Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Head Injury

  • Author: David A Olson, MD; Chief Editor: Stephen A Berman, MD, PhD, MBA  more...
 
Updated: Dec 22, 2014
 

Practice Essentials

Head injury can be defined as any alteration in mental or physical functioning related to a blow to the head (see the image below). According to the Centers for Disease Control and Prevention (CDC), 50,000 individuals die from traumatic brain injuries each year in the United States. Almost twice that many people suffer permanent disability.

This 50-year-old woman with epilepsy seized and st This 50-year-old woman with epilepsy seized and struck her head. Her initial Glasgow Coma Scale score was 12. Her scan shows prominent right temporal bleeding. She recovered to baseline without surgery.

Essential update: Two phase 3 trials find progesterone does not improve functional outcome in TBI

In a pair of randomized, controlled multicenter studies, the neurosteroid progesterone showed no beneficial effect on functional outcomes in patients with acute traumatic brain injury (TBI).[1, 2, 3, 4]

The first trial, the double-blind PROTECT (Progesterone for the Traumatic Brain Injury, Experimental Clinical Treatment) III study in patients with severe, moderate-to-severe, or moderate acute TBI, found no significant difference in favorable outcomes between treatment and placebo groups; the trial was halted after enrollment of 882 of 1140 planned participants.[2] Subjects in the progesterone group had higher rates of phlebitis or thrombophlebitis than those in the placebo group.

In the second study, SYNAPSE (the Study of a Neuroprotective Agent, Progesterone, in Severe Traumatic Brain Injury), 1195 patients with severe TBI were assigned to receive either progesterone or placebo.[3] Similar rates of favorable outcomes and mortality were observed in the two groups.

Signs and symptoms

The Glasgow Coma Scale (GCS) is the mainstay for rapid neurologic assessment in acute head injury. Following ascertainment of the GCS score, the examination is focused on signs of external trauma, as follows:

  • Bruising or bleeding on the head and scalp and blood in the ear canal or behind the tympanic membranes: May be clues to occult brain injuries
  • Anosmia: Common; probably caused by the shearing of the olfactory nerves at the cribriform plate [5]
  • Abnormal postresuscitation pupillary reactivity: Correlates with a poor 1-year outcome
  • Isolated internuclear ophthalmoplegia secondary to traumatic brainstem injuries: Has a relatively benign prognosis [6]
  • Cranial nerve (CN) VI palsy: May indicate raised intracranial pressure
  • CN VII palsy: May indicate a fracture of the temporal bone, particularly if it occurs in association with decreased hearing
  • Hearing loss: Occurs in 20-30% of patients with head injuries [7]
  • Dysphagia: Raises the risk of aspiration and inadequate nutrition [8]
  • Focal motor findings: Include flexor or extensor posturing, tremors and dystonia, impairments in sitting balance, and primitive reflexes; may be manifestations of a localized contusion or an early herniation syndrome

See Clinical Presentation for more detail.

Diagnosis

Bedside cognitive testing

In the acute setting, measurements of the patient's level of consciousness, attention, and orientation are of primary importance.

Some patients acutely recovering from head trauma demonstrate no ability to retain new information. Mental status assessments have validated the prognostic value of the duration of posttraumatic amnesia; patients with longer durations of posttraumatic amnesia have poorer outcomes.[9]

In the long-term setting, the following bedside cognitive tests can be employed:

  • Mini-Mental State Examination
  • Luria "fist, chop, slap" sequencing task: To rapidly assess motor regulation
  • Antisaccade task: Impaired in patients with symptomatic brain injury; the sensitivity of this test in detecting brain injury has been questioned [10]
  • Letter and category fluency: To provide information about self-generative frontal processes.
  • Untimed Trails B test: Allows further qualitative testing of frontal functioning

Laboratory studies

  • Sodium levels: Alterations in serum sodium levels occur in as many as 50% of comatose patients with head injuries [11] ; hyponatremia may be due to the syndrome of inappropriate antidiuretic hormone (SIADH) or cerebral salt wasting; elevated sodium levels in head injury indicate simple dehydration or diabetes insipidus
  • Magnesium levels: These are depleted in the acute phases of minor and severe head injuries
  • Coagulation studies: Including prothrombin time (PT), activated partial thromboplastin time (aPTT), and platelet count; these are important to exclude a coagulopathy
  • Blood alcohol levels and drug screens: May help to explain subnormal levels of consciousness and cognition in some patients with head trauma
  • Renal function tests and creatine kinase levels: To help exclude rhabdomyolysis if a crush injury has occurred or marked rigidity is present
  • Neuron-specific enolase and protein S-100 B: Elevated serum levels may correlate with persistent cognitive impairment at 6 months in patients with severe or mild head injuries [12]

Imaging studies

  • Computed tomography scanning: The main imaging modality used in the acute setting
  • Magnetic resonance imaging: Typically reserved for patients who have mental status abnormalities unexplained by CT scan findings

Electroencephalography

Although certain electroencephalographic patterns may have prognostic significance, considerable interpretation is needed, and sedative medications and electrical artifacts are confounding. The most useful role of electroencephalography (EEG) in head injuries may be to assist in the diagnosis of nonconvulsive status epilepticus.

See Workup for more detail.

Management

Intracranial pressure

If the intracranial pressure rises above 20-25 mm Hg, intravenous mannitol, cerebrospinal fluid drainage, and hyperventilation can be used. If the intracranial pressure does not respond to these conventional treatments, high-dose barbiturate therapy is permissible.[13]

Another approach used by some clinicians is to focus primarily on improving cerebral perfusion pressure as opposed to intracranial pressure in isolation.

Decompressive craniectomies are sometimes advocated for patients with increased intracranial pressure refractory to conventional medical treatment.

Hypertonicity

Dantrolene, baclofen, diazepam, and tizanidine are current oral medication approaches to hypertonicity. Baclofen and tizanidine are customarily preferred because of their more favorable side-effect profiles.

Subdural hematomas

Traditionally, the prompt surgical evacuation of subdural hematomas was believed to be a major determinant of an optimal outcome. However, research indicates that the extent of the original intracranial injury and the generated intracranial pressures may be more important than the timing of surgery.

See Treatment and Medication for more detail.

Next

Background

Head injury can be defined as any alteration in mental or physical functioning related to a blow to the head. Loss of consciousness does not need to occur. The severity of head injuries is most commonly classified by the initial postresuscitation Glasgow Coma Scale (GCS) score, which generates a numerical summed score for eye, motor, and verbal abilities. Traditionally, a score of 13-15 indicates mild injury, a score of 9-12 indicates moderate injury, and a score of 8 or less indicates severe injury. In the last few years, however, some studies have included those patients with scores of 13 in the moderate category, while only those patients with scores of 14 or 15 have been included as mild.[14] Concussion and mild head injury are generally synonymous.

Research on head injury has advanced considerably in the last decade. As is typical of many endeavors, these efforts have exposed the complexity of this condition more deeply and have helped researchers and physicians to abandon crude simplifications. This review concentrates primarily on current developments in the diagnosis and management of closed head injuries in adults.

Previous
Next

Pathophysiology

Structural changes

Gross structural changes in head injury are common and often obvious both on autopsy and conventional neuroimaging. The skull can fracture in a simple linear fashion or in a more complicated depressed manner, in which bone fragments and pushes beneath the calvarial surface. In patients with mild head injury, a skull fracture markedly increases the chance of significant intracranial injury.

