Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Acute Inflammatory Demyelinating Polyradiculoneuropathy Treatment & Management

  • Author: Tarakad S Ramachandran, MBBS, MBA, MPH, FAAN, FACP, FAHA, FRCP, FRCPC, FRS, LRCP, MRCP, MRCS; Chief Editor: Nicholas Lorenzo, MD, MHA, CPE  more...
 
Updated: Mar 25, 2016
 

Medical Care

Advances in supportive medical care have resulted in improved survival rates in acute inflammatory demyelinating polyneuropathy (AIDP).

Mechanical ventilatory assistance is required in about one third of patients with AIDP and lasts for an average of 49 days. Intubation should be performed when FVC drops to less than 15 mL/kg or negative inspiratory pressure is worse than -25 cm H2 O. Tracheostomy is usually recommended if mechanical ventilation will be required for more than 2-3 weeks. Bedridden patients need prophylaxis against thromboembolism. Subcutaneous heparin is the most common agent. Some may also need GI prophylaxis with an H2-blocker (or similar agent).

Enteric nutrition is necessary for patients on mechanical ventilation. Nasogastric tubes or Dubhoff tubes can be used initially. Those requiring more than 2 or 3 weeks or enteric nutrition may require gastrostomy or jejunostomy tube feedings.

Cardiac monitoring is necessary. Chronic sinus tachycardia often responds to beta-blockers or calcium channel blockers. Bradycardia requires atropine treatment, if symptomatic. Heart block may require temporary pacing. Hypertension responds well to beta-blockers. These treatments should be administered cautiously under the direction of a cardiologist or critical care specialist, since one of the main causes of death is iatrogenic hypotension, especially in patients with autonomic failure.

Constipation is common in intubated patients with AIDP, and a bowel regimen is usually necessary. Some patients may also require enemas. Ileus is rare. If it occurs, bowel rest is usually necessary and parenteral nutrition can be used during that time.

Skilled nursing care of intubated patients is necessary to avoid skin breakdown. Special mattresses are available in most intensive care or step-down units. Communication difficulties can lead to frustration and exacerbate depression. Involvement of speech therapy, physical therapy, and occupational therapy is highly recommended. Many patients may require a rehabilitation unit after being weaned off a ventilator.

Conventional immunosuppressant treatments with corticosteroids have failed to show benefit. But immunomodulation with IVIg and plasmapheresis has led to faster recovery, relatively mild disability, and shorter hospital stays. IV steroid therapy alone is not indicated for the treatment of AIDP. Treatment is less likely to be effective if initiated more than 2 weeks after the onset of symptoms. Some patients with mild weakness, especially those presenting during the plateau, may not require immunomodulatory therapy. Plasmapheresis had shown to cut the respirator time and time to independent ambulation, by about half when treatment was given during the first week of the disease.

In their study of immunotherapy in Guillain-Barr é syndrome, Alshekhlee et al. found an increasing use of IVIg over plasma exchange (PE). Older population and those with pulmonary or sepsis complications were likely treated with PE. The mortality rate was higher in patients treated with PE.[17]

The pathogenesis of GBS is not fully understood, and the mechanism of how intravenous immunoglobulin (IVIG) cures GBS remains ambiguous. Hou et al. investigated lymphocyte subsets in patients with acute inflammatory demyelinating polyneuropathy (AIDP) and acute motor axonal neuropathy (AMAN) before and after treatment with IVIG to explore the possible mechanism of IVIG action. They concluded that the changes in T- and B-lymphocyte subsets, especially in CD4+T-lymphocyte subsets, might play an important role in the pathogenesis of AIDP, and in the mechanism of IVIG action against AIDP.[18]

Next

Surgical Care

Tracheostomy is necessary in many intubated patients. Those requiring long-term enteral nutrition typically require a gastrostomy or jejunostomy.

Previous
Next

Consultations

See the list below:

  • Neurology: For patients on general medicine or other services, neurological consultation is indicated to manage diagnostic studies and to help determine appropriate treatment.
  • Critical care: About one third of patients require mechanical ventilation. Any intubated patient or patient who is transferred to an ICU for monitoring should be monitored by a critical care or pulmonary specialist.
  • Surgery: Some patients may require tracheostomy or a feeding tube for parenteral nutrition.
  • Cardiology: Patients with arrhythmias in addition to sinus tachycardia or major cardiac rhythm abnormalities should be evaluated by a cardiologist.
  • Physical medicine and rehabilitation
Previous
Next

Activity

Keep patients ambulatory if they are able to walk without assistance. Most patients who are admitted to the hospital require bedrest.

