Medscape is available in 5 Language Editions – Choose your Edition here.


Pituitary Tumors Treatment & Management

  • Author: Jorge C Kattah, MD; Chief Editor: Robert A Egan, MD  more...
Updated: Oct 26, 2015

Medical Care

See the list below:

  • Prolactinomas: The majority of these lesions respond to dopamine receptor agonists. Improvement in visual field abnormalities, resolution of symptoms associated with hyperprolactinemia, and visible diminution of the actual mass can result with treatment.
  • Acromegaly: Somatostatin analogues (octreotide) can be helpful in the treatment of increased postoperative levels of GH. In some cases, the tumor may shrink modestly. Gallstones are a frequent complication of somatostatin-analogue therapy. Dopamine agonists also have been used.
  • Replacement therapy for decreased or absent hormones should be instituted as needed.
  • All hormone-based treatment should be directed by a consulting endocrinologist.

Surgical Care

Pituitary surgery has undergone quite an evolution since the days of Harvey Cushing’s research and his pioneering development of the sublabial and transcranial methods of accessing the sella. Besides the transsphenoidal/translabial approaches, an endoscopic transnasal approach has become an additional an increasingly favored option with a wider surgical field.

  • Transsphenoidal surgery
    • Transsphenoidal microscopic surgery is the most frequent surgical approach for the resection of pituitary tumors. With larger lesions, a transfrontal approach may become necessary to decompress the visual pathways.
    • Minimally invasive endoscopic surgery using a 4-mm endoscope through a nostril is a possibility in selective cases. A 2013 review examined the transnasal endoscopy approach for resection of giant adenomas with profound mass effect. In 54 cases, the lesions had the greatest diameters, measuring 4 cm; roughly 80% of them had visual-field defects. Near-total resection was achieved in 67% of cases, demonstrating efficacy of the approach in larger tumors. The endonasal approach was concluded to be effective, not only in tumor removal, but had limited complication rates. CSF leak, residual tumor, postoperative diabetes insipidus, and apoplexy in residual adenoma were listed as complications.
    • Open low-field intraoperative MRI monitoring for transsphenoidal surgical resection is gaining acceptance to monitor the precise extent of tumor resection.
    • Null cell tumors and gonadotrophinomas are best treated with transsphenoidal surgery.
    • The main complication after transsphenoidal surgery (from the endocrine standpoint) is hypopituitarism.
    • Low- and high-field intraoperative monitoring is used to minimize resectable tumor.[11]
  • Prolactinomas
    • Microprolactinomas: Transsphenoidal resection of the tumor offers a chance for a cure without the need for long-standing dopamine agonist therapy; however, many patients choose dopaminergic therapy.
    • Macroadenomas that secrete prolactin are best treated with dopamine agonists.
  • Acromegaly
    • Transsphenoidal surgery decreases GH levels to less than 5 mcg/L in 60% of cases.
    • Normal pulsatile secretion of GH is not always regained, and 20% of patients continue to have increased GH levels in response to TRH.
    • Radiotherapy is an alternative, although GH levels may not decrease for 2-4 years.
    • Elevated GH levels may be treated with somatostatin analogues and dopamine agonists, if tolerated.
  • Cushing disease
    • Transsphenoidal tumor resection is the first line of treatment in patients with basophilic adenomas of the pituitary gland. It is curative in 80% of cases.
    • Pituitary irradiation is required in the remaining cases to prevent the development of Nelson syndrome.
    • In children, pituitary irradiation and adrenalectomy are highly effective.
    • Immediate postoperative biochemical remission of Cushing syndrome, evidenced by cortisol levels less than 2 micrograms/dL, was associated with sustained postoperative remission lasting 68.4 months. MRI evidence of a microadenoma was also a predictor of successful tumor resection via a transsphenoidal microsurgical approach.


See the list below:

  • The treatment team should consist of any or all of the following specialists: ophthalmologist or neuro-ophthalmologist, neuroradiologist, endocrinologist, gynecologist, neurosurgeon, neuropathologist, and radiation medicine specialist.
  • Different specialists may be involved as indicated by the patient's specific symptoms.


See the list below:

  • Dietary factors are important in patients with acromegaly or Cushing disease.
  • Patients with hypothyroidism, hypoadrenalism, or hypopituitarism have specific dietary needs.


See the list below:

  • Activities of daily living (ADLs) generally are not restricted in these patients.
  • Exercise tolerance may be limited in some cases.
Contributor Information and Disclosures

Jorge C Kattah, MD Head, Associate Program Director, Professor, Department of Neurology, University of Illinois College of Medicine at Peoria

Jorge C Kattah, MD is a member of the following medical societies: American Academy of Neurology, American Neurological Association, New York Academy of Sciences

Disclosure: Nothing to disclose.


Andrew J Tsung, MD Assistant Professor of Neurosurgery, University of Illinois College of Medicine at Peoria; Director, INI Brain Tumor Center, Director of Neurosurgery Research, Department of Neurosurgery, Illinois Neurological Institute; Physician Director, Intermediate Neuroscience Care Unit, OSF St Francis Medical Center; Attending Physician, Illinois Neurological Institute Physicians, LLC

Andrew J Tsung, MD is a member of the following medical societies: Alpha Omega Alpha, American Association of Neurological Surgeons, Illinois State Medical Society, Society for Neuro-Oncology, Congress of Neurological Surgeons

Disclosure: Nothing to disclose.