Both direct impact and contrecoup injuries, in which the moving brain careens onto the distant skull opposite the point of impact, can result in focal bleeding beneath the calvaria. Such bleeding can result in an intracerebral focal contusion or hemorrhage as well as an extracerebral hemorrhage. Extracerebral hemorrhages are primarily subdural hemorrhages arising from tearing of bridging veins, but epidural hemorrhages from tearing of the middle meningeal artery or the diploic veins are also common. Occasionally, subdural hemorrhages can result from disruption of cortical arteries. This type of subdural hemorrhage is rapidly progressive and can occur after trivial head injury in elderly patients.[15]

One study of CT images from 753 patients with severe head injury from the National Institute of Health Traumatic Coma Data Bank in the United States found evidence of intracranial hemorrhagic lesions in 27%. Traumatic subarachnoid hemorrhage was even more frequent and occurred in 39% of patients. Furthermore, diffuse cerebral edema also was present in 39%. Cerebral edema can be unilateral or diffuse and can occur even in the absence of intracranial bleeding. Severe brain edema probably occurs more commonly in children than in adults.[16]

Neuronal loss is also important. A recent pathological study found that quantitative loss of neurons from the dorsal thalamus correlated with severe disability and vegetative state outcomes in patients with closed head injuries.[17]

Finally, axonal injury increasingly has been recognized as a structural sequela of brain injury. The use of amyloid precursor protein staining has resulted in increased recognition of this form of injury. Using this technique, researchers have readily identified axonal injury in patients with mild head injury. Interestingly, a prominent locus of axonal damage has been the fornices, which are important for memory and cognition.[18] More severe and diffuse axonal injury has been found to correlate with vegetative states and the acute onset of coma following injury.[19]

Neurochemical changes

After traumatic brain injury, the brain is bathed with potentially toxic neurochemicals. Catecholamine surges have been documented in the plasma (higher catecholamine levels correlated with worse clinical outcomes) and in the cerebrospinal fluid (CSF) of patients with head injuries (higher CSF 5-hydroxyindole acetic acid (HIAA), the serotonin metabolite, correlated with worse outcomes).[20] Head injury causes release of free radicals and breakdown of membrane lipids. These lipids fragment into mediators of inflammation. The excitotoxic amino acids (ie, glutamate, aspartate) initiate a cascade of processes culminating in an increase in intraneuronal calcium and cell death. Researchers using a microdialysis technique have correlated high CSF levels of excitotoxic amino acids with poor outcomes in head injury.[21]

Although neuroprotective strategies employing antiexcitotoxic pharmacotherapies were effective in diminishing the effects of experimental brain injuries in laboratory animals, clinical trials in humans generally have been disappointing.[22] These failures have prompted development of more complex models of neuronal injury and cell death. Recently, researchers have demonstrated that although certain types of glutamate antagonists may protect against acute cell death, they potentiate slowly progressive neuronal injury in experimental rodent models. Still others have found that low-dose glutamate administered before brain injury is somehow neuroprotective. Such dose and timing effects are only beginning to be understood.[23]

Prostaglandins, inflammatory mediators produced by membrane lipid breakdown, are also elevated dramatically in the plasma of patients with moderate-to-severe head trauma during the first 2 weeks after injury. Patients with higher prostaglandin levels had significantly worse outcomes than those with more modest elevations. Furthermore, levels of a thromboxane metabolite, a potent vasoconstricting prostaglandin, were elevated disproportionately.[24] Such a process may underlie posttraumatic vasospasm, which has been documented in some, but not all, transcranial Doppler studies of patients with closed head injuries, even in patients without traumatic subarachnoid bleeds.[25]

Recently, an increase in T cells reactive against myelin antigens was found in 10 patients with severe head injuries. Although the sample size was limited, those patients with increased T-cell reactivity had improved outcomes compared with their nonreactive counterparts, and a beneficial autoimmune response was proposed.[26]

In addition to structural and chemical changes, gene expression is altered following closed head injury. Genes involving growth factors, hormones, toxin-binders, apoptosis (programmed cell death), and inflammation have all been implicated in rodent models. For example, in a mouse model of head injury, elevated levels of the transcription factor p53 were found. p53 translocates to the nucleus and initiates apoptosis or programmed cell death. Such a process could account for the delayed neuronal loss seen in head injuries.[27]

Secondary insults

Hypotension and hypoxia cause the most prominent secondary trauma-induced brain insults. Both hypoxia and hypotension had adverse impacts on outcomes of 716 patients with severe head injuries from the Traumatic Coma Data Bank in the United States. Efforts to limit hypoxic injury with in-field intubation have been unsuccessful. Indeed, a multicenter study of 4098 patients with severe traumatic brain injury found that in-field intubation was associated with a dramatic increase in death and poor long-term neurologic outcome, even after controlling for injury severity.[28]

In the Trauma Coma Data Bank study, hypotension was even more significant than hypoxia and, by itself, was associated with a 150% increase in mortality rate. Systemic hypotension is critical because brain perfusion diminishes with lower somatic blood pressures. Brain perfusion (ie, cerebral perfusion pressure) is the difference between the mean arterial pressure and intracranial pressure. The intracranial pressure is increased in head injury by intracranial bleeding, cell death, and secondary hypoxic and ischemic injuries. Accordingly, another recent study reported that death and increased disability outcomes correlated with the durations of both systemic hypotension and elevated intracranial pressures.[29]

Severe anemia is often coexistent with head injuries, but blood transfusions have been recently associated with increased mortality and complications among 1,250 ICU-admitted patients with brain injuries. This relationship held even after controlling for the degree of anemia.[30]

Finally, posttraumatic cerebral infarction occurs in up to 12% of patients with moderate and severe head injuries and is associated with a decreased Glasgow Coma Scale, low blood pressure, and herniation syndromes.[31]

Previous
Next

Epidemiology

Frequency

United States

In the United States, 1.5 million individuals per year incur a head injury. Of these injuries, 75% are classified as mild. Between 1998 and 2000, the incidence of mild traumatic brain injury was 503 cases per 100,000 persons, with a doubling of this incidence in Native Americans and children.

In 2003, elderly persons with head injuries exhibited a doubling in hospitalizations and deaths compared to the national average.[32]

In 1995, hospitalization for brain injuries decreased 50% compared to 1980 data, primarily because of increased utilization of outpatient services for patients with minor head injuries.

International

European rates of hospitalization for head injury have ranged from 91 cases per 100,000 persons per year in Spain in 1988 to 313 cases per 100,000 persons per year in Scotland from 1974-1976.[33] In New Zealand, 782 cases per 100,000 of mild head injury were seen in hospitals or emergency rooms in 1986.[34]

Head injury data are difficult to compare internationally for multiple reasons, including inconsistencies and complexities of diagnostic coding and inclusion criteria, case definitions, ascertainment criteria (for example, hospital admissions versus door-to-door surveys), transfers to multiple care facilities (for example, patient admissions may be counted more than once), and regional medical practices, such as the aforementioned recent development in the United States of more outpatient, as opposed to inpatient, services for those with mild head injuries. Adding to this complexity is the finding that some individuals with cognitive and emotional sequelae from mild head injury may not establish the casual connection between their injury and its consequences. Such patients may not seek treatment and may not be expressed in official demographic data.[35, 36]

Mortality/Morbidity

According to the CDC, 50,000 individuals die from traumatic brain injuries each year in the United States. Almost twice that number suffer permanent disability.

Race

A study of intentional head injury from Charlotte, North Carolina, found minority status was a major predictor of intentional head injury, even after controlling for other demographic factors.[37] Furthermore, worse clinical outcomes have been described for African American children with moderate-to-severe head injuries compared with their white counterparts.[38]

Sex

Men in the United States are nearly twice as likely to be hospitalized with a brain injury than women. This male predominance is found worldwide.

Age

Approximately half of the patients admitted to a hospital for head injury are aged 24 years or younger.

Previous
 
 
Contributor Information and Disclosures
Author

David A Olson, MD Clinical Neurologist, Dekalb Neurology Group, Decatur, Georgia

David A Olson, MD is a member of the following medical societies: American Academy of Neurology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Florian P Thomas, MD, PhD, Drmed, MA, MS Director, National MS Society Multiple Sclerosis Center; Professor and Director, Clinical Research Unit, Department of Neurology, Adjunct Professor of Physical Therapy, Associate Professor, Institute for Molecular Virology, St Louis University School of Medicine; Editor-in-Chief, Journal of Spinal Cord Medicine

Florian P Thomas, MD, PhD, Drmed, MA, MS is a member of the following medical societies: Academy of Spinal Cord Injury Professionals, American Academy of Neurology, American Neurological Association, Consortium of Multiple Sclerosis Centers, National Multiple Sclerosis Society, Sigma Xi

Disclosure: Nothing to disclose.

