Medscape is available in 5 Language Editions – Choose your Edition here.


Autonomic Neuropathy

  • Author: Steven D Arbogast, DO; Chief Editor: Nicholas Lorenzo, MD, MHA, CPE  more...
Updated: May 05, 2016


Autonomic neuropathies are a collection of syndromes and diseases affecting the autonomic neurons, either parasympathetic or sympathetic, or both. Autonomic neuropathies can be hereditary or acquired in nature. Most often, they occur in conjunction with a somatic neuropathy, but they can also occur in isolation.

The autonomic nervous system modulates numerous body functions; therefore, autonomic dysfunction may manifest with numerous clinical phenotypes and various laboratory and neurophysiologic abnormalities. Although a patient may present with symptoms related to a single portion of the autonomic system, the physician must be vigilant for other affected parts of the autonomic system.

In some forms, the degree and type of autonomic system involvement varies extensively. In some patients, the degree of autonomic dysfunction may be subclinical or clinically irrelevant; in others, symptoms may be disabling. Several clinically important features of autonomic neuropathies are treatable; therefore, the physician must be alert to these features.



The pathophysiology of autonomic neuropathies is variable and depends upon the underlying medical conditions. We have chosen to classify the autonomic neuropathies into hereditary and acquired. The acquired autonomic neuropathies may then be subsequently subdivided into primary or secondary.


Inherited Autonomic Neuropathies

All forms of inherited autonomic neuropathies are rare. Familial amyloid polyneuropathy, the hereditary sensory autonomic neuropathies, Fabry disease, and the porphyrias are genetic diseases in which autonomic neuropathy is a common feature.

Familial amyloid polyneuropathy

Familial amyloid polyneuropathy (FAP) is often caused by a genetic mutation of the transthyretin gene. Mutant transthyretin produced in the liver accumulates as amyloid deposits in the peripheral nervous system and autonomic nervous system. Rarely, a mutation in the gelsolin gene, which produces a protein important in cytoskeletal actin function, may also lead to amyloid deposition in autonomic nerves. Liver transplantation, currently the most effective treatment for FAP, may slow the development of autonomic neuropathy, but not in all cases.[1]

Hereditary sensory autonomic neuropathy

Currently, 5 types of hereditary sensory autonomic neuropathy (HSAN) have been defined (see Table 1). These types differ in their presentation, the portions of the autonomic nervous system affected, their associated genes, and inheritance pattern.[2]

HSAN I has an autosomal dominant inheritance, and the disease is characterized by distal limb involvement with marked sensory loss, including loss of pain sensation, making affected individuals more susceptible to injury. HSAN I has been associated with point mutations in serine palmitoyltransferase (SPT) at chromosome arm 9q22.1-q22.3.[3] SPT is the rate-limiting enzyme in synthesis of sphingolipids, including ceramide and sphingomyelin. Ceramide is necessary for regulation of programmed cell death in a number of tissues, including the differentiation of neuronal cells.

HSAN II is inherited as an autosomal recessive condition and is more severe with a congenital onset. HSAN II has a pansensory loss with early ulcers, and nerves demonstrate a marked loss of myelinated and unmyelinated fibers.

HSAN III (Riley-Day syndrome) is autosomal recessive in Ashkenazi Jews, with early childhood onset of autonomic crises. The genetic defect in HSAN III is in the inhibitor of kappa light polypeptide gene enhancer in B cells, kinase complex-associated protein (IKBKAP) at chromosome arm 9q31. HSAN III nerve pathology shows absence of unmyelinated fibers with essentially normal myelinated fibers.[4]

Patients with HSAN IV present with widespread anhidrosis and insensitivity to pain. The genetic defect in HSAN IV is in the tyrosine kinase receptor A or nerve growth factor receptor at chromosome arm 1q21-q22. This defect is autosomal recessive. Recently, 2 novel missense mutations in the tyrosine kinase domain were found in a 10-year-old patient with HSAN IV.[5] This finding may provide a better understanding of the neuropathophysiology of HSAN IV.

Patients with HSAN V present with pain insensitivity and preservation of other sensory modalities. Some patients with HSAN V have similar genetic abnormalities to those with HSAN IV. The genetic mutation has been isolated to the nerve growth factor beta gene.[6]

Table. Types of HSAN (Open Table in a new window)

HSAN Mode of Inheritance Onset Symptoms Signs
Type I Autosomal dominant, point mutations in SPT, 9q22.1-9q22.3 Second decade of life Distal lower-limb involvement, ulceration of the feet, particularly the soles Low sensory action potential amplitude
Type II, Morvan disease Autosomal recessive Congenital onset Pansensory loss of upper and lower limbs, also trunk and forehead; early ulcers Loss of myelinated and unmyelinated fibers
Type III, Riley-Day syndrome or familial dysautonomia) Autosomal recessive, 9q31 Childhood onset, predominantly Ashkenazi Jews Pallor in infancy, irregularities in temperature and blood pressure; Difficulties in eating and swallowing Absence of unmyelinated fibers
Type IV Autosomal recessive, 1q21-1q22 Congenital onset Widespread anhidrosis, lost sense of pain, mental retardation Loss of myelinated and small unmyelinated fibers
Type V Autosomal recessive Congenital onset Pain insensitivity in extremities Not applicable


