Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

CNS Whipple Disease Treatment & Management

  • Author: George C Bobustuc, MD; Chief Editor: Niranjan N Singh, MD, DM  more...
 
Updated: Dec 11, 2014
 

Medical Care

Treatment of Whipple disease is less challenging than its diagnosis. Antibiotics are the mainstay of therapy. A good outcome relies on a timely diagnosis and initiation and completion of a long-term antibiotic course. The literature comprises a consensus about the need for completion of a lengthy antibiotic course of 1-2 years. Treatments of shorter duration have been associated with a high rate of relapse. The use of specific diagnostic techniques (eg, PCR) is important in establishing a diagnosis[22] and in evaluating response and adjusting the antibiotic therapy.

The following guidelines have been proposed for diagnostic screening, biopsy, and treatment of CNS-WD:

  • Definite CNS-WD must have any 1 of the following 3 criteria:
    • OMM or OFSM
    • Positive tissue biopsy
    • Positive PCR analysis
    • If histologic or PCR analysis was not performed on CNS tissue, then the patient also must demonstrate neurological signs. If histologic or PCR analysis was performed on CNS tissue, then the patient need not demonstrate neurological signs (ie, asymptomatic CNS infection).
  • Possible CNS-WD should include 1 of 4 systemic symptoms and 1 of 4 neurologic signs and/or symptoms.
    • Any 1 of the 4 systemic symptoms, not due to another known etiology, as follows:
      • Fever of unknown origin
      • GI symptoms (ie, steatorrhea, chronic diarrhea, abdominal pain)
      • Chronic migratory arthralgias or polyarthralgias
      • Unexplained lymphadenopathy, night sweats, or malaise
    • Any 1 of 4 neurological signs, not due to another known etiology, as follows:
      • Supranuclear vertical palsy
      • Rhythmic myoclonus
      • Dementia with psychiatric symptoms
      • Hypothalamic manifestations (dysautonomia, vigilance problems)
  • In a review of the literature, which represents the basis for these guidelines, 20% of patients with CNS-WD had no systemic symptoms or signs. Another 11% had only "soft" neurological features such as subtle cognitive changes or altered level of consciousness. Thus, even when these guidelines are followed, the diagnosis of some cases of CNS-WD may not be reached premortem.

A combination of antibiotics is preferable, particularly at the initiation of treatment. Antibiotics usually provide rapid resolution of extraneuraxial symptoms. Arthralgias and fever usually resolve within a few days. Diarrhea and malabsorption disappear within 2-4 weeks.

  • CNS symptoms can be limited by initiation of antibiotic treatment but remain difficult to reverse completely. This is especially true for focal deficits accompanied by positive corresponding imaging with obvious structural changes such as granulomas, infarcts, and atrophic changes. The cognitive abnormalities reverse more than other CNS symptoms and signs.
  • In some patients, worsening neurological symptoms have been noted even after onset of antibiotic therapy; this usually requires changing the antibiotic regimen.

Relapse is quite common in Whipple disease; the disease relapses in approximately one third of patients in whom cessation of treatment was made based on negative serial duodenal biopsies alone.

  • Symptoms at relapse usually take place several weeks to several years after treatment was discontinued.
  • Neurologic complications are usually more prominent in patients with relapsed Whipple disease.
  • Relapse commonly involves the CNS in almost all patients with Whipple disease. Patients with previously known CNS involvement have the highest relapse rate.
  • Relapse is usually more difficult to treat than the initial episode. Acquired resistance to previously known efficacious antibiotics has been reported at relapse. A higher rate of relapse occurs in patients treated with a single antibiotic, with antibiotics with very low BBB penetrance, and/or for an inadequate amount of time.

Monitor clinical response to treatment and complement it with other data obtained with biopsy and imaging studies.

  • PCR analysis is a great tool for documenting response. It should target various tissues obtained at biopsy of significant organs and CSF.
  • In all patients with Whipple disease, consider CSF PCR analysis prior to onset of treatment together with follow-up serial studies for monitoring response, for deciding when treatment should be stopped, and even after cessation of treatment for early detection of relapse based on the clinical progress of the patient and physician index of suspicion.
  • No mention is found in the literature as to when to stop antibiotic therapy after the first negative CSF PCR analysis. Most investigators recommend first confirming this result within 2-3 months and continuing the antibiotic therapy for an additional 8-12 months.
Next

Surgical Care

Neurosurgical care is relevant for both obtaining diagnostic biopsy specimens in selected patients and placement of ventriculoperitoneal shunt (VPS) in patients with hydrocephalus.