Chief Editor

Stephen A Berman, MD, PhD, MBA Professor of Neurology, University of Central Florida College of Medicine

Stephen A Berman, MD, PhD, MBA is a member of the following medical societies: Alpha Omega Alpha, American Academy of Neurology, Phi Beta Kappa

Disclosure: Nothing to disclose.

Additional Contributors

Joseph Carcione, Jr, DO, MBA Consultant in Neurology and Medical Acupuncture, Medical Management and Organizational Consulting, Central Westchester Neuromuscular Care, PC; Medical Director, Oxford Health Plans

Joseph Carcione, Jr, DO, MBA is a member of the following medical societies: American Academy of Neurology

Disclosure: Nothing to disclose.

References
  1. Progesterone fails in traumatic brain injury. Melville NA. Medscape Medical News. December 11, 2014. [Full Text].

  2. Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Very Early Administration of Progesterone for Acute Traumatic Brain Injury. N Engl J Med. 2014 Dec 10. [Medline].

  3. Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A Clinical Trial of Progesterone for Severe Traumatic Brain Injury. N Engl J Med. 2014 Dec 10. [Medline].

  4. Schwamm LH. Progesterone for Traumatic Brain Injury - Resisting the Sirens' Song. N Engl J Med. 2014 Dec 10. [Medline].

  5. Wu AP, Davidson T. Posttraumatic anosmia secondary to central nervous system injury. Am J Rhinol. Nov-Dec/2008. 22:606-7.

  6. Bhatoe HS. Primary brainstem injury: benign course and improved survival. Acta Neurochir (Wien). 1999. 141(5):515-9. [Medline].

  7. Munjal SK, Panda NK, Pathak A. Dynamics of Hearing Status in Closed Head Injury. J Neurotrauma. Feb/2010. 27:309-316.

  8. Mackay LE, Morgan AS, Bernstein BA. Factors affecting oral feeding with severe traumatic brain injury. J Head Trauma Rehabil. 1999 Oct. 14(5):435-47. [Medline].

  9. Ellenberg JH, Levin HS, Saydjari C. Posttraumatic Amnesia as a predictor of outcome after severe closed head injury. Prospective assessment. Arch Neurol. 1996 Aug. 53(8):782-91. [Medline].

  10. Crevits L, Hanse MC, Tummers P, et al. Antisaccades and remembered saccades in mild traumatic brain injury. J Neurol. 2000 Mar. 247(3):179-82. [Medline].

  11. Tisdall M, Crocker M, Watkiss J, Smith M. Disturbances of sodium in critically ill adult neurologic patients: a clinical review. J Neurosurg Anesthesiol. 2006 Jan. 18(1):57-63. [Medline].

  12. Herrmann M, Curio N, Jost S, et al. Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001 Jan. 70(1):95-100. [Medline].

  13. Roberts I. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev. 2000. CD000033. [Medline].

  14. Stein SC. Minor head injury: 13 is an unlucky number. J Trauma. 2001 Apr. 50(4):759-60. [Medline].

  15. Matsuyama T, Shimomura T, Okumura Y, et al. Acute subdural hematomas due to rupture of cortical arteries: a study of the points of rupture in 19 cases. Surg Neurol. 1997 May. 47(5):423-7. [Medline].

  16. Eisenberg HM, Gary HE Jr, Aldrich EF, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg. 1990 Nov. 73(5):688-98. [Medline].

  17. Maxwell WL, MacKinnon MA, Smith DH, et al. Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol. 2006 May. 65(5):478-88. [Medline].

  18. Blumbergs PC, Scott G, Manavis J, et al. Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma. 1995 Aug. 12(4):565-72. [Medline].

  19. Jennett B, Adams JH, Murray LS, et al. Neuropathology in vegetative and severely disabled patients after head injury. Neurology. 2001 Feb 27. 56(4):486-90. [Medline].

  20. Markianos M, Seretis A, Kotsou S, et al. CSF neurotransmitter metabolites and short-term outcome of patients in coma after head injury. Acta Neurol Scand. 1992 Aug. 86(2):190-3. [Medline].

  21. Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998 Oct. 89(4):507-18. [Medline].

  22. DeGraba TJ, Pettigrew LC. Why do neuroprotective drugs work in animals but not humans?. Neurol Clin. 2000 May. 18(2):475-93. [Medline].

  23. Jonas W, Lin Y, Tortella F. Neuroprotection from glutamate toxicity with ultra-low dose glutamate. Neuroreport. 2001 Feb 12,. 12(2):335-9. [Medline].

  24. Yang SY, Gao ZX. Determination and clinical significance of plasma levels of prostaglandins in patients with acute brain injury. Surg Neurol. 1999 Sep. 52(3):238-45. [Medline].

  25. Zubkov AY, Lewis AI, Raila FA, et al. Risk factors for the development of post-traumatic cerebral vasospasm. Surg Neurol. 2000 Feb. 53(2):126-30. [Medline].

  26. Cox AL, Coles AJ, Nortje J, et al. An investigation of auto-reactivity after head injury. J Neuroimmunol. 2006 May. 174(1-2):180-6. [Medline].

  27. Plesnila N, von Baumgarten L, Retiounskaia M, Engel D, Ardeshiri A, Zimmermann R, et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ. 2007 Aug. 14(8):1529-41. [Medline].

  28. Wang HE, Peitzman AB, Cassidy LD, et al. Out-of-hospital endotracheal intubation and outcome after traumatic brain injury. Ann Emerg Med. 2004 Nov. 44(5):439-50. [Medline].

  29. Lannoo E, Van Rietvelde F, Colardyn F, et al. Early predictors of mortality and morbidity after severe closed head injury. J Neurotrauma. 2000 May. 17(5):403-14. [Medline].

  30. Salim A, Hadjizacharia P, DuBose J, Brown C, Inaba K, Chan L. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008 Sep. 207(3):398-406. [Medline].

  31. Tian HL, Geng Z, Cui YH, Hu J, Xu T, Cao HL. Risk factors for posttraumatic cerebral infarction in patients with moderate or severe head trauma. Neurosurg Rev. 2008 Oct. 31(4):431-6; discussion 436-7. [Medline].

  32. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil. 2006 Nov-Dec. 21(6):544-8. [Medline].

  33. Jennett B. Epidemiology of head injury. J Neurol Neurosurg Psychiatry. 1996 Apr. 60(4):362-9. [Medline].

  34. Wrightson P, Gronwall D. Mild head injury in New Zealand: incidence of injury and persisting symptoms. N Z Med J. 1998 Mar 27. 111(1062):99-101. [Medline].

  35. Thurman D, Guerrero J. Trends in hospitalization associated with traumatic brain injury. JAMA. 1999 Sep 8. 282(10):954-7. [Medline].

  36. Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med. 2004 Feb. (43 Suppl):28-60. [Medline].

  37. Wagner AK, Sasser HC, Hammond FM, et al. Intentional traumatic brain injury: epidemiology, risk factors, and associations with injury severity and mortality. J Trauma. 2000 Sep. 49(3):404-10. [Medline].

  38. Haider AH, Efron DT, Haut ER, DiRusso SM, Sullivan T, Cornwell EE 3rd. Black children experience worse clinical and functional outcomes after traumatic brain injury: an analysis of the National Pediatric Trauma Registry. J Trauma. 2007 May. 62(5):1259-62; discussion 1262-3. [Medline].

  39. Lau BC, Kontos AP, Collins MW, Mucha A, Lovell MR. Which On-field Signs/Symptoms Predict Protracted Recovery From Sport-Related Concussion Among High School Football Players?. Am J Sports Med. 2011 Nov. 39(11):2311-8. [Medline].