Fabry disease

Fabry disease is an X-linked recessive disorder with mutations in the gene for alpha-galactosidase. Somatic and autonomic neuropathy is due to accumulation of glycolipids. Attacks may be triggered by changes in temperature or exercise. Nerve pathology demonstrates loss of both small myelinated and unmyelinated fibers.[7]

Acute intermittent porphyria and variegate porphyria

Acute intermittent porphyria and variegate porphyria can both have forms of peripheral neuropathy. Attacks can be triggered by exposure to particular drugs. During episodes, affected individuals present with acute polyneuropathy that may mimic Guillain-Barré syndrome. Autonomic dysfunction, particularly cardiac and vascular in nature, can be prominent.


Acquired Autonomic Neuropathies

The acquired autonomic neuropathies are much more prevalent than the inherited ones. Here, we subclassify the acquired autonomic neuropathies into primary and secondary disorders. Primary autonomic neuropathies are disorders that are idiopathic or that have autonomic neuropathy as a characteristic feature of the disease process itself. In the secondary autonomic neuropathies, an identifiable cause, such as a nutritional deficiency, may lead to autonomic neuropathy, but does not have autonomic neuropathy as a defining feature of the disease process. Subclassification can be somewhat artificial as the true mechanism of action is not clear in all cases, although it can be helpful when trying to develop an understanding of autonomic neuropathy.

Primary acquired autonomic neuropathies

See the list below:

  • Pandysautonomia: The syndrome of acute pandysautonomia includes both parasympathetic and sympathetic dysfunction. [8] An immunologic basis for acute pandysautonomia remains most likely, often with onset after a viral illness. Patients with what may have otherwise been called idiopathic autonomic neuropathy may test positive for an autonomic ganglionic acetylcholine receptor antibody supporting the autoimmune etiology of this condition. [9]
  • Idiopathic distal small-fiber neuropathy: Idiopathic distal small-fiber neuropathy is a chronic peripheral somatic neuropathy affecting sympathetic postganglionic sudomotor fibers. Clinical features may include allodynia, sympathetic vasomotor changes, pallor and rubor, cyanosis, and even mottling. [10]
  • Holmes-Adie syndrome and Ross syndrome: Holmes-Adie syndrome is probably autoimmune in nature and manifests as tonic pupil or pupils associated with tendon areflexia. In rare cases, it is associated with an autonomic neuropathy with prominent orthostatic hypotension. [11] Ross syndrome is a related condition where segmental anhidrosis occurs in conjunction with Adie pupil. [12]
  • Chronic idiopathic anhidrosis: Chronic idiopathic anhidrosis is an acquired generalized loss of sweating without other autonomic features. The lesions may be pre- or postganglionic. [13]
  • Amyloid neuropathy: Amyloid neuropathy can be inherited as noted above; however, it can also be associated with hematologic disease, such as multiple myeloma, leading to accumulation of immunoglobulins kappa or lambda light chains. [14] Another acquired amyloidosis occurs with dialysis, with β2-microglobulin deposits in the nervous system. In syndromes of amyloidosis, the development of generalized autonomic failure significantly worsens the overall prognosis. Of all autonomic neuropathies, amyloidosis probably causes the most severe forms, with universal autonomic dysfunction common. A somatic neuropathy is often coexistent. [15]
  • Postural orthostatic tachycardia syndrome: Postural orthostatic tachycardia syndrome (POTS) is a syndrome most common in young females with orthostatic intolerance characterized by palpitations with excessive orthostatic sinus tachycardia, sensation of lightheadedness, and near-syncope. POTS may be associated with an infectious prodrome and thus may represent the chronic sequelae of a forme fruste of postviral pandysautonomia. [16] Antibodies against ganglionic receptors are found in 9% of patients with POTS. [17]

Secondary acquired autonomic neuropathies

Metabolic derangements that may have an associated autonomic neuropathy are as follows:

  • Diabetes mellitus
    • Diabetes mellitus is the most common cause of autonomic neuropathy. Neuropathy is the most common complication of diabetes mellitus and may have both somatic and autonomic features.[18, 19, 20, 21] See Medscape Reference's article on Diabetic Neuropathy. Parasympathetic abnormalities are thought to precede sympathetic abnormalities, but this has not been verified.
    • A disorder called acute diabetic autonomic neuropathy appears as an acute pandysautonomia and may be associated with ganglionic antibodies in some patients. Diabetic radiculoplexopathy is associated with prominent autonomic dysfunction, which may have an immunologic cause with destruction of both large and small nerve fibers.[18]
    • Diabetes affects autonomic neurons differently; sympathetic neurons from the celiac/superior mesenteric ganglia develop pathological changes, while sympathetic superior cervical ganglion neurons do not. This selectivity may be related to increased sensitivity to oxidative stress.[22]
  • Uremic neuropathy: Uremic neuropathy is a primarily somatic neuropathy commonly associated with coexistent autonomic neuropathy, either symptomatic or subclinical. The cause of uremic neuropathy remains unknown, although either accumulated toxins or lack of a neurotrophic factor may be responsible because renal transplantation reverses autonomic dysfunction while dialysis does not. [23]
  • Hepatic disease–related neuropathy: Neuropathies related to hepatic disease, such as primary biliary cirrhosis, can be associated with autonomic neuropathy in 48% of patients. The cause of autonomic neuropathy in hepatic disease remains unclear, but it may be associated with toxic metabolite accumulation or related immune-mediated mechanisms. It may be reversible following liver transplantation. Maheshwari et al hypothesized that patients with autonomic neuropathies are more likely to develop hepatic encephalopathy due to a decreased intestinal transit time. [24] Although this group's study did not show an independent effect of autonomic neuropathy on hepatic encephalopathy, their findings did demonstrate that patients with autonomic neuropathies were more likely to develop new-onset hepatic encephalopathy.

