Medscape is available in 5 Language Editions – Choose your Edition here.


Arteriovenous Malformations Treatment & Management

  • Author: Souvik Sen, MD, MPH, MS, FAHA; Chief Editor: Helmi L Lutsep, MD  more...
Updated: Mar 27, 2014

Medical Care

Treatment planning for AVMs depends on risk of subsequent hemorrhage, which is determined by the demographic, historical, and angiographic features of the individual patient as discussed above. Prior hemorrhage, smaller AVM size, deep venous drainage, and relatively high arterial feeding pressures make subsequent hemorrhage more likely.

No randomized clinical trial comparing invasive treatment (staged embolization followed by either neurosurgical resection or radiosurgery) versus medical management alone of patients with a known brain AVM is available. There is little disagreement that patients with an AVM-related hemorrhage need treatment to avoid subsequent hemorrhages given the high recurrent hemorrhage rates. However, until recently, most patients with a diagnosis of an unruptured brain AVM were also considered candidates for invasive treatment to prevent a devastating hemorrhage. This concept has been challenged because of the low annual hemorrhage rates in patients who did not present with a brain hemorrhage.

To answer this question, the NIH-sponsored, multicenter Unruptured Brain Arteriovenous Malformations Trial (ARUBA) is conducted in the United States, Canada, Europe, and Australia.[9, 10] A total of 800 patients will be randomly assigned in 90 centers to invasive therapy (endovascular, surgical, and/or radiation therapy) versus medical management alone. Patients will be followed for a minimum of 5 years and a maximum of 7.5 years (mean, 6.25 y) from randomization. Final study results will not be available until 2012.

Until the ARUBA study results are available, treatment is recommended for the younger patient with one or more of the high-risk features for an AVM rupture, whereas an older individual or a patient with no high-risk features may be best treated by managing the medical aspects of the illness alone. In such patients, anticonvulsants for seizure control and appropriate analgesia for headaches may be the only treatment recommendations necessary.

  • Anticonvulsants
    • Standard anticonvulsant therapy, pursuant to the type of seizure, is generally sufficient to bring seizures under control.
    • In many patients, seizures are well controlled with phenytoin, carbamazepine, valproic acid, or lamotrigine or other antiepileptic drugs indicated for partial onset seizures. Please see the article Complex Partial Seizures.
    • Individuals with cerebral AVMs are at a moderately higher risk for seizures; risk depends on the location of the AVM and the history of intracranial hemorrhage or focal neurologic deficit. No evidence suggests the use of antiepileptic medications for prophylaxis of individuals who have an AVM but have never had a seizure.
  • Headache management
    • Headache of acute onset without localizing neurological signs may be the presenting sign of a hemorrhage, either intraventricular or subarachnoidal, and need immediate assessment by neuroimaging.
    • For AVM-associated headaches that are not associated with an intracranial hemorrhage, standard analgesia for headache may be used, either nonspecific or migraine specific. Serotonin agonists are not specifically contraindicated, unless focal neurological symptoms appear as a part of the migraine. Please see the article Migraine Headache.

Surgical Care

Invasive treatment of AVMs may include endovascular embolization, surgical resection, and focal beam radiation, alone or in any combination. The surgical treatment risk has traditionally been estimated by the Spetzler-Martin grading scale, which includes grades I-V. This grading system assigns 1 point to AVMs smaller than 3 cm in largest diameter, 2 points to AVMs between 3 and 6 cm in largest diameter, and 3 points for AVMs larger than 6 cm. A further point is added if the AVM is located in functionally critical brain (eg, language, motor, sensory, or visual cortex), and another point if the AVM has a deep venous drainage.

The current American Heart Association multidisciplinary management guidelines for the treatment of brain AVMs recommend the following approach:[2]

  1. Surgical extirpation is strongly suggested as the primary treatment for Spetzler-Martin grade I and II if surgically accessible with low risk.
  2. Radiation therapy alone is recommended for Spetzler-Martin grade I or II if the AVM is less than 3 cm in size and surgery has an increased surgical risk based on location and vascular anatomy.
  3. Brain AVM of Spetzler-Martin grades III can often be treated by a multimodal approach with embolization followed by surgical extirpation. If the lesion has a high surgical risk based on location and vascular anatomy, radiation therapy may be performed after embolization.
  4. AVMs of Spetzler-Martin grade IV and V are often not amenable to surgical treatment alone because of the high procedural risk. These AVMs can be approached by a combined multimodal approach of a combination of embolization, radiosurgery, and/or surgery.
  5. In general, embolization should only be performed if the goal is complete AVM eradication with other treatment modalities. The only exception is palliative embolization in patients with an AVM of Spetzler-Martin grade IV or V with venous outflow obstruction or true steal phenomenon in order to reduce arterial inflow to control edema or to reduce the amount of shunt, respectively.