  40. Bernal-Sprekelsen M, Bleda-Vazquez C, Carrau RL. Ascending meningitis secondary to traumatic cerebrospinal fluid leaks. Am J Rhinol. 2000 Jul-Aug. 14(4):257-9. [Medline].

  41. Tien HC, Cunha JR, Wu SN, et al. Do trauma patients with a Glasgow Coma Scale score of 3 and bilateral fixed and dilated pupils have any chance of survival?. J Trauma. 2006 Feb. 60(2):274-8. [Medline].

  42. Mauritz W, Leitgeb J, Wilbacher I, et al. Outcome of brain trauma patients who have a Glasgow Coma Scale score of 3 and bilateral fixed and dilated pupils in the field. European Journal of Emergency Medicine. 2009. 16:153-158.

  43. Krauss JK, Trankle R, Kopp KH. Post-traumatic movement disorders in survivors of severe head injury. Neurology. 1996 Dec. 47(6):1488-92. [Medline].

  44. Matser JT, Kessels AG, Jordan BD, et al. Chronic traumatic brain injury in professional soccer players. Neurology. 1998 Sep. 51(3):791-6. [Medline].

  45. Lobato RD, Rivas JJ, Gomez PA, et al. Head-injured patients who talk and deteriorate into coma. Analysis of 211 cases studied with computerized tomography. J Neurosurg. 1991 Aug. 75(2):256-61. [Medline].

  46. Stuss DT, Binns MA, Carruth FG, et al. The acute period of recovery from traumatic brain injury: posttraumatic amnesia or posttraumatic confusional state?. J Neurosurg. 1999 Apr. 90(4):635-43. [Medline].

  47. Leininger BE, Gramling SE, Farrell AD, et al. Neuropsychological deficits in symptomatic minor head injury patients after concussion and mild concussion. J Neurol Neurosurg Psychiatry. 1990 Apr. 53(4):293-6. [Medline].

  48. Ruffolo LF, Guilmette TJ, Willis GW. Comparison of time and error rates on the trail making test among patients with head injuries, experimental malingerers, patients with suspect effort on testing, and normal controls. Clin Neuropsychol. 2000 May. 14(2):223-30. [Medline].

  49. Thomas KE, Stevens JA, Sarmiento K, Wald MM. Fall-related traumatic brain injury deaths and hospitalizations among older adults--United States, 2005. J Safety Res. 2008. 39(3):269-72. [Medline].

  50. Hefny AF, Eid HO, Abu-Zidan FM. Severe tyre blast injuries during servicing. Injury. 2009 May. 40(5):484-7. [Medline].

  51. Bhattacharjee Y. Neuroscience. Shell shock revisited: solving the puzzle of blast trauma. Science. 2008 Jan 25. 319(5862):406-8. [Medline].

  52. Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA. Cognitive sequelae of blast-related versus other mechanisms of brain trauma. J Int Neuropsychol Soc. 2009 Jan. 15(1):1-8. [Medline].

  53. Reymond MA, Marbet G, Radu EW, et al. Aspirin as a risk factor for hemorrhage in patients with head injuries. Neurosurg Rev. 1992. 15(1):21-5. [Medline].

  54. Wong DK, Lurie F, Wong LL. The effects of clopidogrel on elderly traumatic brain injured patients. J Trauma. Dec/2008. 65:1303-8.

  55. O'Phelan K, McArthur DL, Chang CW, Green D, Hovda DA. The impact of substance abuse on mortality in patients with severe traumatic brain injury. J Trauma. 2008 Sep. 65(3):674-7. [Medline].

  56. Talving P, Plurad D, Barmparas G, et al. Isolated severe traumatic brain injuries: association of blood alcohol levels with the severity of injuries and outcomes. J Trauma. Feb/2010. 68:357-62.

  57. Friedman G, Froom P, Sazbon L, et al. Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology. 1999 Jan 15. 52(2):244-8. [Medline].

  58. Kutner KC, Erlanger DM, Tsai J, et al. Lower cognitive performance of older football players possessing apolipoprotein E epsilon4. Neurosurgery. 2000 Sep. 47(3):651-7; discussion 657-8. [Medline].

  59. Zhou W, Xu D, Peng X, Zhang Q, Jia J, Crutcher KA. Meta-analysis of APOE4 allele and outcome after traumatic brain injury. J Neurotrauma. 2008 Apr. 25(4):279-90. [Medline].

  60. Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res. 2007 Apr-May. 32(4-5):905-15. [Medline].

  61. Bacic A, Gluncic I, Gluncic V. Disturbances in plasma sodium in patients with war head injuries. Mil Med. 1999 Mar. 164(3):214-7. [Medline].

  62. Bareyre FM, Saatman KE, Raghupathi R, McIntosh TK. Postinjury treatment with magnesium chloride attenuates cortical damage after traumatic brain injury in rats. J Neurotrauma. 2000 Nov. 17(11):1029-39. [Medline].

  63. Halpern CH, Reilly PM, Turtz AR, Stein SC. Traumatic coagulopathy: the effect of brain injury. J Neurotrauma. 2008 Aug. 25(8):997-1001. [Medline].

  64. Stalnacke BM, Tegner Y, Sojka P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Inj. 2004 Sep. 18(9):899-909. [Medline].

  65. Straume-Naesheim TM, Andersen TE, Jochum M, et al. Minor head trauma in soccer and serum levels of S100B. Neurosurgery. Jun/2008. 62:1297-305.

  66. Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012 May 1. 78(18):1428-33. [Medline].

  67. Haydel MJ, Preston CA, Mills TJ, et al. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000 Jul 13. 343(2):100-5. [Medline].

  68. Smits M, Dippel DW, Steyerberg EW, de Haan GG, Dekker HM, Vos PE. Predicting intracranial traumatic findings on computed tomography in patients with minor head injury: the CHIP prediction rule. Ann Intern Med. 2007 Mar 20. 146(6):397-405. [Medline].

  69. Wang MC, Linnau KF, Tirschwell DL, Hollingworth W. Utility of repeat head computed tomography after blunt head trauma: a systematic review. J Trauma. 2006 Jul. 61(1):226-33. [Medline].

  70. Smith-Bindman R, McCulloch CE, Ding A, Quale C, Chu PW. Diagnostic imaging rates for head injury in the ED and states' medical malpractice tort reforms. Am J Emerg Med. 2011 Jul. 29(6):656-64. [Medline].

  71. Levin HS, Williams DH, Valastro M, et al. Corpus callosal atrophy following closed head injury: detection with magnetic resonance imaging. J Neurosurg. 1990 Jul. 73(1):77-81. [Medline].

  72. Pierallini A, Pantano P, Fantozzi LM, et al. Correlation between MRI findings and long-term outcome in patients with severe brain trauma. Neuroradiology. 2000 Dec. 42(12):860-7. [Medline].

  73. Rutgers DR, Toulgoat F, Cazejust J, Fillard P, Lasjaunias P, Ducreux D. White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR Am J Neuroradiol. 2008 Mar. 29(3):514-9. [Medline].

  74. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008 May. 29(5):967-73. [Medline].

  75. Fontaine A, Azouvi P, Remy P, et al. Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology. 1999 Dec 10. 53(9):1963-8. [Medline].

  76. Gowda NK, Agrawal D, Bal C, et al. Technetium Tc-99m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study. AJNR Am J Neuroradiol. 2006 Feb. 27(2):447-51. [Medline].

  77. Garnett MR, Blamire AM, Rajagopalan B, et al. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain. 2000 Jul. 123 ( Pt 7):1403-9. [Medline].

  78. Vespa PM, Nuwer MR, Nenov V, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg. 1999 Nov. 91(5):750-60. [Medline].

  79. Steinbaugh LA, Lindsell CJ, Shutter LA, Szaflarski JP. Initial EEG predicts outcomes in a trial of levetiracetam vs. fosphenytoin for seizure prevention. Epilepsy Behav. 2012 Mar. 23(3):280-4. [Medline].