Vitamin deficiencies, toxins, and drugs that may have an associated autonomic neuropathy are as follows:

  • Vitamin deficiency and nutrition-related neuropathy: Deficiency of vitamin B 12 neuropathy may also be associated with autonomic dysfunction. [25]
  • Toxic and drug-induced autonomic neuropathy: Toxic and drug-induced autonomic neuropathies may occur with a large variety of chemotherapeutic medications such as vincristine, cisplatin, carboplatin, vinorelbine, paclitaxel, and suramin. Other therapeutic agents associated with a toxic autonomic neuropathy include acrylamide, pyridoxine, thallium, amiodarone, perhexiline, and gemcitabine. [7]
  • Alcohol may be associated with an autonomic neuropathy, possibly related to directly toxic effects of alcohol, although thiamine deficiency may also play a role. [26]

Infectious diseases that may have an associated autonomic neuropathy are as follows:

  • Lyme disease: Patients with Lyme disease have shown lymphoplasmocellular infiltrates in the autonomic ganglia. [27]
  • HIV infection: HIV infection may lead to autonomic neuropathy, particularly in late-terminal stages of disease. [28] . Often, this occurs in conjunction with a somatic neuropathy related to HIV infection or complications of AIDS. [29]
  • Chagas disease: Chagas disease due to infection with Trypanosoma cruzi is occasionally associated with autonomic neuropathy during the chronic stage of infection. [30] Parasympathetic dysfunction tends to be greater than sympathetic dysfunction. [31] Autoimmune destruction of the peripheral nervous system and autonomic nervous system may occur, especially of autonomic nerves supplying the cardiovascular and gastrointestinal systems.
  • Botulism: Botulism produces neuromuscular paralysis by inhibiting the release of acetylcholine from the presynaptic terminus, as well as an acute cholinergic neuropathy. [32]
  • Diphtheria: Diphtheria has been associated with an autonomic neuropathy. Although the mechanism of action is not clear, the parasympathetic nervous system may be more affected than the sympathetic. [33]
  • Leprosy: Leprosy causes nerve injury by direct invasion of Mycobacterium leprae into the nerve and Schwann cells. [34] Leprosy has been shown to affect both the sympathetic and parasympathetic nervous system. [35]

Autoimmune conditions that may have an associated autonomic neuropathy are as follows:

  • Celiac disease: Autonomic neuropathy may occur in approximately 50% of adults with celiac disease, leading to clinical features of presyncope and postural nausea. [36] Autonomic denervation may be related to antineuronal antibodies; the neuropathy does not appear to respond to a gluten-free diet. [37]
  • Sj ö gren syndrome: Sj ö gren syndrome may lead to peripheral and autonomic neuropathy without characteristic systemic symptoms. A small-fiber neuropathy associated with Sj ö gren syndrome can be associated with widespread anhidrosis. Also, a sensory neuronopathy due to Sj ö gren syndrome can be associated with autonomic dysfunction. The cause of neuropathy in these patients is likely to be autoimmune, but this remains unclear. [38]
  • Rheumatoid arthritis, systemic lupus erythematosus, and connective tissue disorders: Abnormalities of sympathetic postganglionic function may be seen in rheumatoid arthritis, systemic lupus erythematosus, and other connective tissue disorders. Some of these patients may have autoantibodies to ganglionic acetylcholine receptors. Autoimmune thyroiditis, such as chronic thyroiditis and Hashimoto thyroiditis, can be associated with some features of Sj ö gren syndrome such as xerostomia. Patients with systemic sclerosis and mixed connective tissue disorder may have abnormalities of autonomic functioning of esophageal motor activity. [7]
  • Guillain-Barré syndrome: Guillain-Barré syndrome (GBS), or acute inflammatory demyelinating polyneuropathy (AIDP), is an acute autoimmune somatic neuropathy commonly associated with prominent autonomic dysfunction that can lead to both morbidity and mortality. [39, 40] Autoantibodies can be found against gangliosides, such as with anti-GM1 antibodies. Pathologic studies of the autonomic nervous system in GBS may demonstrate edema and inflammation of autonomic ganglia and destruction of peripheral ganglion cells. Chromatolysis, mononuclear cell infiltration, and nodules of Nageotte can be found within sympathetic ganglia. [39]
  • Lambert-Eaton myasthenic syndrome: Lambert-Eaton myasthenic syndrome (LEMS) is an acquired neuromuscular transmission disorder with antibodies present against presynaptic voltage-gated P/Q-type Ca 2+ channels. LEMS is frequently associated with clinical and electrophysiologic evidence of dysautonomia, which can be severe in 20% of patients with LEMS. [41] In 50% of cases, LEMS is associated with a neoplasm, most commonly small cell carcinoma of the lung.
  • Paraneoplastic autonomic neuropathy
    • Paraneoplastic autonomic neuropathy may occur as a component of paraneoplastic neuronopathy with anti-Hu antibodies in 23% of patients. Autonomic dysfunction appears to result from autoimmune destruction of autonomic postganglionic and myenteric neurons.[42]
    • A variant of paraneoplastic autonomic neuropathy is an enteric neuronopathy that exists with antibodies directed against the myenteric plexus (anti-enteric neuronal antibodies).[43] Other paraneoplastic autonomic syndromes may have autoantibodies against neuronal cytoplasmic proteins of the collapsin response–mediator family (CRMP-5) and against Purkinje cell cytoplasm (PCA-2).[44]
  • Inflammatory bowel disease: Inflammatory bowel disease–related disorders may rarely have an associated autonomic neuropathy, particularly involving the pupillary nerves. [45]