A recent supplementary grading system used patient age, hemorrhagic presentation, nidal diffuseness, and deep perforating artery supply when selecting patients with brain AVMs for surgery. When used along with the Spetzler-Martin grading system, this grading system has been shown to have higher predictive accuracy, improving preoperative risk prediction and patient selection for surgery.[11]

Surgical resection

  • Surgical resection is the mainstay of definitive treatment and is most effective with more easily accessible lesions of smaller size. [12]
  • AVMs may be approached with craniotomy over the cerebral convexity, via the skull base, or via the ventricular system.
  • Arterial feeders are isolated and ligated. Then the nidus is resected. The draining veins are ligated last so that the pressure is not increased while the nidus is being resected. Arterial aneurysms may be clipped surgically as well. Intranidal aneurysms are resected with the AVM. Distal aneurysms are usually flow related and resolve when the AVM is resected.
  • Postsurgical angiography is done routinely to ensure that no residual AVM exists; however, cases of reappearance of AVMs, years after a negative postresection angiogram, have been reported.

Endovascular embolization

  • Superselective endovascular treatment includes delivery of thrombosing agents such as quick-acting acrylate glue ( N -butyl cyanoacrylate [NBCA]), thrombus-inducing coils, Onyx liquid embolic fluid, or small balloons into the AVM nidus.
  • The goal of embolization is to block the high-velocity shunting of blood from the high-pressure arterial system into the venous system. Serial embolization sessions may whittle the AVM down to a fraction of its original size; the reduced AVM size and the presence of embolic material within the AVM make surgery and radiosurgery safer and more accurate. However, embolization can increase the pressure inside the nidus of the AVM due to the changes in blood flow and increases the rupture risk in the short term. Thus, if surgery is anticipated, it is usually scheduled 1-2 days after embolization. Embolization may be used to produce relief of neurologic symptoms caused by a large lesion, even if the goal of treatment is not complete obliteration. In most cases, embolization alone is not sufficient to completely obliterate the AVM. However, isolated case series have reported 11-40% of AVM obliteration with only endovascular embolization.
  • Embolization may be performed in a single-stage versus multistage approach. Although most literature support the use of the multistage approach, a retrospective study supports the safety and effectiveness of the aggressive single-stage embolization. [13] The single-stage approach has the inherent benefit of reducing the overall under treatment time reducing the intertreatment bleeding risk and brain AVM collateral reconstitution.


  • Radiosurgery is an option that is generally used to treat AVMs that are approximately 3 cm in diameter or less. Proton beam, linear accelerator, or gamma knife methods are used to deliver a high dose of radiation to the AVM, while minimizing the effects to surrounding brain tissue; a single dose generally is given. However, staged radiosurgery procedures are being used more frequently to treat symptomatic large AVMs in conjunction with embolization. During embolization, keep in mind if the patient is going to undergo radiosurgery, since patchy embolization of an AVM can make radiosurgery even more difficult. Radiotherapy is thought to work by inducing thrombosis. This approach is appealing because of its apparent noninvasiveness.
  • During the period after radiosurgery, the vessels are thrombosing and those AVMs that have ruptured are at a higher risk of rehemorrhage during that time. A single-center observational study from Spain has shown that radiosurgical therapy gradually decreases the long-term bleeding rates of both hemorrhagic and nonhemorrhagic AVM. [14]
  • MRI often shows high signal in surrounding brain white matter following treatment; actual mass effect from edema can be seen when larger territories are covered. Radiosurgery may take 1-3 years to achieve thrombosis of an AVM, thus the patient remains at risk for hemorrhage from AVM during the treatment period.

Combined radiosurgery and embolization

  • Controversies are noted in regard to the sequence of combined treatment commonly advocated to treat large AVMs. Kano et al reported their experience with stereotactic radiosurgery in patients harboring AVMs who had undergone prior embolization. Using a case-control matched approach, the authors determined that previously embolized AVMs have a lower rate of obliteration after SRS. This finding mirrors reports by other groups. [15] A long-term follow-up review is needed to determine the precise effects of partial or complete embolization on rebleeding, on seizures, and on progressive neurological deficits. [16] A systematic study of outcomes is needed so as to determine the best combination of approaches for such patients.