  80. Carter BG, Butt W. Review of the use of somatosensory evoked potentials in the prediction of outcome after severe brain injury. Crit Care Med. 2001 Jan. 29(1):178-86. [Medline].

  81. Hortobágyi T, Wise S, Hunt N, Cary N, Djurovic V, Fegan-Earl A. Traumatic axonal damage in the brain can be detected using beta-APP immunohistochemistry within 35 min after head injury to human adults. Neuropathol Appl Neurobiol. 2007 Apr. 33(2):226-37. [Medline].

  82. Dressler J, Hanisch U, Kuhlisch E, et al. Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med. 2007. 121:365-375.

  83. McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. Jul/2009. 68:709-35.

  84. White H, Cook D, Venkatesh B. The use of hypertonic saline for treating intracranial hypertension after traumatic brain injury. Anesth Analg. 2006 Jun. 102(6):1836-46. [Medline].

  85. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008 Feb. 64(2):335-40. [Medline].

  86. Farahvar A, Gerber LM, Chiu YL, Carney N, Härtl R, Ghajar J. Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg. 2012 Aug 17. [Medline].

  87. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995 Dec. 83(6):949-62. [Medline].

  88. White H, Venkatesh B. Cerebral perfusion pressure in neurotrauma: a review. Anesth Analg. Sep/2008. 107:979-88.

  89. The SAFE Study Investigators. Saline or Albumin for Fluid Resuscitation in Patients with Traumatic Brain Injury. NEJM. Aug/2007. 357:874-84.

  90. Clifton GL, Miller ER, Choi SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001 Feb 22. 344(8):556-63. [Medline].

  91. Sydenham E, Roberts I, Alderson P. Hypothermia for traumatic head injury. Cochrane Database Syst Rev. Apr/2009. 15:CD001048.

  92. Clifton GL, Valadka A, Zygun D, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 2011 Feb. 10(2):131-9. [Medline].

  93. Härtl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg. 2008 Jul. 109(1):50-6. [Medline].

  94. Reiff DA, Haricharan RN, Bullington NM, et al. Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacologic prophylaxis. J Trauma. May/2009. 66:1436-40.

  95. Depew AJ, Hu CK, Nguyen AC, et al. Thromboembolic prophylaxis in blunt traumatic intracranial hemorrhage: a retrospective review. Am Surg. OCt/2008. 74:906-11.

  96. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004 Oct 9. 364(9442):1321-8. [Medline].

  97. Temkin NR, Dikmen SS, Wilensky AJ, et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med. 1990 Aug 23. 323(8):497-502. [Medline].

  98. Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg. 1999 Oct. 91(4):593-600. [Medline].

  99. Murray GD, Teasdale GM, Schmitz H. Nimodipine in traumatic subarachnoid haemorrhage: a re-analysis of the HIT I and HIT II trials. Acta Neurochir (Wien). 1996. 138(10):1163-7. [Medline].

  100. Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol. 2007 Jan. 6(1):29-38. [Medline].

  101. Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med. 2007 Apr. 49(4):391-402, 402.e1-2. [Medline].

  102. Empey PE, McNamara PJ, Young B, et al. Cyclosporin A disposition following acute traumatic brain injury. J Neurotrauma. 2006 Jan. 23(1):109-16. [Medline].

  103. Maas AI, Murray G, Henney H, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 2006 Jan. 5(1):38-45. [Medline].

  104. Tapia-Perez JH, Sanchez-Aguilar M, Torres-Corzo JG, Gordillo-Moscoso A, Martinez-Perez P, Madeville P. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J Neurotrauma. 2008 Aug. 25(8):1011-7. [Medline].

  105. Sullivan PG, Geiger JD, Mattson MP, et al. Dietary supplement creatine protects against traumatic brain injury. Ann Neurol. 2000 Nov. 48(5):723-9. [Medline].

  106. Cirak B, Rousan N, Kocak A, et al. Melatonin as a free radical scavenger in experimental head trauma. Pediatr Neurosurg. 1999 Dec. 31(6):298-301. [Medline].

  107. Meythaler JM, Guin-Renfroe S, Grabb P, Hadley MN. Long-term continuously infused intrathecal baclofen for spastic-dystonic hypertonia in traumatic brain injury: 1-year experience. Arch Phys Med Rehabil. 1999 Jan. 80(1):13-9. [Medline].

  108. Richardson D, Sheean G, Werring D, et al. Evaluating the role of botulinum toxin in the management of focal hypertonia in adults. J Neurol Neurosurg Psychiatry. 2000 Oct. 69(4):499-506. [Medline].

  109. Plenger PM, Dixon CE, Castillo RM, et al. Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: a preliminary double-blind placebo-controlled study. Arch Phys Med Rehabil. 1996 Jun. 77(6):536-40. [Medline].

  110. Kim YH, Ko MH, Na SY, et al. Effects of single-dose methylphenidate on cognitive performance in patients with traumatic brain injury: a double-blind placebo-controlled study. Clin Rehabil. 2006 Jan. 20(1):24-30. [Medline].

  111. Zhang L, Plotkin RC, Wang G, et al. Cholinergic augmentation with donepezil enhances recovery in short-term memory and sustained attention after traumatic brain injury. Arch Phys Med Rehabil. 2004 Jul. 85(7):1050-5. [Medline].

  112. Khateb A, Ammann J, Annoni JM, Diserens K. Cognition-enhancing effects of donepezil in traumatic brain injury. Eur Neurol. 2005. 54(1):39-45. [Medline].

  113. Bhatt M, Desai J, Mankodi A, Elias M, Wadia N. Posttraumatic akinetic-rigid syndrome resembling Parkinson's disease: a report on three patients. Mov Disord. 2000 Mar. 15(2):313-7. [Medline].

  114. Karli DC, Burke DT, Kim HJ, Calvanio R, Fitzpatrick M, Temple D. Effects of dopaminergic combination therapy for frontal lobe dysfunction in traumatic brain injury rehabilitation. Brain Inj. 1999 Jan. 13(1):63-8. [Medline].

  115. Nahas Z, Arlinghaus KA, Kotrla KJ, et al. Rapid response of emotional incontinence to selective serotonin reuptake inhibitors. J Neuropsychiatry Clin Neurosci. 1998 Fall. 10(4):453-5. [Medline].

  116. Fann JR, Uomoto JM, Katon WJ. Sertraline in the treatment of major depression following mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2000 Spring. 12(2):226-32. [Medline].

  117. Page S, Levine Peter. Forced use after TBI: promoting plasticity and function through practice. Brain Inj. 2003 Aug. 17(8):675-84. [Medline].

  118. Salazar AM, Warden DL, Schwab K, et al. Cognitive rehabilitation for traumatic brain injury: A randomized trial. Defense and Veterans Head Injury Program (DVHIP) Study Group. JAMA. 2000 Jun 21. 283(23):3075-81. [Medline].

  119. Zhao H, Bai XJ. Influence of operative timing on prognosis of patients with acute subdural hematoma. Chin J Traumatol. Oct/2009. 12:296-8.

  120. Croce MA, Dent DL, Menke PG, et al. Acute subdural hematoma: nonsurgical management of selected patients. J Trauma. 1994 Jun. 36(6):820-6; discussion 826-7. [Medline].

  121. Patel NY, Hoyt DB, Nakaji P, et al. Traumatic brain injury: patterns of failure of nonoperative management. J Trauma. Mar/2000. 48:367-74.

  122. Howard JL, Cipolle MD, Anderson M, Sabella V, Shollenberger D, Li PM. Outcome after decompressive craniectomy for the treatment of severe traumatic brain injury. J Trauma. 2008 Aug. 65(2):380-5; discussion 385-6. [Medline].

  123. Holder HD, Gruenewald PJ, Ponicki WR, et al. Effect of community-based interventions on high-risk drinking and alcohol-related injuries. JAMA. 2000 Nov 8. 284(18):2341-7. [Medline].