Previous
 
 
Contributor Information and Disclosures
Author

Tarakad S Ramachandran, MBBS, MBA, MPH, FAAN, FACP, FAHA, FRCP, FRCPC, FRS, LRCP, MRCP, MRCS Professor Emeritus of Neurology and Psychiatry, Clinical Professor of Medicine, Clinical Professor of Family Medicine, Clinical Professor of Neurosurgery, State University of New York Upstate Medical University; Neuroscience Director, Department of Neurology, Crouse Irving Memorial Hospital

Tarakad S Ramachandran, MBBS, MBA, MPH, FAAN, FACP, FAHA, FRCP, FRCPC, FRS, LRCP, MRCP, MRCS is a member of the following medical societies: American College of International Physicians, American Heart Association, American Stroke Association, American Academy of Neurology, American Academy of Pain Medicine, American College of Forensic Examiners Institute, National Association of Managed Care Physicians, American College of Physicians, Royal College of Physicians, Royal College of Physicians and Surgeons of Canada, Royal College of Surgeons of England, Royal Society of Medicine

Disclosure: Nothing to disclose.

Coauthor(s)

Richard A Sater, MD, PhD, MD, PhD 

Richard A Sater, MD, PhD, MD, PhD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Neurology, American Medical Association, American Society of Neuroradiology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Glenn Lopate, MD Associate Professor, Department of Neurology, Division of Neuromuscular Diseases, Washington University School of Medicine; Consulting Staff, Department of Neurology, Barnes-Jewish Hospital

Glenn Lopate, MD is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Nicholas Lorenzo, MD, MHA, CPE Founding Editor-in-Chief, eMedicine Neurology; Founder and CEO/CMO, PHLT Consultants; Chief Medical Officer, MeMD Inc

Nicholas Lorenzo, MD, MHA, CPE is a member of the following medical societies: Alpha Omega Alpha, American Association for Physician Leadership, American Academy of Neurology

Disclosure: Nothing to disclose.

References
  1. HAYMAKER WE, KERNOHAN JW. The Landry-Guillain-Barré syndrome; a clinicopathologic report of 50 fatal cases and a critique of the literature. Medicine (Baltimore). 1949 Feb. 28(1):59-141. [Medline].

  2. Krucke W. Die primar-entzundliche polyneuritis unbekannter ursache. Handbuch des speziellen pathologischen anatomie und histologie. 1955. Berlin, Springer-Verlag:

  3. WAKSMAN BH, ADAMS RD. Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med. 1955 Aug 1. 102(2):213-36. [Medline].

  4. Nachamkin I, Barbosa PA, Ung H, Lobato C, Rivera AG, Rodriguez P. Patterns of Guillain-Barre syndrome in children: results from a Mexican population. Neurology. 2007 Oct 23. 69(17):1665-71. [Medline].

  5. Ropper AH. Unusual clinical variants and signs in Guillain-Barre syndrome. Arch Neurol. 1986 Nov. 43(11):1150-2. [Medline].

  6. Nagashima T, Koga M, Odaka M, Hirata K, Yuki N. Continuous spectrum of pharyngeal-cervical-brachial variant of Guillain-Barré syndrome. Arch Neurol. 2007 Oct. 64(10):1519-23. [Medline].

  7. Ladhani SN, O'Connor C, Kirkbride H, Brooks T, Morgan D. Outbreak of Zika virus disease in the Americas and the association with microcephaly, congenital malformations and Guillain-Barré syndrome. Arch Dis Child. 2016 Mar 14. [Medline].

  8. Tse AC, Cheung RT, Ho SL, Chan KH. Guillain-Barré syndrome associated with acute hepatitis E infection. J Clin Neurosci. 2012 Jan 26. [Medline].

  9. Wagner JC, Bromberg MB. HIV infection presenting with motor axonal variant of Guillain-Barré Syndrome. J Clin Neuromuscul Dis. 2007 Dec. 9(2):303-5. [Medline].

  10. Willison HJ. The immunobiology of Guillain-Barre syndromes. J Peripher Nerv Syst. 2005 Jun. 10(2):94-112. [Medline].

  11. Park SJ, Pai KS, Kim JH, Shin JI. The role of interleukin 6 in the pathogenesis of hyponatremia associated with Guillain-Barré syndrome. Nefrologia. 2012 Jan 27. 32(1):114. [Medline].

  12. Kaida K, Kamakura K, Ogawa G, Ueda M, Motoyoshi K, Arita M. GD1b-specific antibody induces ataxia in Guillain-Barre syndrome. Neurology. 2008 Jul 15. 71(3):196-201. [Medline].