Joseph V Hanovnikian University of Illinois College of Medicine

Joseph V Hanovnikian is a member of the following medical societies: Illinois State Medical Society, Congress of Neurological Surgeons

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Robert A Egan, MD Director of Neuro-Ophthalmology and Stroke Service, St Helena Hospital

Robert A Egan, MD is a member of the following medical societies: American Academy of Neurology, American Heart Association, North American Neuro-Ophthalmology Society, Oregon Medical Association

Disclosure: Received honoraria from Biogen Idec for speaking and teaching; Received honoraria from Teva for speaking and teaching.

Chief Editor

Robert A Egan, MD Director of Neuro-Ophthalmology and Stroke Service, St Helena Hospital

Robert A Egan, MD is a member of the following medical societies: American Academy of Neurology, American Heart Association, North American Neuro-Ophthalmology Society, Oregon Medical Association

Disclosure: Received honoraria from Biogen Idec for speaking and teaching; Received honoraria from Teva for speaking and teaching.

Additional Contributors

Frederick M Vincent, Sr, MD Clinical Professor, Department of Neurology and Ophthalmology, Michigan State University Colleges of Human and Osteopathic Medicine

Frederick M Vincent, Sr, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American College of Forensic Examiners Institute, American College of Legal Medicine, American College of Physicians

Disclosure: Nothing to disclose.

  1. Chahal HS, Stals K, Unterländer M, et al. AIP mutation in pituitary adenomas in the 18th century and today. N Engl J Med. 2011 Jan 6. 364(1):43-50. [Medline].

  2. Villwock JA, Villwock M, Deshaies E, Goyal P. Significant increases of pituitary tumors and resections from 1993 to 2011. Int Forum Allergy Rhinol. 2014 Sep. 4(9):767-70. [Medline].

  3. Vlotides G, Eigler T, Melmed S. Pituitary tumor-transforming gene: physiology and implications for tumorigenesis. Endocr Rev. 2007 Apr. 28(2):165-86. [Medline].

  4. Riss D, Jin L, Qian X, et al. Differential expression of galectin-3 in pituitary tumors. Cancer Res. 2003 May 1. 63(9):2251-5. [Medline].

  5. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab. 1999 Feb. 84(2):761-7. [Medline].

  6. Kosmorsky GS, Dupps WJ Jr, Drake RL. Nonuniform pressure generation in the optic chiasm may explain bitemporal hemianopsia. Ophthalmology. 2008 Mar. 115(3):560-5. [Medline].

  7. Thomas ST. Finite Element Modleing of Chiasmal Compression. J of Undergraduate Engineering Res. 2009. 12:1-30.

  8. Ambrosi B, Dall'Asta C, Cannavo S, et al. Effects of chronic administration of PPAR-gamma ligand rosiglitazone in Cushing's disease. Eur J Endocrinol. 2004 Aug. 151(2):173-8. [Medline].

  9. Talkad AV, Kattah JC, Xu MY, et al. Prolactinoma presenting as painful postganglionic Horner syndrome. Neurology. 2004 Apr 27. 62(8):1440-1. [Medline].

  10. Paterno' V, Fahlbusch R. High-Field iMRI in transsphenoidal pituitary adenoma surgery with special respect to typical localization of residual tumor. Acta Neurochir (Wien). 2014 Mar. 156(3):463-74; discussion 474. [Medline].

  11. Kreutzer J, Fahlbusch R. Diagnosis and treatment of pituitary tumors. Curr Opin Neurol. 2004 Dec. 17(6):693-703. [Medline].

  12. Giustina A, Barkan A, Casanueva FF, et al. Criteria for cure of acromegaly: a consensus statement. J Clin Endocrinol Metab. 2000 Feb. 85(2):526-9. [Medline].

  13. Semple PL, Webb MK, de Villiers JC, Laws ER Jr. Pituitary apoplexy. Neurosurgery. 2005. 56(1):65-72; discussion 72-3. [Medline].

  14. Biousse V, Newman NJ, Oyesiku NM. Precipitating factors in pituitary apoplexy. J Neurol Neurosurg Psychiatry. 2001 Oct. 71(4):542-5. [Medline].

  15. Rotenberg BW, Saunders S, Duggal N. Olfactory outcomes after endoscopic transsphenoidal pituitary surgery. Laryngoscope. 2011 Aug. 121(8):1611-3. [Medline].

  16. Gnanalingham KK, Bhattacharjee S, Pennington R, et al. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatry. 2005 Mar. 76(3):415-9. [Medline].

  17. Alameda C, Lucas T, Pineda E, et al. Experience in management of 51 non-functioning pituitary adenomas: indications for post-operative radiotherapy. J Endocrinol Invest. 2005 Jan. 28(1):18-22. [Medline].