  124. Gentilello LM, Rivara FP, Donovan DM, et al. Alcohol interventions in a trauma center as a means of reducing the risk of injury recurrence. Ann Surg. 1999 Oct. 230(4):473-80; discussion 480-3. [Medline].

  125. Thompson DC, Rivara FP, Thompson R. Helmets for preventing head and facial injuries in bicyclists. Cochrane Database Syst Rev. 2000. CD001855. [Medline].

  126. Heng KW, Lee AH, Zhu S, et al. Helmet use and bicycle-related trauma in patients presenting to an acute hospital in Singapore. Singapore Med J. 2006 May. 47(5):367-72. [Medline].

  127. Lee BH, Schofer JL, Koppelman FS. Bicycle safety helmet legislation and bicycle-related non-fatal injuries in California. Accid Anal Prev. 2005 Jan. 37(1):93-102. [Medline].

  128. Donders J, Boonstra T. Correlates of invalid neuropsychological test performance after traumatic brain injury. Brain Inj. 2007 Mar. 21(3):319-26. [Medline].

  129. Hutchison M, Comper P, Mainwaring L, Richards D. The influence of musculoskeletal injury on cognition: implications for concussion research. Am J Sports Med. 2011 Nov. 39(11):2331-7. [Medline].

  130. Dacey RG Jr, Alves WM, Rimel RW, et al. Neurosurgical complications after apparently minor head injury. Assessment of risk in a series of 610 patients. J Neurosurg. 1986 Aug. 65(2):203-10. [Medline].

  131. Deb S, Lyons I, Koutzoukis C. Neuropsychiatric sequelae one year after a minor head injury. J Neurol Neurosurg Psychiatry. 1998 Dec. 65(6):899-902. [Medline].

  132. Dikmen SS, Corrigan JD, Levin HS, et al. Cognitive Outcome Following Traumatic Brain Injury. J Head Trauma Rehabil. 2009. 24:430-438.

  133. Cantu RC. Second-impact syndrome. Clin Sports Med. 1998 Jan. 17(1):37-44. [Medline].

  134. McCrory P, Meeuwisse W, Johnston K, et al. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. May/2009. 19:185-200.

  135. McCrory PR, Berkovic SF. Second impact syndrome. Neurology. 1998 Mar. 50(3):677-83. [Medline].

  136. Mayers L. Return-to-Play Criteria After Athletic Concussion. Arch Neurol. Sept/2008. 65:1158-1161.

  137. Asikainen I, Kaste M, Sarna S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia. 1999 May. 40(5):584-9. [Medline].

  138. Angeleri F, Majkowski J, Cacchio G, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia. 1999 Sep. 40(9):1222-30. [Medline].

  139. Diaz-Arrastia R, Agostini MA, Frol AB, et al. Neurophysiologic and neuroradiologic features of intractable epilepsy after traumatic brain injury in adults. Arch Neurol. 2000 Nov. 57(11):1611-6. [Medline].

  140. Obermann M, Holbe D, Katsarava Z. Post-traumatic headache. Expert Rev Neurother. Sep/2009. 9:1361-1370.

  141. Packard RC, Ham LP. Pathogenesis of posttraumatic headache and migraine: a common headache pathway?. Headache. 1997 Mar. 37(3):142-52. [Medline].

  142. Warner JS. Posttraumatic headache--a myth?. Arch Neurol. 2000 Dec. 57(12):1778-80; discussion 1780-1. [Medline].

  143. Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004 Jan. 61(1):42-50. [Medline].

  144. Bilgic B, Baral-Kulaksizoglu I, Hanagasi H, et al. Obsessive-compulsive disorder secondary to bilateral frontal damage due to a closed head injury. Cogn Behav Neurol. 2004 Jun. 17(2):118-20. [Medline].

  145. Sachdev P, Smith JS, Cathcart S. Schizophrenia-like psychosis following traumatic brain injury: a chart- based descriptive and case-control study. Psychol Med. 2001 Feb. 31(2):231-9. [Medline].

  146. McCartan DP, Fleming FJ, Motherway C, Grace PA. Management and outcome in patients following head injury admitted to an Irish Regional Hospital. Brain Inj. 2008 Apr. 22(4):305-12. [Medline].

  147. van der Naalt J, van Zomeren AH, Sluiter WJ, et al. One year outcome in mild to moderate head injury: the predictive value of acute injury characteristics related to complaints and return to work. J Neurol Neurosurg Psychiatry. 1999 Feb. 66(2):207-13. [Medline].

  148. Chamelian L, Feinstein A. Outcome after mild to moderate traumatic brain injury: the role of dizziness. Arch Phys Med Rehabil. 2004 Oct. 85(10):1662-6. [Medline].

  149. Richmond R, Aldaghlas TA, Burke C, Rizzo AG, Griffen M, Pullarkat R. Age: Is It All in the Head? Factors Influencing Mortality in Elderly Patients With Head Injuries. J Trauma. 2011 Feb 17. [Medline].

  150. Ritchie PD, Cameron PA, Ugoni AM, et al. A study of the functional outcome and mortality in elderly patients with head injuries. J Clin Neurosci. 2000 Jul. 7(4):301-4. [Medline].

  151. Wade DT, King NS, Wenden FJ, et al. Routine follow up after head injury: a second randomised controlled trial. J Neurol Neurosurg Psychiatry. 1998 Aug. 65(2):177-83. [Medline].

  152. Schanke AK, Sundet K. Comprehensive driving assessment: neuropsychological testing and on- road evaluation of brain injured patients. Scand J Psychol. 2000 Jun. 41(2):113-21. [Medline].

  153. Anderson P. Hemodynamic Complications Common in Traumatic Brain Injury. Available at http://www.medscape.com/viewarticle/778999. Accessed: March 25, 2013.

  154. Bazarian JJ, McClung J, Shah MN, et al. Mild traumatic brain injury in the United States, 1998--2000. Brain Inj. 2005 Feb. 19(2):85-91. [Medline].

  155. Black K, Zafonte R, Millis S, et al. Sitting balance following brain injury: does it predict outcome?. Brain Inj. 2000 Feb. 14(2):141-52. [Medline].

  156. Blumbergs PC, Scott G, Manavis J, et al. Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet. 1994 Oct 15. 344(8929):1055-6. [Medline].

  157. Bruce DA, Alavi A, Bilaniuk L, et al. Diffuse cerebral swelling following head injuries in children: the syndrome of "malignant brain edema". J Neurosurg. 1981 Feb. 54(2):170-8. [Medline].

  158. Cassidy JD, Carroll LJ, Cote P, et al. Effect of eliminating compensation for pain and suffering on the outcome of insurance claims for whiplash injury. N Engl J Med. 2000 Apr 20. 342(16):1179-86. [Medline].

  159. Centers for Disease Control and Prevention. Sports-related recurrent brain injuries--United States. MMWR Morb Mortal Wkly Rep. 1997 Mar 14. 46(10):224-7. [Medline].

  160. Cernak I, Savic VJ, Kotur J, et al. Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma. 2000 Jan. 17(1):53-68. [Medline].

  161. Chesnut RM. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. Aug/2008. 65:500-1.

  162. Chesnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993 Feb. 34(2):216-22. [Medline].

  163. Chiu WT, Kuo CY, Hung CC, et al. The effect of the Taiwan motorcycle helmet use law on head injuries. Am J Public Health. 2000 May. 90(5):793-6. [Medline].

  164. Cho YW, Jang SH, Lee ZI, et al. Effect and appropriate restriction period of constraint-induced movement therapy in hemiparetic patients with brain injury: a brief report. NeuroRehabilitation. 2005. 20(2):71-4. [Medline].

  165. Collins MW, Grindel SH, Lovell MR, et al. Relationship between concussion and neuropsychological performance in college football players. JAMA. 1999 Sep 8. 282(10):964-70. [Medline].