Falls and loss of consciousness are significant contributors to morbidity associated with autonomic neuropathies. They may lead to injury, particularly in the elderly. Often, an autonomic neuropathy manifests with orthostatic hypotension, which has been associated with increased mortality in the middle aged and elderly.[46] As the autonomic nervous system is involved in involuntary control of almost every organ system, patients may have many other complaints that are discussed below.

Many cases of autonomic neuropathy have a gradually progressive course, leading to a poor outcome. Patients with severe dysautonomia are at risk for sudden death secondary to cardiac dysrhythmia, as has been documented in GBS and diabetic neuropathy. Single-photon emission CT (SPECT) and positron emission tomography (PET) have demonstrated that cardiac sympathetic dysfunction is commonly present in both type I and type II diabetes mellitus. When associated with vascular complications, dysautonomia related to diabetic neuropathy is also associated with increased mortality. In other disorders, other forms of systemic dysfunction, such as with kidney failure in Fabry disease, may lead to mortality.


Autonomic neuropathies may be seen in all races and ethnicities. Certain subtypes may demonstrate an increased incidence in specific ethnic groups. These subtypes are addressed individually above.


In general, no predilection for autonomic neuropathies exists with regard to sex. POTS and connective tissue diseases are more common among females. Fabry disease is inherited as an X-linked recessive disorder; therefore, it manifests predominantly in males.


In general, no predilection for autonomic neuropathies exists with regard to age. Age of onset is highly dependent upon the underlying pathophysiology. Patients with most forms of HSAN (except HSAN I) present at birth or in childhood.

Contributor Information and Disclosures

Steven D Arbogast, DO Fellow, Neuromuscular Medicine, University Hospitals Case Medical Center, Cleveland

Steven D Arbogast, DO is a member of the following medical societies: American Academy of Neurology, American Osteopathic Association

Disclosure: Nothing to disclose.


Bashar Katirji, MD, FACP Director, Neuromuscular Center and EMG Laboratory, The Neurological Institute, University Hospitals Case Medical Center; Professor of Neurology, Case Western Reserve University School of Medicine

Bashar Katirji, MD, FACP is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American College of Physicians, American Neurological Association

Disclosure: Nothing to disclose.

J Douglas Miles, MD, PhD Assistant Professor of Neuroscience, Marshall University School of Medicine, and Clinical Instructor of Neurology, Case Western Reserve University School of Medicine

J Douglas Miles, MD, PhD is a member of the following medical societies: American Academy of Neurology, American Medical Association, Society for Neuroscience

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Glenn Lopate, MD Associate Professor, Department of Neurology, Division of Neuromuscular Diseases, Washington University School of Medicine; Consulting Staff, Department of Neurology, Barnes-Jewish Hospital

Glenn Lopate, MD is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, Phi Beta Kappa

Disclosure: Nothing to disclose.

Chief Editor

Nicholas Lorenzo, MD, MHA, CPE Founding Editor-in-Chief, eMedicine Neurology; Founder and CEO/CMO, PHLT Consultants; Chief Medical Officer, MeMD Inc

Nicholas Lorenzo, MD, MHA, CPE is a member of the following medical societies: Alpha Omega Alpha, American Association for Physician Leadership, American Academy of Neurology

Disclosure: Nothing to disclose.

Additional Contributors

Paul E Barkhaus, MD Professor of Neurology and Physical Medicine and Rehabilitation, Department of Neurology, Medical College of Wisconsin; Section Chief, Neuromuscular and Autonomic Disorders, Department of Neurology, Director, ALS Program, Medical College of Wisconsin

Paul E Barkhaus, MD is a member of the following medical societies: American Academy of Neurology, American Neurological Association, American Association of Neuromuscular and Electrodiagnostic Medicine

Disclosure: Nothing to disclose.