  • Hydrocephalus
    • Both communicating and noncommunicating hydrocephalus has been reported in patients with CNS-WD. The role of shunting has to be assessed thoroughly.
      • WD bacillus has a predilection for the periaqueductal gray matter, making noncommunicating hydrocephalus (secondary to aqueductal stenosis) more likely in patients with advanced CNS-WD. Patients with aqueductal stenosis represent a neurosurgical emergency and VPS should be placed urgently.
      • In progressive CNS-WD with progressive, communicating hydrocephalus, some of the cognitive and motor deficits noted in these patients potentially could be limited rapidly and sometimes reversed by shunting. This is especially important as the reported reversal of other CNS symptoms and signs remains limited and requires several weeks to months despite otherwise efficient antibiotic treatment.
  • Rapid initiation of efficacious antibiotic treatment prior to, or at the time of, shunting is most important as placement of VPS without concomitant antibiotic treatment potentially could initiate dissemination of disease in the peritoneal cavity. No such cases have been reported in the literature.
  • Placement of a VPS (with Ommaya reservoir) raises an interesting question about a great therapeutic opportunity, intrathecal/intraventricular antibiotic therapy concomitant with systemic treatment. No reports of attempted intraventricular antibiotic treatment have been published. This is especially important as some reports emphasized the meningoependymitis (ventriculitis) pattern seen in patients with CNS-WD.
  • No attempts at concomitant systemic antibiotic treatment together with intrathecal antibiotic treatment through lumbar puncture have been reported.
Previous
 
 
Contributor Information and Disclosures
Author

George C Bobustuc, MD Consulting Staff, Department of Neuro-oncology, MD Anderson Cancer Center of Orlando

George C Bobustuc, MD is a member of the following medical societies: American Academy of Neurology, Texas Medical Association, Society for Neuro-Oncology, American Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Florian P Thomas, MD, PhD, Drmed, MA, MS Director, National MS Society Multiple Sclerosis Center; Professor and Director, Clinical Research Unit, Department of Neurology, Adjunct Professor of Physical Therapy, Associate Professor, Institute for Molecular Virology, St Louis University School of Medicine; Editor-in-Chief, Journal of Spinal Cord Medicine

Florian P Thomas, MD, PhD, Drmed, MA, MS is a member of the following medical societies: Academy of Spinal Cord Injury Professionals, American Academy of Neurology, American Neurological Association, Consortium of Multiple Sclerosis Centers, National Multiple Sclerosis Society, Sigma Xi

Disclosure: Nothing to disclose.

Chief Editor

Niranjan N Singh, MD, DM Associate Professor of Neurology, University of Missouri-Columbia School of Medicine

Niranjan N Singh, MD, DM is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American Headache Society

Disclosure: Nothing to disclose.

Additional Contributors

Norman C Reynolds, Jr, MD Neurologist, Veterans Affairs Medical Center of Milwaukee; Clinical Professor, Medical College of Wisconsin

Norman C Reynolds, Jr, MD is a member of the following medical societies: American Academy of Neurology, Association of Military Surgeons of the US, International Parkinson and Movement Disorder Society, Sigma Xi, Society for Neuroscience

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Mark Gilbert, MD to the development and writing of this article.

References
  1. Compain C, Sacre K, Puéchal X, Klein I, Vital-Durand D, Houeto JL, et al. Central nervous system involvement in Whipple disease: clinical study of 18 patients and long-term follow-up. Medicine (Baltimore). 2013 Nov. 92(6):324-30. [Medline].

  2. Balasa M, Gelpi E, Rey MJ, Vila J, Ramió-Torrentà L, Quiles Granado AM, et al. Clinical and neuropathological variability in clinically isolated central nervous system Whipple's disease. Brain Pathol. 2014 Apr. 24(3):230-8. [Medline].

  3. Whipple GH. A hitherto undescribed disease characterized anatomically by deposits of fat and fatty acids in the intestinal and mesenteric lymphatic tissues. Johns Hopkins Hosp Bull. 1907. 18:382-391.

  4. Black-Schaffer B. The tinctorial demonstration of a glycoprotein in Whipple's disease. Proc Soc Exp Biol Med. 1949. 72:225.

  5. Paulley JW. A case of Whipple's disease (intestinal lipodystrophy). Gastroenterology. 1952. 22:128-33.

  6. Keinath RD, Merrell DE, Vlietstra R, Dobbins WO 3rd. Antibiotic treatment and relapse in Whipple's disease. Long-term follow-up of 88 patients. Gastroenterology. 1985 Jun. 88(6):1867-73. [Medline].

  7. Wilson KH, Blitchington R, Frothingham R, Wilson JA. Phylogeny of the Whipple's-disease-associated bacterium. Lancet. 1991 Aug 24. 338(8765):474-5. [Medline].

  8. Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple's disease. N Engl J Med. 1992 Jul 30. 327(5):293-301. [Medline].