  166. Dharap SB, Khandkar AA, Pandey A, Sharma AK. Repeat CT scan in closed head injury. Injury. 2005 Mar. 36(3):412-6. [Medline].

  167. Drake AI, Gray N, Yoder S, et al. Factors predicting return to work following mild traumatic brain injury: a discriminant analysis. J Head Trauma Rehabil. 2000 Oct. 15(5):1103-12. [Medline].

  168. Eisenberg HM, Frankowski RF, Contant CF, et al. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg. 1988 Jul. 69(1):15-23. [Medline].

  169. Fabbri A, Servadei F, Marchesini G, et al. Early predictors of unfavorable outcome in subjects with moderate head injury in the emergency department. J Neurol Neurosurg Psychiatry. May/2008. 79:567-73.

  170. Feldman Z, Gurevitch B, Artru AA, et al. Effect of magnesium given 1 hour after head trauma on brain edema and neurological outcome. J Neurosurg. 1996 Jul. 85(1):131-7. [Medline].

  171. Gordon WA, Brown M, Sliwinski M, et al. The enigma of "hidden" traumatic brain injury. J Head Trauma Rehabil. 1998 Dec. 13(6):39-56. [Medline].

  172. Guerra WK, Gaab MR, Dietz H, et al. Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg. 1999 Feb. 90(2):187-96. [Medline].

  173. Gusmao SN, Pittella JE. Extradural haematoma and diffuse axonal injury in victims of fatal road traffic accidents. Br J Neurosurg. 1998 Apr. 12(2):123-6. [Medline].

  174. Haig AJ, Ruess JM. Recovery from vegetative state of six months'' duration associated with Sinemet (levodopa/carbidopa). Arch Phys Med Rehabil. 1990 Dec. 71(13):1081-3. [Medline].

  175. Hall JR, Reyes HM, Horvat M, et al. The mortality of childhood falls. J Trauma. 1989 Sep. 29(9):1273-5. [Medline].

  176. Haltiner AM, Newell DW, Temkin NR, et al. Side effects and mortality associated with use of phenytoin for early posttraumatic seizure prophylaxis. J Neurosurg. 1999 Oct. 91(4):588-92. [Medline].

  177. Hamill RW, Woolf PD, McDonald JV, et al. Catecholamines predict outcome in traumatic brain injury. Ann Neurol. 1987 May. 21(5):438-43. [Medline].

  178. Hanlon RE, Demery JA, Martinovich Z, et al. Effects of acute injury characteristics on neurophysical status and vocational outcome following mild traumatic brain injury. Brain Inj. 1999 Nov. 13(11):873-87. [Medline].

  179. Harders A, Kakarieka A, Braakman R. Traumatic subarachnoid hemorrhage and its treatment with nimodipine. German tSAH Study Group. J Neurosurg. 1996 Jul. 85(1):82-9. [Medline].

  180. Homayoun P, Parkins NE, Soblosky J, et al. Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem Res. 2000 Feb. 25(2):269-76. [Medline].

  181. Ikonomidou C, Stefovska V, Turski L. Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proc Natl Acad Sci U S A. 2000 Nov 7. 97(23):12885-90. [Medline].

  182. Inamasu J, Hori S, Aoki K, et al. CT scans essential after posttraumatic loss of consciousness. Am J Emerg Med. 2000 Nov. 18(7):810-1. [Medline].

  183. Jordan BD, Relkin NR, Ravdin LD, et al. Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA. 1997 Jul 9. 278(2):136-40. [Medline].

  184. Keenan HT, Brundage SI, Thompson DC, et al. Does the face protect the brain? A case-control study of traumatic brain injury and facial fractures. Arch Surg. 1999 Jan. 134(1):14-7. [Medline].

  185. Knoller N, Levi L, Shoshan I, et al. Dexanabinol (HU-211) in the treatment of severe closed head injury: a randomized, placebo-controlled, phase II clinical trial. Crit Care Med. 2002 Mar. 30(3):548-54. [Medline].

  186. Kobori N, Clifton GL, Dash P, et al. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res. 2002 Aug 15. 104(2):148-58. [Medline].

  187. Kobrine AI, Timmins E, Rajjoub RK, et al. Demonstration of massive traumatic brain swelling within 20 minutes after injury. Case report. J Neurosurg. 1977 Feb. 46(2):256-8. [Medline].

  188. Lal S, Merbtiz CP, Grip JC. Modification of function in head-injured patients with Sinemet. Brain Inj. 1988 Jul-Sep. 2(3):225-33. [Medline].

  189. Landau WM. Tizanidine and spasticity. Neurology. 1995 Dec. 45(12):2295-6. [Medline].

  190. Landy PJ. Neurological sequelae of minor head and neck injuries. Injury. 1998 Apr. 29(3):199-206. [Medline].

  191. Lane PL, Skoretz TG, Doig G, et al. Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg. 2000 Dec. 43(6):442-8. [Medline].

  192. Lang DA, Teasdale GM, Macpherson P, et al. Diffuse brain swelling after head injury: more often malignant in adults than children?. J Neurosurg. 1994 Apr. 80(4):675-80. [Medline].

  193. Levin HS, Gary HE Jr, Eisenberg HM, et al. Neurobehavioral outcome 1 year after severe head injury. Experience of the Traumatic Coma Data Bank. J Neurosurg. 1990 Nov. 73(5):699-709. [Medline].

  194. Levin HS, Mattis S, Ruff RM, et al. Neurobehavioral outcome following minor head injury: a three-center study. J Neurosurg. 1987 Feb. 66(2):234-43. [Medline].

  195. Levin HS, Williams DH, Eisenberg HM, et al. Serial MRI and neurobehavioural findings after mild to moderate closed head injury. J Neurol Neurosurg Psychiatry. 1992 Apr. 55(4):255-62. [Medline].

  196. Li J, Brown J, Levine M. Mild head injury, anticoagulants, and risk of intracranial injury. Lancet. 2001 Mar 10. 357(9258):771-2. [Medline].

  197. Macfarlane DP, Nicoll JA, Smith C, et al. APOE epsilon4 allele and amyloid beta-protein deposition in long term survivors of head injury. Neuroreport. 1999 Dec 16. 10(18):3945-8. [Medline].

  198. Marion DW, Penrod LE, Kelsey SF, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med. 1997 Feb 20. 336(8):540-6. [Medline].

  199. Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991. 75:S59-66.

  200. Marshall LF, Gautille T, Klauber MR, et al. The outcome of severe head injury. J Neurosurg. 1991. 75:S28-36.

  201. Mayers l. Return-to-Play Criteria after Athletic Concussion. Archives of Neurology. Sep/2008. 65:1158-1161.

  202. Miller EC, Derlet RW, Kinser D. Minor head trauma: Is computed tomography always necessary?. Ann Emerg Med. 1996 Mar. 27(3):290-4. [Medline].

  203. Mittenberg W, Strauman S. Diagnosis of mild head injury and the postconcussion syndrome. J Head Trauma Rehabil. 2000 Apr. 15(2):783-91. [Medline].

  204. Mosimann UP, Muri RM, Felblinger J, et al. Saccadic eye movement disturbances in whiplash patients with persistent complaints. Brain. 2000 Apr. 123 ( Pt 4):828-35. [Medline].

  205. Murray JA, Demetriades D, Berne TV, et al. Prehospital intubation in patients with severe head injury. J Trauma. 2000 Dec. 49(6):1065-70. [Medline].

  206. Nagy KK, Joseph KT, Krosner SM, et al. The utility of head computed tomography after minimal head injury. J Trauma. 1999 Feb. 46(2):268-70. [Medline].

  207. Owings JT, Wisner DH, Battistella FD, et al. Isolated transient loss of consciousness is an indicator of significant injury. Arch Surg. 1998 Sep. 133(9):941-6. [Medline].