Treatment of AVMs is best achieved with a multispecialty team comprising a neurologist, neuropsychologist, neurosurgeon, interventional neuroradiologist, and neuroanesthesiologist.



See the list below:

  • No particular activity restrictions are placed on patients with AVMs, besides the usual postsurgical care.
  • AVM patients with seizures should follow the same protocols as patients with epilepsy without AVM.
Contributor Information and Disclosures

Souvik Sen, MD, MPH, MS, FAHA Professor and Chair, Department of Neurology, University of South Carolina School of Medicine

Souvik Sen, MD, MPH, MS, FAHA is a member of the following medical societies: American Academy of Neurology, Association for Patient-Oriented Research, American Heart Association

Disclosure: Nothing to disclose.


James Selph, MD Assistant Professor of Neurology, University of South Carolina School of Medicine; Director of Neurophysiology Lab and Services, Palmetto Richland Hospital

James Selph, MD is a member of the following medical societies: American Association of Neuromuscular and Electrodiagnostic Medicine, American Epilepsy Society

Disclosure: Nothing to disclose.

Sharon W Webb, MD Assistant Professor of Clinical Neurosurgery, University of South Carolina School of Medicine

Sharon W Webb, MD is a member of the following medical societies: American Association of Neurological Surgeons, Congress of Neurological Surgeons, Neurocritical Care Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Howard S Kirshner, MD Professor of Neurology, Psychiatry and Hearing and Speech Sciences, Vice Chairman, Department of Neurology, Vanderbilt University School of Medicine; Director, Vanderbilt Stroke Center; Program Director, Stroke Service, Vanderbilt Stallworth Rehabilitation Hospital; Consulting Staff, Department of Neurology, Nashville Veterans Affairs Medical Center

Howard S Kirshner, MD is a member of the following medical societies: Alpha Omega Alpha, American Neurological Association, American Society of Neurorehabilitation, American Academy of Neurology, American Heart Association, American Medical Association, National Stroke Association, Phi Beta Kappa, Tennessee Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Helmi L Lutsep, MD Professor and Vice Chair, Department of Neurology, Oregon Health and Science University School of Medicine; Associate Director, OHSU Stroke Center

Helmi L Lutsep, MD is a member of the following medical societies: American Academy of Neurology, American Stroke Association

Disclosure: Medscape Neurology Editorial Advisory Board for: Stroke Adjudication Committee, CREST2.

Additional Contributors

Edward L Hogan, MD Professor, Department of Neurology, Medical College of Georgia; Emeritus Professor and Chair, Department of Neurology, Medical University of South Carolina

Edward L Hogan, MD is a member of the following medical societies: Alpha Omega Alpha, Society for Neuroscience, American Society for Biochemistry and Molecular Biology, American Academy of Neurology, American Neurological Association, Phi Beta Kappa, Sigma Xi, Southern Clinical Neurological Society

Disclosure: Nothing to disclose.

  1. Guo YH, Chen HX, Xie RM. [Effects of qi-supplementing dominated Chinese materia medica combined with rehabilitation training on the quality of life of ischemic post-stroke fatigue patients of qi deficiency syndrome]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012 Feb. 32(2):160-3. [Medline].

  2. [Guideline] Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R. AHA Scientific Statement: Recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001 Jun. 32(6):1458-71. [Medline].

  3. Weinsheimer S, Kim H, Pawlikowska L, Chen Y, Lawton MT, Sidney S, et al. EPHB4 gene polymorphisms and risk of intracranial hemorrhage in patients with brain arteriovenous malformations. Circ Cardiovasc Genet. 2009 Oct. 2(5):476-82. [Medline].

  4. Laakso A, Dashti R, Juvela S, Niemelä M, Hernesniemi J. Natural history of arteriovenous malformations: presentation, risk of hemorrhage and mortality. Acta Neurochir Suppl. 2010. 107:65-9. [Medline].

  5. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, et al. The New York Islands AVM Study: design, study progress, and initial results. Stroke. 2003 May. 34(5):e29-33. [Medline].

  6. Mast H, Young WL, Koennecke HC. Risk of spontaneous haemorrhage after diagnosis of cerebral arteriovenous malformation. Lancet. 1997 Oct 11. 350(9084):1065-8. [Medline].

  7. Halim AX, Johnston SC, Singh V. Longitudinal risk of intracranial hemorrhage in patients with arteriovenous malformation of the brain within a defined population. Stroke. 2004 Jul. 35(7):1697-702. [Medline].

  8. Park SH, Hwang SK. Transcranial Doppler study of cerebral arteriovenous malformations after gamma knife radiosurgery. J Clin Neurosci. March 2009. 16(3):378-384.