  9. Ramzan NN, Loftus E, Burgart LJ, et al. Diagnosis and monitoring of Whipple disease by polymerase chain reaction. Ann Intern Med. 1997 Apr 1. 126(7):520-7. [Medline].

  10. Raoult D, Birg ML, La Scola B, Fournier PE, Enea M, Lepidi H, et al. Cultivation of the bacillus of Whipple's disease. N Engl J Med. 2000 Mar 2. 342(9):620-5. [Medline].

  11. Raoult D, Ogata H, Audic S. Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res. 2003 Aug. 13(8):1800-9. [Medline].

  12. Raoult D, Ogata H, Audic S, et al. Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res. 2003 Aug. 13(8):1800-9. [Medline].

  13. Bentley SD, Maiwald M, Murphy LD, Pallen MJ, Yeats CA, Dover LG, et al. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet. 2003 Feb 22. 361(9358):637-44. [Medline].

  14. Dorman SE, Holland SM. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 2000 Dec. 11(4):321-33. [Medline].

  15. Fenollar F, Laouira S, Lepidi H, Rolain JM, Raoult D. Value of Tropheryma whipplei quantitative polymerase chain reaction assay for the diagnosis of Whipple disease: usefulness of saliva and stool specimens for first-line screening. Clin Infect Dis. 2008 Sep 1. 47(5):659-67. [Medline].

  16. Bonhomme CJ, Renesto P, Nandi S, Lynn AM, Raoult D. Serological microarray for a paradoxical diagnostic of Whipple's disease. Eur J Clin Microbiol Infect Dis. 2008 Oct. 27(10):959-68. [Medline].

  17. Panegyres PK, Foster JK, Fallon M, Connor C. The amnesic syndrome of primary Whipple disease of the brain. Cogn Behav Neurol. 2010 Mar. 23(1):49-51. [Medline].

  18. Schwartz MA, Selhorst JB, Ochs AL, Beck RW, Campbell WW, Harris JK, et al. Oculomasticatory myorhythmia: a unique movement disorder occurring in Whipple's disease. Ann Neurol. 1986 Dec. 20(6):677-83. [Medline].

  19. Brandle M, Ammann P, Spinas GA, Dutly F, Galeazzi RL, Schmid C, et al. Relapsing Whipple's disease presenting with hypopituitarism. Clin Endocrinol (Oxf). 1999 Mar. 50(3):399-403. [Medline].

  20. von Herbay A, Ditton HJ, Schuhmacher F, Maiwald M. Whipple's disease: staging and monitoring by cytology and polymerase chain reaction analysis of cerebrospinal fluid. Gastroenterology. 1997 Aug. 113(2):434-41. [Medline].

  21. De Coene B, Gilliard C, Indekeu P, Duprez T, Trigaux JP. Whipple's disease confined to the central nervous system. Neuroradiology. 1996 May. 38(4):325-7. [Medline].

  22. Le Scanff J, Gaultier JB, Durand DV, Durieu I, Celard M, Benito Y, et al. [Tropheryma whipplei and Whipple disease: false positive PCR detections of Tropheryma whipplei in diagnostic samples are rare]. Rev Med Interne. 2008 Nov. 29(11):861-7. [Medline].

  23. Seneca V, Imperato A, Colella G, Cioffi V, Mariniello G, Gangemi M. Recurrent acute obstructive hydrocephalus as clinical onset of cerebral Whipple's disease. Clin Neurol Neurosurg. 2010 Oct. 112(8):717-21. [Medline].

  24. Adams M, Rhyner PA, Day J, DeArmond S, Smuckler EA. Whipple's disease confined to the central nervous system. Ann Neurol. 1987 Jan. 21(1):104-8. [Medline].

  25. Benito-León J, Sedano LF, Louis ED. Isolated central nervous system Whipple's disease causing reversible frontotemporal-like dementia. Clin Neurol Neurosurg. 2008 Jul. 110(7):747-9. [Medline].

  26. Clarke CE, Falope ZF, Abdelhadi HA, Franks AJ. Cervical myelopathy caused by Whipple's disease. Neurology. 1998 May. 50(5):1505-6. [Medline].

  27. Comer GM, Brandt LJ, Abissi CJ. Whipple's disease: a review. Am J Gastroenterol. 1983 Feb. 78(2):107-14. [Medline].

  28. Cooper GS, Blades EW, Remler BF, Salata RA, Bennert KW, Jacobs GH. Central nervous system Whipple's disease: relapse during therapy with trimethoprim-sulfamethoxazole and remission with cefixime. Gastroenterology. 1994 Mar. 106(3):782-6. [Medline].