  13. Cornblath DR. Electrophysiology in Guillain-Barré syndrome. Ann Neurol. 1990. 27 Suppl:S17-20. [Medline].

  14. Matsumoto H, Hanajima R, Terao Y, Hashida H, Ugawa Y. Cauda equina conduction time in Guillain-Barre syndrome. J Neurol Sci. 2015 Apr. 15. 351(1-2):187-90.

  15. Umapathi T. Li Z, Verma K, Yuki N. Sural-sparing is seen in axonal as well as demyelinating forms of Guillain-Barre syndrome. Clin Neurophysiol. 2015 Feb. 9. pii S1388-2457(15):00072-3.

  16. Jin K, Takeda A, Shiga Y, Sato S, Ohnuma A, Nomura H. CSF tau protein: a new prognostic marker for Guillain-Barré syndrome. Neurology. 2006 Oct 24. 67(8):1470-2. [Medline].

  17. Alshekhlee A, Hussain Z, Sultan B, Katirji B. Immunotherapy for Guillain-Barré syndrome in the US hospitals. J Clin Neuromuscul Dis. 2008 Sep. 10(1):4-10. [Medline].

  18. Hou HQ, Miao J, Feng XD, Han M, Song XJ, Guo L. Changes in lymphocyte subsets in patients with Guillain-Barre syndrome treated with immunoglobulin. BMC Neurol. 2014 Oct. 15. 14:202.

  19. Grand'Maison F, Feasby TE, Hahn AF, Koopman WJ. Recurrent Guillain-Barré syndrome. Clinical and laboratory features. Brain. 1992 Aug. 115 ( Pt 4):1093-106. [Medline].

  20. Wijdicks EF, Ropper AH. Acute relapsing Guillain-Barré syndrome after long asymptomatic intervals. Arch Neurol. 1990 Jan. 47(1):82-4. [Medline].

  21. Martic V, Lepic T. Recurrence of childhood Guillain-Barré syndrome after a long asymptomatic interval: a case report. J Clin Neuromuscul Dis. 2007 Sep. 9(1):256-61. [Medline].

  22. Souayah N, Nasar A, Suri MFK, Qureshi A. National Trends in Hospital Outcomes Among Patients with Guillain-Barre Syndrome Requiring Mechanical Ventilation. Journal of Clinical Neuromuscular Disease. 2008. 10(1):24-28.

  23. Frenzen PD. Economic cost of Guillain-Barré syndrome in the United States. Neurology. 2008 Jul 1. 71(1):21-7. [Medline].

  24. Asbury AK. Diagnostic considerations in Guillain-Barre syndrome. Ann Neurol. 1981. 9 Suppl:1-5. [Medline].

  25. Ascherio A, Bermudez CS, Garcia D. Outbreak of buckthorn paralysis in Nicaragua. J Trop Pediatr. 1992 Apr. 38(2):87-9. [Medline].

  26. Berlit P, Rakicky J. The Miller Fisher syndrome. Review of the literature. J Clin Neuroophthalmol. 1992 Mar. 12(1):57-63. [Medline].

  27. Chiba A, Kusunoki S, Obata H. Serum anti-GQ1b IgG antibody is associated with ophthalmoplegia in Miller Fisher syndrome and Guillain-Barre syndrome: clinical and immunohistochemical studies. Neurology. 1993 Oct. 43(10):1911-7. [Medline].

  28. Crino PB, Zimmerman R, Laskowitz D. Magnetic resonance imaging of the cauda equina in Guillain-Barre syndrome. Neurology. 1994 Jul. 44(7):1334-6. [Medline].

  29. Dwyer JM. Manipulating the immune system with immune globulin. N Engl J Med. 1992 Jan 9. 326(2):107-16. [Medline].

  30. Feasby TE. Axonal Guillain-Barre syndrome. Muscle Nerve. 1994 Jun. 17(6):678-9. [Medline].

  31. FISHER M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med. 1956 Jul 12. 255(2):57-65. [Medline].

  32. French Cooperative Group on Plasma Exchange in Guillain-Barre syndrome. Efficiency of plasma exchange in Guillain-Barre syndrome: role of replacement fluids. French Cooperative Group on Plasma Exchange in Guillain-Barre syndrome. Ann Neurol. 1987 Dec. 22(6):753-61. [Medline].

  33. Guillain G, Barre JA, Strohl A. Sur un syndrome de radiculo-nevrite avec hyperalbuminose du liquide cephalo-rachidien sans reaction cellulaire. Bulletins et memories de la Societe Medicale des Hopitaux de Paris. 1916. 40:1462.

