX, Enemeez).

Surgical care

Tracheostomy may be needed during infancy if stridor impairs respiratory function. Feeding tube placement may be needed if oral feeding is inadequate to maintain weight or sustain normal growth in a child with Pelizaeus-Merzbacher disease, or if oral feeding poses a significant risk of aspiration.

Some patients with severe spasticity, especially children, may benefit from intrathecal baclofen, as well as from surgical release of contractures and other orthopedic procedures, including the use of spinal rods to correct severe scoliosis.


Within their capabilities, patients should be encouraged to be active for their physical and emotional well-being. A physiatrist or physical therapist can be helpful in providing guidelines for a specific child. Aquatic therapy can be a helpful exercise to maintain leg strength, as well as an enjoyable form of recreation.

Genetic counseling and prenatal testing

Competent genetic counseling must be provided to the family of an affected individual to provide the most accurate prognosis for the patient and to educate the family about the implications for future pregnancies.

Confirmation of the disease is likely to have implications for more distant relatives and for the immediate family. Prenatal testing and preimplantation genetic testing are possible and should be offered when appropriate. Identification of a causative mutation would be essential before prenatal testing could be performed. Preimplantation genetic diagnosis is possible when a mutation is known.



Consultation with a geneticist and a genetic counselor is essential for parents of an affected child to educate them about Pelizaeus-Merzbacher disease and the risks to future offspring; consultation may also be critical for establishing and confirming the diagnosis.

Neonates with the connatal form of Pelizaeus-Merzbacher disease should be evaluated by a pulmonologist and perhaps by a neonatal swallowing specialist to evaluate airway safety and swallowing safety, respectively. Feeding tube placement may be necessary.

Regular consultation with a physiatrist or orthopedist and therapy team should be arranged. As the child grows, the physiatrist can help to optimize the patient’s mobility and strengthening and maximize the patient’s capabilities. The use orthotics, custom seating and cushions, and other aids is important for minimizing the development of joint dislocations and kyphoscoliosis. For severe contractures or scoliosis, orthopedic consultation may be beneficial.

Communication therapy, including training in use of communication devices, is often valuable. In addition, a pediatric developmental specialist should be consulted to optimize the child's educational program and to maximize the patient’s functional and learning capabilities.

Contributor Information and Disclosures

Jasvinder Chawla, MD, MBA Chief of Neurology, Hines Veterans Affairs Hospital; Professor of Neurology, Loyola University Medical Center

Jasvinder Chawla, MD, MBA is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American Clinical Neurophysiology Society, American Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Selim R Benbadis, MD Professor, Director of Comprehensive Epilepsy Program, Departments of Neurology and Neurosurgery, Tampa General Hospital, University of South Florida College of Medicine

Selim R Benbadis, MD is a member of the following medical societies: American Academy of Neurology, American Medical Association, American Academy of Sleep Medicine, American Clinical Neurophysiology Society, American Epilepsy Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cyberonics; Eisai; Lundbeck; Sunovion; UCB; Upsher-Smith<br/>Serve(d) as a speaker or a member of a speakers bureau for: Cyberonics; Eisai; Glaxo Smith Kline; Lundbeck; Sunovion; UCB<br/>Received research grant from: Cyberonics; Lundbeck; Sepracor; Sunovion; UCB; Upsher-Smith.


Nestor Galvez-Jimenez, MD, MSc, MHA Chairman, Department of Neurology, Program Director, Movement Disorders, Department of Neurology, Division of Medicine, Cleveland Clinic Florida

Nestor Galvez-Jimenez, MD, MSc, MHA is a member of the following medical societies: American Academy of Neurology, American College of Physicians, and Movement Disorders Society

Disclosure: Nothing to disclose.

Stephen T Gancher, MD Adjunct Associate Professor, Department of Neurology, Oregon Health Sciences University

Stephen T Gancher, MD is a member of the following medical societies: American Academy of Neurology, American Neurological Association, and Movement Disorders Society

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment


The author is extremely grateful to patients with Pelizaeus-Merzbacher disease and their families for their help and support of Pelizaeus-Merzbacher disease research and to the Pelizaeus-Merzbacher Disease Foundation, the National Institutes of Health, and the Children's Research Center of Michigan for financial support.