  29. Dobbins WO 3rd. The diagnosis of Whipple's disease. N Engl J Med. 1995 Feb 9. 332(6):390-2. [Medline].

  30. Fenollar F, Birg ML, Gauduchon V. Culture of Tropheryma whipplei from human samples: a 3-year experience (1999 to 2002). J Clin Microbiol. 2003 Aug. 41(8):3816-22. [Medline].

  31. Fenollar F, Fournier PE, Robert C. Use of genome selected repeated sequences increases the sensitivity of PCR detection of Tropheryma whipplei. J Clin Microbiol. 2004 Jan. 42(1):401-3. [Medline].

  32. Knox DL, Green WR, Troncoso JC, Yardley JH, Hsu J, Zee DS. Cerebral ocular Whipple's disease: a 62-year odyssey from death to diagnosis. Neurology. 1995 Apr. 45(4):617-25. [Medline].

  33. Kowalczewska M, Villard C, Lafitte D, Fenollar F, Raoult D. Global proteomic pattern of Tropheryma whipplei: a Whipple's disease bacterium. Proteomics. 2009 Mar. 9(6):1593-616. [Medline].

  34. Louis ED, Lynch T, Kaufmann P, Fahn S, Odel J. Diagnostic guidelines in central nervous system Whipple's disease. Ann Neurol. 1996 Oct. 40(4):561-8. [Medline].

  35. Lynch T, Odel J, Fredericks DN, Louis ED, Forman S, Rotterdam H, et al. Polymerase chain reaction-based detection of Tropheryma whippelii in central nervous system Whipple's disease. Ann Neurol. 1997 Jul. 42(1):120-4. [Medline].

  36. Marth T, Neurath M, Cuccherini BA, Strober W. Defects of monocyte interleukin 12 production and humoral immunity in Whipple's disease. Gastroenterology. 1997 Aug. 113(2):442-8. [Medline].

  37. Marth T, Roux M, von Herbay A, Meuer SC, Feurle GE. Persistent reduction of complement receptor 3 alpha-chain expressing mononuclear blood cells and transient inhibitory serum factors in Whipple's disease. Clin Immunol Immunopathol. 1994 Aug. 72(2):217-26. [Medline].

  38. Masselot F, Boulos A, Maurin M. Molecular evaluation of antibiotic susceptibility: Tropheryma whipplei paradigm. Antimicrob Agents Chemother. 2003 May. 47(5):1658-64. [Medline].

  39. Moos V, Kunkel D, Marth T, Feurle GE, LaScola B, Ignatius R, et al. Reduced peripheral and mucosal Tropheryma whipplei-specific Th1 response in patients with Whipple's disease. J Immunol. 2006 Aug 1. 177(3):2015-22. [Medline].

  40. Pollock S, Lewis PD, Kendall B. Whipple's disease confined to the nervous system. J Neurol Neurosurg Psychiatry. 1981 Dec. 44(12):1104-9. [Medline].

  41. Richardson DC, Burrows LL, Korithoski B, Salit IE, Butany J, David TE, et al. Tropheryma whippelii as a cause of afebrile culture-negative endocarditis: the evolving spectrum of Whipple's disease. J Infect. 2003 Aug. 47(2):170-3. [Medline].

  42. Ryser RJ, Locksley RM, Eng SC, Dobbins WO 3rd, Schoenknecht FD, Rubin CE. Reversal of dementia associated with Whipple's disease by trimethoprim-sulfamethoxazole, drugs that penetrate the blood-brain barrier. Gastroenterology. 1984 Apr. 86(4):745-52. [Medline].

  43. Sanavro SM, Voerman HJ. Whipple's disease: easily diagnosed, if considered. Neth J Med. 2009 Mar. 67(3):108. [Medline].

  44. Schneider T, Stallmach A, von Herbay A. Treatment of refractory Whipple disease with interferon-gamma. Ann Intern Med. 1998 Dec 1. 129(11):875-7. [Medline].

  45. Schnider P, Trattnig S, Kollegger H, et al. MR of cerebral Whipple disease. AJNR Am J Neuroradiol. 1995 Jun-Jul. 16(6):1328-9. [Medline].

  46. Sloan LM, Rosenblatt JE, Cockerill FR. Detection of Tropheryma whipplei DNA in clinical specimens by LightCycler real-time PCR. J Clin Microbiol. 2005 Jul. 43(7):3516-8. [Medline].

  47. Swartz MN. Whipple's disease--past, present, and future. N Engl J Med. 2000 Mar 2. 342(9):648-50. [Medline].

  48. Wilson KH. New vistas for bacteriologists: analysis based on 16S rRNA sequences provides a rapid and reliable approach to the identity of human pathogens. ASM News. 1992. 58:318-21.

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.