  1. Delahaye N, Rouzet F, Sarda L, et al. Impact of liver transplantation on cardiac autonomic denervation in familial amyloid polyneuropathy. Medicine (Baltimore). 2006. 85(4):229-238. [Medline].

  2. Davidson GL, Murphy SM, Polke JM, Laura M, Salih MA, Muntoni F, et al. Frequency of mutations in the genes associated with hereditary sensory and autonomic neuropathy in a UK cohort. J Neurol. 2012 Feb 1. [Medline].

  3. Bejaoui K, Wu C, Scheffler MD, et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat Genet. 2001 Mar. 27(3):261-2. [Medline].

  4. Low PA, Vernino S, Suarez G. Autonomic dysfunction in peripheral nerve disease. Muscle Nerve. 2003 Jun. 27(6):646-61. [Medline].

  5. Ohto T, Iwasaki N, Fujiwara J, et al. The evaluation of autonomic nervous function in a patient with hereditary sensory and autonomic neuropathy type IV with novel mutations of the TRKA gene. Neuropediatrics. 2004 Oct. 35(5):274-8. [Medline].

  6. Einarsdottir E, Carlsson A, Minde J, et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet. 2004 Apr 15. 13(8):799-805. [Medline].

  7. Low PA. Clinical autonomic disorders: evaluation and management. 2nd ed. New York: Lippincott Raven; 1997.

  8. Low PA, Dyck PJ, Lambert EH, et al. Acute panautonomic neuropathy. Ann Neurol. 1983 Apr. 13(4):412-7. [Medline].

  9. Vernino S, Low PA, Fealey RD, Stewart JD, Farrugia G, Lennon VA. Autoantibodies to ganglionic acetylcholine receptors in autoimmune autonomic neuropathies. N Engl J Med. 2000 Sep 21. 343(12):847-55. [Medline].

  10. Stewart JD, Low PA, Fealey RD. Distal small fiber neuropathy: results of tests of sweating and autonomic cardiovascular reflexes. Muscle Nerve. 1992 Jun. 15(6):661-5. [Medline].

  11. Emond D, Lebel M. Orthostatic hypotension and Holmes-Adie syndrome. Usefulness of the Valsalva ratio in the evaluation of baroreceptor dysfunction. J Hum Hypertens. 2002 Sep. 16(9):661-2. [Medline].

  12. Nolano M, Provitera V, Perretti A, Stancanelli A, Saltalamacchia AM, Donadio V, et al. Ross syndrome: a rare or a misknown disorder of thermoregulation? A skin innervation study on 12 subjects. Brain. 2006 Aug. 129:2119-31. [Medline].

  13. Low PA, Fealey RD, Sheps SG, Su WP, Trautmann JC, Kuntz NL. Chronic idiopathic anhidrosis. Ann Neurol. 1985 Sep. 18(3):344-8. [Medline].

  14. Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007 Oct. 36(4):411-23. [Medline].

  15. Kyle RA, Greipp PR. Amyloidosis (AL). Clinical and laboratory features in 229 cases. Mayo Clin Proc. 1983 Oct. 58(10):665-83. [Medline].

  16. Low PA, Novak V, Spies JM, et al. Cerebrovascular regulation in the postural orthostatic tachycardia syndrome (POTS). Am J Med Sci. 1999 Feb. 317(2):124-33. [Medline].

  17. Novak V, Novak P, Opfer-Gehrking TL, et al. Clinical and laboratory indices that enhance the diagnosis of postural tachycardia syndrome. Mayo Clin Proc. 1998 Dec. 73(12):1141-50. [Medline].

  18. Zochodne DW. Diabetic neuropathies: features and mechanisms. Brain Pathol. 1999 Apr. 9(2):369-91. [Medline].

  19. Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003 Dec. 23(4):365-72. [Medline].

  20. Clements RS Jr, Flint MA. Coping with autonomic neuropathy. J Diabet Complications. 1988 Jul-Sep. 2(3):130-2. [Medline].

  21. Supriya Simon A, Dinesh Roy D, Jayapal V, Vijayakumar T. Somatic DNA damages in cardiovascular autonomic neuropathy. Indian J Clin Biochem. 2011 Jan. 26(1):50-6. [Medline]. [Full Text].

  22. Semra YK, Wang M, Peat NJ, et al. Selective susceptibility of different populations of sympathetic neurons to diabetic neuropathy in vivo is reflected by increased vulnerability to oxidative stress in vitro. Neurosci Lett. 2006 Oct 30. 407(3):199-204. [Medline].

  23. Zochodne DW. The autonomic nervous system in peripheral neuropathies. Handbook of Clinical Neurology. 2000. 75(31):681-712.

  24. Maheshwari A, Thomas A, Thuluvath PJ. Patients with autonomic neuropathy are more likely to develop hepatic encephalopathy. Dig Dis Sci. 2004 Oct. 49(10):1584-8. [Medline].

  25. Beitzke M, Pfister P, Fortin J, Skrabal F. Autonomic dysfunction and hemodynamics in vitamin B12 deficiency. Auton Neurosci. 2002 Apr 18. 97(1):45-54. [Medline].