  208. Packard RC, Ham LP. Posttraumatic headache. J Neuropsychiatry Clin Neurosci. 1994 Summer. 6(3):229-36. [Medline].

  209. Palmer AM, Marion DW, Botscheller ML, et al. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem. 1993 Dec. 61(6):2015-24. [Medline].

  210. Patel NY, Hoyt DB, Nakaji P, et al. Traumatic brain injury: patterns of failure of nonoperative management. J Trauma. 2000 Mar. 48(3):367-74; discussion 374-5. [Medline].

  211. Paterakis K, Karantanas AH, Komnos A, et al. Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma. 2000 Dec. 49(6):1071-5. [Medline].

  212. Pop E. Dexanabinol Pharmos. Curr Opin Investig Drugs. 2000 Dec. 1(4):494-503. [Medline].

  213. Procaccio F, Stocchetti N, Citerio G, et al. Guidelines for the treatment of adults with severe head trauma (part II). Criteria for medical treatment. J Neurosurg Sci. 2000 Mar. 44(1):11-8. [Medline].

  214. Report of the Quality Standards Subcommittee, American Academy of Neurology. Practice parameter: the management of concussion in sports (summary statement). Report of the Quality Standards Subcommittee. Neurology. 1997 Mar. 48(3):581-5. [Medline].

  215. Rugg-Gunn FJ, Symms MR, Barker GJ, et al. Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging is normal. J Neurol Neurosurg Psychiatry. 2001 Apr. 70(4):530-3. [Medline].

  216. Salmond CH, Menon DK, Chatfield DA, et al. Diffusion tensor imaging in chronic head injury survivors: correlations with learning and memory indices. Neuroimage. 2006 Jan 1. 29(1):117-24. [Medline].

  217. Signoretti S, Marmarou A, Tavazzi B, et al. The protective effect of cyclosporin A upon N-acetylaspartate and mitochondrial dysfunction following experimental diffuse traumatic brain injury. J Neurotrauma. 2004 Sep. 21(9):1154-67. [Medline].

  218. Sloan RL, Brown KW, Pentland B. Fluoxetine as a treatment for emotional lability after brain injury. Brain Inj. 1992 Jul-Aug. 6(4):315-9. [Medline].

  219. Snoek JW, Minderhoud JM, Wilmink JT. Delayed deterioration following mild head injury in children. Brain. 1984 Mar. 107 ( Pt 1):15-36. [Medline].

  220. Speech TJ, Rao SM, Osmon DC, et al. A double-blind controlled study of methylphenidate treatment in closed head injury. Brain Inj. 1993 Jul-Aug. 7(4):333-8. [Medline].

  221. Struchen MA, Hannay HJ, Contant CF, et al. The relation between acute physiological variables and outcome on the Glasgow Outcome Scale and Disability Rating Scale following severe traumatic brain injury. J Neurotrauma. 2001 Feb. 18(2):115-25. [Medline].

  222. Sturmi JE, Smith C, Lombardo JA. Mild brain trauma in sports. Diagnosis and treatment guidelines. Sports Med. 1998 Jun. 25(6):351-8. [Medline].

  223. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death?. J Neurosci Res. 2005 Jan 1-15. 79(1-2):231-9. [Medline].

  224. Teasdale GM. Head injury. J Neurol Neurosurg Psychiatry. 1995 May. 58(5):526-39. [Medline].

  225. The Brain Trauma Foundation, The American Association of Neurological Surgeons, The Joint Section on Neurotrauma and Critical Care. Role of steroids. J Neurotrauma. 2000 Jun-Jul. 17(6-7):531-5. [Medline].

  226. The Brain Trauma Foundation, The American Association of Neurological Surgeons, The Joint Section on Neurotrauma and Critical Care. Use of barbiturates in the control of intracranial hypertension. J Neurotrauma. 2000 Jun-Jul. 17(6-7):527-30. [Medline].

  227. Thurman DJ, Alverson C, Dunn KA, et al. Traumatic brain injury in the United States: A public health perspective. J Head Trauma Rehabil. 1999 Dec. 14(6):602-15. [Medline].

  228. Towne AR, Waterhouse EJ, Boggs JG, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000 Jan 25. 54(2):340-5. [Medline].

  229. van Reekum R, Cohen T, Wong J. Can traumatic brain injury cause psychiatric disorders?. J Neuropsychiatry Clin Neurosci. 2000 Summer. 12(3):316-27. [Medline].

  230. Velmahos GC, Jindal A, Chan LS, et al. "Insignificant" mechanism of injury: not to be taken lightly. J Am Coll Surg. 2001 Feb. 192(2):147-52. [Medline].

  231. Wesson D, Spence L, Hu X, et al. Trends in bicycling-related head injuries in children after implementation of a community-based bike helmet campaign. J Pediatr Surg. 2000 May. 35(5):688-9. [Medline].

  232. Whelan FJ, Walker MS, Schultz SK. Donepezil in the treatment of cognitive dysfunction associated with traumatic brain injury. Ann Clin Psychiatry. 2000 Sep. 12(3):131-5. [Medline].

  233. Whyte J, Hart T, Schuster K, et al. Effects of methylphenidate on attentional function after traumatic brain injury. A randomized, placebo-controlled trial. Am J Phys Med Rehabil. 1997 Nov-Dec. 76(6):440-50. [Medline].

  234. Wilberger JE Jr, Harris M, Diamond DL. Acute subdural hematoma: morbidity, mortality, and operative timing. J Neurosurg. 1991 Feb. 74(2):212-8. [Medline].

  235. Withaar FK, Brouwer WH, van Zomeren AH. Fitness to drive in older drivers with cognitive impairment. J Int Neuropsychol Soc. 2000 May. 6(4):480-90. [Medline].

  236. Young B, Runge JW, Waxman KS, et al. Effects of pegorgotein on neurologic outcome of patients with severe head injury. A multicenter, randomized controlled trial. JAMA. 1996 Aug 21. 276(7):538-43. [Medline].

  237. Zafonte RD, Mann NR. Cerebral salt wasting syndrome in brain injury patients: a potential cause of hyponatremia. Arch Phys Med Rehabil. 1997 May. 78(5):540-2. [Medline].

 
Previous
Next
 
This 50-year-old woman with epilepsy seized and struck her head. Her initial Glasgow Coma Scale score was 12. Her scan shows prominent right temporal bleeding. She recovered to baseline without surgery.
This 50-year-old man was struck in the head in an assault. His scan shows a right acute subdural hematoma with no mass effect. His initial Glasgow Coma Scale score was 15. He returned home without major sequelae after 5 days of hospitalization.
This is a superior view of the CT scan shown in the previous image. This demonstrates a small left frontal intracranial contusion with some surrounding edema. This could be a marker of axonal injury.
This 23-year-old woman was in a motor vehicle accident with impact on the left. Her initial Glasgow Coma Scale score was 6 and she required intubation. Her scan shows a subtle right posterior frontal linear hyperdensity, most likely a small petechial bleed (contrecoup). This could also be a marker of axonal injury.
This 35-year-old man was in a motor vehicle accident. His initial Glasgow Coma Scale score was 7. He had left hemiparesis. He recovered orientation to temporal parameters after 1 week, but he remained disinhibited and hemiparetic (although able to ambulate). His MRI shows a diffusion-weighted hyperintensity in the right posterior internal capsular limb. This was attributed to an axonal injury. (An embolic workup for stroke was unremarkable, and no dissection was discerned on a carotid Doppler study.)
This 40-year-old woman was anticoagulated with warfarin (Coumadin) and fell out of her hospital bed. She subsequently died. Her CT scan shows an obvious right subdural hematoma with mass effect.
This elderly woman had a history of frequent falls and presented with seizures, possibly from her right hypodense subdural hematoma shown here. The subdural hematoma appears chronic and exhibits no mass effect.
This 23-year-old freelance graphic artist has drifted from job to job following his head injury 2 years prior to this scan. He was hospitalized initially for about 1 week for intracranial bleeding. This CT scan shows obvious medial bifrontal atrophy.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.