  1. Dhaunchak AS, Colman DR, Nave KA. Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher disease. J Neurosci. 2011 Oct 19. 31(42):14961-71. [Medline].

  2. Wood PL, Khan MA, Smith T, Ehrmantraut G, Jin W, Cui W, et al. In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor. Lipids Health Dis. 2011 Oct 18. 10(1):182. [Medline].

  3. Wood PL, Smith T, Pelzer L, Goodenowe DB. Targeted metabolomic analyses of cellular models of pelizaeus-merzbacher disease reveal plasmalogen and myo-inositol solute carrier dysfunction. Lipids Health Dis. 2011 Jun 17. 10:102. [Medline]. [Full Text].

  4. Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007. 131:1235-47. [Medline]. [Full Text].

  5. McKusick V. Pelizaeus-Merzbacher disease. Online Mendelian Inheritance in Man. Available at Accessed: 2004.

  6. van der Knaap MS, Smit LM, Barth PG, et al. Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol. 1997 Jul. 42(1):50-9. [Medline].

  7. Griffiths I, Klugmann M, Anderson T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998 Jun 5. 280(5369):1610-3. [Medline].

  8. Wolf NI, Sistermans EA, Cundall M, et al. Three or more copies of the proteolipid protein gene PLP1 cause severe Pelizaeus-Merzbacher disease. Brain. 2005 Apr. 128(Pt 4):743-51. [Medline].

  9. Hurst S, Garbern J, Trepanier A, Gow A. Quantifying the carrier female phenotype in Pelizaeus-Merzbacher disease. Genet Med. 2006 Jun. 8(6):371-8. [Medline].

  10. Numata Y, Gotoh L, Iwaki A, Kurosawa K, Takanashi JI, Deguchi K, et al. Epidemiological, clinical, and genetic landscapes of hypomyelinating leukodystrophies. J Neurol. 2014 Feb 16. [Medline].

  11. Uhlenberg B, Schuelke M, Rüschendorf F, Ruf N, Kaindl AM, Henneke M, et al. Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus-Merzbacher-like disease. Am J Hum Genet. 2004 Aug. 75(2):251-60. [Medline]. [Full Text].

  12. Lazzarini A, Schwarz KO, Jiang S, et al. Pelizaeus-Merzbacher-like disease: exclusion of the proteolipid protein locus and documentation of a new locus on Xq. Neurology. 1997 Sep. 49(3):824-32. [Medline].

  13. Tanaka M, Hamano S, Sakata H, et al. Discrepancy between auditory brainstem responses, auditory steady-state responses, and auditory behavior in two patients with Pelizaeus-Merzbacher disease. Auris Nasus Larynx. 2008 Sep. 35(3):404-7. [Medline].

  14. Laukka JJ, Stanley JA, Garbern JY, Trepanier A, Hobson G, Lafleur T, et al. Neuroradiologic correlates of clinical disability and progression in the X-linked leukodystrophy Pelizaeus-Merzbacher disease. J Neurol Sci. 2013 Dec 15. 335(1-2):75-81. [Medline].

  15. Mori T, Mori K, Ito H, Goji A, Miyazaki M, Harada M, et al. Age-related changes in a patient with Pelizaeus-Merzbacher disease determined by repeated 1H-magnetic resonance spectroscopy. J Child Neurol. 2014 Feb. 29(2):283-8. [Medline].

T2-weighted magnetic resonance imaging (MRI) scan of a child aged 10 months with duplication of the proteolipid protein (PLP) gene; note the high-intensity signal throughout the cerebral white matter.
T2-weighted magnetic resonance imaging (MRI) scan of a man aged 41 years with duplication of the proteolipid protein (PLP) gene; note the increased white matter signal, as well as diffuse atrophy.
T2-weighted magnetic resonance imaging (MRI) scan of a man aged 20 years with connatal Pelizaeus-Merzbacher disease due to a Pro14Leu mutation; note the severe reduction in white matter volume, as well as the increased white matter signal.
T2-weighted magnetic resonance imaging (MRI) scan of a boy aged 17 years with null mutation of the proteolipid protein (PLP) gene; note the more subtle increase in signal intensity relative to that seen in the previous images, and observe that the volume of white matter is normal.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.