  9. ARUBA Investigators. Unruptured brain arteriovenous malformation trial. [The Internet Stroke Center]. Feb 2006. [Full Text].

  10. ARUBA Study. Unruptured brain arteriovenous malformation trial. [ARUBA Study Site]. Feb 2006. [Full Text].

  11. Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A Supplementary Grading Scale for Selecting Patients With Brain Arteriovenous Malformations for Surgery. Neurosurgery. 2010. 66(4):702-713.

  12. Hernesniemi J, Romani R, Lehecka M, Isarakul P, Dashti R, Celik O, et al. Present state of microneurosurgery of cerebral arteriovenous malformations. Acta Neurochir Suppl. 2010. 107:71-6. [Medline].

  13. Sahlein DH, Mora P, Becske T, Nelson PK. Nidal embolization of brain arteriovenous malformations: rates of cure, partial embolization, and clinical outcome. J Neurosurg. 2012 Apr 27. [Medline].

  14. Parkhutik V, Lago A, Tembl JI, et al. Postradiosurgery hemorrhage rates of arteriovenous malformations of the brain: influencing factors and evolution with time. Stroke. 2012 May. 43(5):1247-52. [Medline].

  15. Kano H, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations after embolization: a case-control study. J Neurosurg. 2012 May 25. [Medline].

  16. Sheehan J. Radiosurgery. J Neurosurg. 2012 Jan. 116(1):1-2; discussion 9-10. [Medline].

  17. Castel JP, Kantor G. [Postoperative morbidity and mortality after microsurgical exclusion of cerebral arteriovenous malformations. Current data and analysis of recent literature]. Neurochirurgie. 2001 May. 47(2-3 Pt 2):369-83. [Medline].

  18. Al-Shahi R, Bhattacharya JJ, Currie DG, Papanastassiou V, Ritchie V, Roberts RC, et al. Prospective, population-based detection of intracranial vascular malformations in adults: the Scottish Intracranial Vascular Malformation Study (SIVMS). Stroke. 2003 May. 34(5):1163-9. [Medline].

  19. ApSimon HT, Reef H, Phadke RV, Popovic EA. A population-based study of brain arteriovenous malformation: long-term treatment outcomes. Stroke. 2002 Dec. 33(12):2794-800. [Medline].

  20. Boggs W. Stereotactic Brain Radiosurgery Helps Small Unruptured Arteriovenous Malformations. Medscape Medical News. Jan 08 2013. [Full Text].

  21. Flickinger JC, Kondziolka D, Lunsford LD, Pollock BE, Yamamoto M, Gorman DA. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys. 1999 Apr 1. 44(1):67-74. [Medline].

  22. Hartmann A, Mast H, Mohr JP, Pile-Spellman J, Connolly ES, Sciacca RR. Determinants of staged endovascular and surgical treatment outcome of brain arteriovenous malformations. Stroke. 2005 Nov. 36(11):2431-5. [Medline]. [Full Text].

  23. Hillman J. Population-based analysis of arteriovenous malformation treatment. J Neurosurg. 2001 Oct. 95(4):633-7. [Medline].

  24. Hofmeister C, Stapf C, Hartmann A, et al. Demographic, morphological, and clinical characteristics of 1289 patients with brain arteriovenous malformation. Stroke. 2000 Jun. 31(6):1307-10. [Medline]. [Full Text].

  25. Maruyama K, Kawahara N, Shin M. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med. 2005 Jan 13. 352(2):146-53. [Medline].

  26. Nataf F, Ghossoub M, Schlienger M. Bleeding after radiosurgery for cerebral arteriovenous malformations. Neurosurgery. 2004 Aug. 55(2):298-305; discussion 305-6. [Medline].

  27. Pollock BE, Link MJ, Brown RD. The Risk of Stroke or Clinical Impairment After Stereotactic Radiosurgery for ARUBA-Eligible Patients. Stroke. 2013 Jan 3. [Medline].

Axial T2 MRI showing an arteriovenous malformation with hemorrhage, in the territory of the left posterior cerebral artery.
T1 axial MRI showing a small subcortical arteriovenous malformation in the right frontal lobe.
T2 coronal MRI showing an arteriovenous malformation in the left medial temporal lobe.
Magnetic resonance angiography showing a left medial temporal arteriovenous malformation.
Angiogram (anteroposterior view) showing an arteriovenous malformation in the deep left middle cerebral artery territory measuring approximately 3 cm in diameter, with a deep draining vein (arrow).
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.