  34. Guillain-Barré Syndrome Study Group. Plasmapheresis and acute Guillain-Barre syndrome. Neurology. 1985 Aug. 35(8):1096-104. [Medline].

  35. Hughes RAC. Guillain-Barre Syndrome. 1990.

  36. Irani DN, Cornblath DR, Chaudhry V. Relapse in Guillain-Barre syndrome after treatment with human immune globulin. Neurology. 1993 May. 43(5):872-5. [Medline].

  37. Landry O. Note sur la paralysis ascendante aigue. Gazette Hebdomadaire. 1859. 6:472.

  38. Leong H, Stachnik J, Bonk ME, Matuszewski KA. Unlabeled uses of intravenous immune globulin. Am J Health Syst Pharm. 2008 Oct 1. 65(19):1815-24. [Medline].

  39. McGrogan A, Madle GC, Seaman HE, de Vries CS. The Epidemiology of Guillain-Barré Syndrome Worldwide. A Systematic Literature Review. Neuroepidemiology. 2008 Dec 17. 32(2):150-163. [Medline].

  40. McKhann GM, Cornblath DR, Griffin JW. Acute motor axonal neuropathy: a frequent cause of acute flaccid paralysis in China. Ann Neurol. 1993 Apr. 33(4):333-42. [Medline].

  41. Osterman PO, Fagius J, Safwenberg J. Early relapse of acute inflammatory polyradiculoneuropathy after successful treatment with plasma exchange. Acta Neurol Scand. 1988 Apr. 77(4):273-7. [Medline].

  42. Plasma Exchange/Sandoglobulin Guillain-Barre Syndrome Trial Group. Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barre syndrome. Lancet. 1997 Jan 25. 349(9047):225-30. [Medline].

  43. Prineas JW. Acute idiopathic polyneuritis. An electron microscope study. Lab Invest. 1972 Feb. 26(2):133-47. [Medline].

  44. Ropper AH. Further regional variants of acute immune polyneuropathy. Bifacial weakness or sixth nerve paresis with paresthesias, lumbar polyradiculopathy, and ataxia with pharyngeal-cervical-brachial weakness. Arch Neurol. 1994 Jul. 51(7):671-5. [Medline].

  45. Ropper AH, Wijdicks EFM, Truax BT. Guillain-Barre Syndrome. Contemporary Neurology Series. 1991.

  46. Rostami AM, Sater RA. Guillain-Barre Syndrome. Neuroimmunology for the Clinician. 1997. 205-228.

  47. Sater RA, Rostami A. Treatment of Guillain-Barre syndrome with intravenous immunoglobulin. Neurology. 1998 Dec. 51(6 Suppl 5):S9-15. [Medline].

  48. van der Meche FG, Schmitz PI. A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barre syndrome. Dutch Guillain-Barre Study Group. N Engl J Med. 1992 Apr 23. 326(17):1123-9. [Medline].

  49. Vriesendorp FJ, Mishu B, Blaser MJ. Serum antibodies to GM1, GD1b, peripheral nerve myelin, and Campylobacter jejuni in patients with Guillain-Barre syndrome and controls: correlation and prognosis. Ann Neurol. 1993 Aug. 34(2):130-5. [Medline].

  50. Vriesendorp FJ, Triggs WJ, Mayer RF. Electrophysiological studies in Guillain-Barre syndrome: correlation with antibodies to GM1, GD1B and Campylobacter jejuni. J Neurol. 1995 Jul. 242(7):460-5. [Medline].

  51. Willison HJ, Winer JB. Clinical evaluation and investigation of neuropathy. J Neurol Neurosurg Psychiatry. 2003 Jun. 74 Suppl 2:ii3-ii8. [Medline].

  52. Young RR, Asbury AK, Corbett JL. Pure pandysautonomia with recovery. Description and discussion of diagnostic criteria. Brain. 1975 Dec. 98(4):613-36. [Medline].

  53. Yuki N, Taki T, Inagaki F. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J Exp Med. 1993 Nov 1. 178(5):1771-5. [Medline].

  54. Yuki N, Taki T, Takahashi M, Saito K, Yoshino H, Tai T, et al. Molecular mimicry between GQ1b ganglioside and lipopolysaccharides of Campylobacter jejuni isolated from patients with Fisher's syndrome. Ann Neurol. 1994 Nov. 36(5):791-3. [Medline].

  55. Ubogu ee. Inflammatory neuropathies: pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol. Epub 2015 Aug 12 - 2015 Oct. 130(4):445-68. [Full Text].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.