  26. Koike H, Sobue G. Alcoholic neuropathy. Curr Opin Neurol. 2006 Oct. 19(5):481-6. [Medline].

  27. Duray PH. Histopathology of clinical phases of human Lyme disease. Rheum Dis Clin North Am. 1989 Nov. 15(4):691-710. [Medline].

  28. Glück T, Degenhardt E, Schölmerich J, Lang B, Grossmann J, Straub RH. Autonomic neuropathy in patients with HIV: course, impact of disease stage, and medication. Clin Auton Res. 2000 Feb. 10(1):17-22. [Medline].

  29. Cohen JA, Laudenslager M. Autonomic nervous system involvement in patients with human immunodeficiency virus infection. Neurology. 1989 Aug. 39(8):1111-2. [Medline].

  30. Fernandez A, Hontebeyrie M, Said G. Autonomic neuropathy and immunological abnormalities in Chagas' disease. Clin Auton Res. 1992 Dec. 2(6):409-12. [Medline].

  31. Pentreath VW. Royal Society of Tropical Medicine and Hygiene Meeting at Manson House, London, 19 May 1994. Trypanosomiasis and the nervous system. Pathology and immunology. Trans R Soc Trop Med Hyg. 1995 Jan-Feb. 89(1):9-15. [Medline].

  32. Pickett JB 3rd. AAEE case report #16: Botulism. Muscle Nerve. 1988 Dec. 11(12):1201-5. [Medline].

  33. Idiaquez J. Autonomic dysfunction in diphtheritic neuropathy. J Neurol Neurosurg Psychiatry. 1992 Feb. 55(2):159-61. [Medline].

  34. Scollard DM. The biology of nerve injury in leprosy. Lepr Rev. 2008 Sep. 79(3):242-53. [Medline].

  35. Kyriakidis MK, Noutsis CG, Robinson-Kyriakidis CA, Venetsianos PJ, Vyssoulis GP, Toutouzas PC, et al. Autonomic neuropathy in leprosy. Int J Lepr Other Mycobact Dis. 1983 Sep. 51(3):331-5. [Medline].

  36. Gibbons CH, Freeman R. Autonomic neuropathy and coeliac disease. J Neurol Neurosurg Psychiatry. 2005 Apr. 76(4):579-81. [Medline].

  37. Tursi A, Giorgetti GM, Iani C. Peripheral Neurological Disturbances, Autonomic Dysfunction, and Antineuronal Antibodies in Adult Celiac Disease Before and After a Gluten-Free Diet. Dig Dis Sci. 2006 Sep 12; [Epub ahead of print]. [Medline].

  38. Gemignani F, Marbini A, Pavesi G, Di Vittorio S, Manganelli P, Cenacchi G, et al. Peripheral neuropathy associated with primary Sjögren's syndrome. J Neurol Neurosurg Psychiatry. 1994 Aug. 57(8):983-6. [Medline].

  39. Zochodne DW. Autonomic involvement in Guillain-Barré syndrome: a review. Muscle Nerve. 1994 Oct. 17(10):1145-55. [Medline].

  40. Panegyres PK, Mastaglia FL. Guillain-Barre syndrome with involvement of the central and autonomic nervous systems. Med J Aust. 1989 Jun 5. 150(11):655-9. [Medline].

  41. O'Suilleabhain P, Low PA, Lennon VA. Autonomic dysfunction in the Lambert-Eaton myasthenic syndrome: serologic and clinical correlates. Neurology. 1998 Jan. 50(1):88-93. [Medline].

  42. Sillevis Smitt P, Grefkens J, de Leeuw B, et al. Survival and outcome in 73 anti-Hu positive patients with paraneoplastic encephalomyelitis/sensory neuronopathy. J Neurol. 2002 Jun. 249(6):745-53. [Medline].

  43. Zenone T. [Autoimmunity and cancer: paraneoplastic neurological syndromes associated with small cell cancer]. Bull Cancer. 1992. 79(9):837-53. [Medline].

  44. Yu Z, Kryzer TJ, Griesmann GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001 Feb. 49(2):146-54. [Medline].

  45. Straub RH, Antoniou E, Zeuner M, et al. Association of autonomic nervous hyperreflexia and systemic inflammation in patients with Crohn's disease and ulcerative colitis. J Neuroimmunol. 1997 Dec. 80(1-2):149-57. [Medline].

  46. Rose KM, Eigenbrodt ML, Biga RL, Couper DJ, Light KC, Sharrett AR, et al. Orthostatic hypotension predicts mortality in middle-aged adults: the Atherosclerosis Risk In Communities (ARIC) Study. Circulation. 2006 Aug 15. 114(7):630-6. [Medline].

  47. Suarez GA, Opfer-Gehrking TL, Offord KP, et al. The Autonomic Symptom Profile: a new instrument to assess autonomic symptoms. Neurology. 1999 Feb. 52(3):523-8. [Medline].

  48. Watkins PJ. Diabetic diarrhea, gastroparesis, and gustatory sweating. Dyck PJ, Thomas PK, Asbury AK, et al, eds. Diabetic Neuropathy. Philadelphia: WB Saunders Co; 1987. 199-200.