  18. Castinetti F, Régis J, Dufour H, Brue T. Role of stereotactic radiosurgery in the management of pituitary adenomas. Nat Rev Endocrinol. 2010 Apr. 6(4):214-23. [Medline].

  19. Ciric I, Zhao JC, Du H, Findling JW, Molitch ME, Weiss RE, et al. Transsphenoidal surgery for Cushing disease: experience with 136 patients. Neurosurgery. 2012 Jan. 70(1):70-80; discussion 80-1. [Medline].

  20. Colin P, Jovenin N, Delemer B, et al. Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys. 2005 Jun 1. 62(2):333-41. [Medline].

  21. Conomy JP, Ferguson JH, Brodkey JS, Mitsumoto H. Spontaneous infarction in pituitary tumors: neurologic and therapeutic aspects. Neurology. 1975 Jun. 25(6):580-7. [Medline].

  22. David, NJ, Gargano FP, Glaser JS. Pituitary apoplexy in clinical perspective. Neurophthalmology Symposium. St Louis: CV Mosby; 1975. Vol 8: 140-165.

  23. Dawson BH, Kothandaram P. Acute massive infarction of pituitary adenomas. A study of five patients. J Neurosurg. 1972 Sep. 37(3):275-9. [Medline].

  24. Gharib H, Frey HM, Laws ER, et al. Coexistent primary empty sella syndrome and hyperprolactinemia. Report of 11 cases. Arch Intern Med. 1983 Jul. 143(7):1383-6. [Medline].

  25. Greenberg HS, Chandler WF, Ensminger WD. Radiosensitization with carotid intra-arterial bromodeoxyuridine +/- 5-fluorouracil biomodulation for malignant gliomas. Neurology. 1994 Sep. 44(9):1715-20. [Medline].

  26. Jagannathan J, Yen CP, Pouratian N, Laws ER, Sheehan JP. Stereotactic radiosurgery for pituitary adenomas: a comprehensive review of indications, techniques and long-term results using the Gamma Knife. J Neurooncol. 2009 May. 92(3):345-56. [Medline].

  27. Jho HD. Endoscopic endonasal pituitary surgery: Technical aspects. Contemporary Neurosurgery. 1997. 19:1-8.

  28. Jho HD, Carrau RL, Ko Y, Daly MA. Endoscopic pituitary surgery: an early experience. Surg Neurol. 1997 Mar. 47(3):213-22; discussion 222-3. [Medline].

  29. Koutourousiou M, Gardner PA, Fernandez-Miranda JC, Paluzzi A, Wang EW, Snyderman CH. Endoscopic endonasal surgery for Giant Pituitary adenomas: Advantages and Limitations. J of Neursurg. January/2013. E Pubahead of print:

  30. Levy A, Lightman SL. Diagnosis and management of pituitary tumours. BMJ. 1994 Apr 23. 308(6936):1087-91. [Medline].

  31. Melmed S. Acromegaly. N Engl J Med. 1990 Apr 5. 322(14):966-77. [Medline].

  32. Molitch ME. Pregnancy and the hyperprolactinemic woman. N Engl J Med. 1985 May 23. 312(21):1364-70. [Medline].

  33. Oldfield EH, Doppman JL, Nieman LK, Chrousos GP, Miller DL, Katz DA, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing's syndrome. N Engl J Med. 1991 Sep 26. 325(13):897-905. [Medline].

  34. Orth DN. Cushing's syndrome. N Engl J Med. 1995 Mar 23. 332(12):791-803. [Medline].

  35. Rotenberg BW, Saunders S, Duggal N. Olfactory outcomes after Endoscopic Transphenoidal Pituitary surgery. The Laryngoscope. 2011. 121:1611-1613.

  36. Thorner MO, Vance ML, Laws ER. The anterior pituitary. Williams, ed. Textbook of Endocrinology. Philadelphia: WB Saunders; 1998. 249-340.

  37. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab. 1999 Feb. 84(2):761-7. [Medline].

This is a characteristic bitemporal hemianopic visual field defect.
This contrast-enhanced coronal MRI was obtained in a patient who complained of visual loss.
This visual field was plotted using a Goldman perimeter (ie, kinetic perimetry). It was obtained from a patient who reported visual loss and had a normal endocrine workup. The dark areas correspond to the impaired peripheral visual field. This visual field defect is consistent with an intrasellar lesion.
Coronal T1 precontrast MRI A (left panel), B postcontrast (middle panel) and T2 (right panel) showing a sellar mass causing obvious left and upward displacement of the optic chiasm. The mass is a histologically proven pituitary macroadenoma, which presented initially with a large cystic subfrontal extension that was successfully resected in April of 2006. This patient has been observed closely for 2.5 years and despite obvious mass effect, he has no visual complaints and the neuro-ophthalmologic evaluation is normal. Although infrequent, clinicians should be aware of this possibility. Close follow-up is required.
Axial, sagittal, and coronal MRI of the sellae in a patient with a severe headache, normal neuro-ophthalmologic examination, and no evidence of endocrine failure. A hyperintense mass is observed in the sella with suprasellar extension. This case illustrates the clinical spectrum of pituitary apoplexy. Transsphenoidal resection confirmed the diagnosis of pituitary apoplexy.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.