  49. Bharucha AE, Camilleri M, Low PA, Zinsmeister AR. Autonomic dysfunction in gastrointestinal motility disorders. Gut. 1993 Mar. 34(3):397-401. [Medline].

  50. Törnblom H. Treatment of gastrointestinal autonomic neuropathy. Diabetologia. 2016 Mar. 59 (3):409-13. [Medline].

  51. England JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen JA, et al. Practice Parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology. 2009 Jan 13. 72(2):177-84. [Medline].

  52. Foss CH, Vestbo E, Frøland A, Gjessing HJ, Mogensen CE, Damsgaard EM. Autonomic neuropathy in nondiabetic offspring of type 2 diabetic subjects is associated with urinary albumin excretion rate and 24-h ambulatory blood pressure: the Fredericia Study. Diabetes. 2001 Mar. 50(3):630-6. [Medline].

  53. Fealey RD. Thermoregulatory sweat test. Low PA, ed. Clinical Autonomic Disorders: Evaluation and Management. 2nd ed. Philadelphia: Lippincott-Raven; 1997. 245-57.

  54. Yarnitsky D, Sprecher E. Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci. 1994 Aug. 125(1):39-45. [Medline].

  55. Davies DR, Smith SE. Pupil abnormality in amyloidosis with autonomic neuropathy. J Neurol Neurosurg Psychiatry. 1999 Dec. 67(6):819-22. [Medline].

  56. Gibbons CH, Illigens BM, Centi J, Freeman R. QDIRT: quantitative direct and indirect test of sudomotor function. Neurology. 2008 Jun 10. 70(24):2299-304. [Medline].

  57. Madersbacher HG. Neurogenic bladder dysfunction. Curr Opin Urol. 1999 Jul. 9(4):303-7. [Medline].

  58. Ascaso JF, Herreros B, Sanchiz V, et al. Oesophageal motility disorders in type 1 diabetes mellitus and their relation to cardiovascular autonomic neuropathy. Neurogastroenterol Motil. 2006. 18(9):813-822. [Medline].

  59. Bissinger A, Grycewicz T, Grabowicz W, Lubinski A. The effect of diabetic autonomic neuropathy on P-wave duration, dispersion and atrial fibrillation. Arch Med Sci. 2011 Oct. 7(5):806-12. [Medline]. [Full Text].

  60. Pavy-Le Traon A, Fontaine S, Tap G, Guidolin B, Senard JM, Hanaire H. Cardiovascular autonomic neuropathy and other complications in type 1 diabetes. Clin Auton Res. 2010 Jun. 20(3):153-60. [Medline].

  61. Ohlsson B, Melander O, Thorsson O, et al. Oesophageal dysmotility, delayed gastric emptying and autonomic neuropathy correlate to disturbed glucose homeostasis. Diabetologia. 2006 Sep. 49(9):2010-4. [Medline].

  62. Devigili G, Tugnoli V, Penza P, Camozzi F, Lombardi R, Melli G, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008 Jul. 131:1912-25. [Medline].

  63. Singer W, Spies JM, McArthur J, et al. Prospective evaluation of somatic and autonomic small fibers in selected autonomic neuropathies. Neurology. 2004 Feb 24. 62(4):612-8. [Medline].

  64. Nolano M, Provitera V, Crisci C, et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol. 2003 Aug. 54(2):197-205. [Medline].

  65. Nolano M, Crisci C, Santoro L, et al. Absent innervation of skin and sweat glands in congenital insensitivity to pain with anhidrosis. Clin Neurophysiol. 2000 Sep. 111(9):1596-601. [Medline].

  66. Klein CM, Vernino S, Lennon VA, et al. The spectrum of autoimmune autonomic neuropathies. Ann Neurol. 2003 Jun. 53(6):752-8. [Medline].

  67. Low PA. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc. 1993 Aug. 68(8):748-52. [Medline].

  68. Jordan J, Shannon JR, Black BK, et al. The pressor response to water drinking in humans : a sympathetic reflex?. Circulation. 2000 Feb 8. 101(5):504-9. [Medline].

  69. van Lieshout JJ, ten Harkel AD, Wieling W. Physical manoeuvres for combating orthostatic dizziness in autonomic failure. Lancet. 1992 Apr 11. 339(8798):897-8. [Medline].

  70. Thieben MJ, Sandroni P, Sletten DM, Benrud-Larson LM, Fealey RD, Vernino S, et al. Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc. 2007 Mar. 82(3):308-13. [Medline].

  71. Freeman R. Current pharmacologic treatment for orthostatic hypotension. Clin Auton Res. 2008 Mar. 18 Suppl 1:14-8. [Medline].

  72. Low PA. Autonomic neuropathies. Curr Opin Neurol. 1998 Oct. 11(5):531-7. [Medline].

  73. Singer W, Opfer-Gehrking TL, Nickander KK, Hines SM, Low PA. Acetylcholinesterase inhibition in patients with orthostatic intolerance. J Clin Neurophysiol. 2006 Oct. 23(5):476-81. [Medline].

  74. Grubb BP. Neurocardiogenic syncope and related disorders of orthostatic intolerance. Circulation. 2005 Jun 7. 111(22):2997-3006. [Medline].

  75. Gordon VM, Opfer-Gehrking TL, Novak V, Low PA. Hemodynamic and symptomatic effects of acute interventions on tilt in patients with postural tachycardia syndrome. Clin Auton Res. 2000 Feb. 10(1):29-33. [Medline].

  76. Winkler AS, Landau S, Watkins PJ. Erythropoietin treatment of postural hypotension in anemic type 1 diabetic patients with autonomic neuropathy: a case study of four patients. Diabetes Care. 2001 Jun. 24(6):1121-3. [Medline].

  77. Mathias CJ, Fosbraey P, da Costa DF, Thornley A, Bannister R. The effect of desmopressin on nocturnal polyuria, overnight weight loss, and morning postural hypotension in patients with autonomic failure. Br Med J (Clin Res Ed). 1986 Aug 9. 293(6543):353-4. [Medline].

  78. Dalakas MC. The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: evidence-based indications and safety profile. Pharmacol Ther. 2004 Jun. 102(3):177-93. [Medline].

  79. Schroeder C, Vernino S, Birkenfeld AL, Tank J, Heusser K, Lipp A, et al. Plasma exchange for primary autoimmune autonomic failure. N Engl J Med. 2005 Oct 13. 353(15):1585-90. [Medline].

  80. Modoni A, Mirabella M, Madia F, Sanna T, Lanza G, Tonali PA, et al. Chronic autoimmune autonomic neuropathy responsive to immunosuppressive therapy. Neurology. 2007 Jan 9. 68(2):161-2. [Medline].

  81. Shotton HR, Adams A, Lincoln J. Effect of aminoguanidine treatment on diabetes-induced changes in the myenteric plexus of rat ileum. Auton Neurosci. 2006 Sep 18 [Epub ahead of print]. [Medline].

  82. Klein CM. Evaluation and management of autonomic nervous system disorders. Semin Neurol. 2008 Apr. 28(2):195-204. [Medline].

  83. Grunfeld A, Murray CA, Solish N. Botulinum toxin for hyperhidrosis: a review. Am J Clin Dermatol. 2009. 10(2):87-102. [Medline].

  84. Monteiro E, Perdigoto R, Furtado AL. Liver transplantation for familial amyloid polyneuropathy. Hepatogastroenterology. 1998 Sep-Oct. 45(23):1375-80. [Medline].

  85. Tashima K, Ando Y, Terazaki H, et al. Outcome of liver transplantation for transthyretin amyloidosis: follow-up of Japanese familial amyloidotic polyneuropathy patients. J Neurol Sci. 1999 Dec 1. 171(1):19-23. [Medline].

  86. Antonelli Incalzi R, Fuso L, Pitocco D, et al. Decline of neuroadrenergic bronchial innervation and respiratory function in type 1 diabetes mellitus: a longitudinal study. Diabetes Metab Res Rev. 2006 Oct 2. [Medline].

  87. Dawkins JL, Hulme DJ, Brahmbhatt SB, et al. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet. 2001 Mar. 27(3):309-12. [Medline].

  88. El-Atat FA, McFarlane SI, Sowers JR, Bigger JT. Sudden cardiac death in patients with diabetes. Curr Diab Rep. 2004 Jun. 4(3):187-93. [Medline].

  89. Holland NR, Crawford TO, Hauer P, et al. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol. 1998 Jul. 44(1):47-59. [Medline].

  90. Kamalakannan D, Baskar V, Singh BM. Severe and disabling diabetic autonomic neuropathy: a case report. J Diabetes Complications. 2004 Mar-Apr. 18(2):126-8. [Medline].

  91. Kudat H, Akkaya V, Sozen AB, et al. Heart rate variability in diabetes patients. J Int Med Res. 2006 May-Jun. 34(3):291-6. [Medline].

  92. Low PA, Caskey PE, Tuck RR, et al. Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol. 1983 Nov. 14(5):573-80. [Medline].

  93. Lyu RK, Tang LM, Wu YR, Chen ST. Cardiovascular autonomic function and sympathetic skin response in chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve. 2002 Nov. 26(5):669-72. [Medline].

  94. Toth C, Zochodne DW. Other autonomic neuropathies. Semin Neurol. 2003 Dec. 23(4):373-80. [Medline].

  95. Zochodne DW, Auer R, Fritzler MJ. Longstanding ataxic demyelinating polyneuronopathy with a novel autoantibody. Neurology. 2003 Jan 14. 60(1):127-9. [Medline].

Table. Types of HSAN
HSAN Mode of Inheritance Onset Symptoms Signs
Type I Autosomal dominant, point mutations in SPT, 9q22.1-9q22.3 Second decade of life Distal lower-limb involvement, ulceration of the feet, particularly the soles Low sensory action potential amplitude
Type II, Morvan disease Autosomal recessive Congenital onset Pansensory loss of upper and lower limbs, also trunk and forehead; early ulcers Loss of myelinated and unmyelinated fibers
Type III, Riley-Day syndrome or familial dysautonomia) Autosomal recessive, 9q31 Childhood onset, predominantly Ashkenazi Jews Pallor in infancy, irregularities in temperature and blood pressure; Difficulties in eating and swallowing Absence of unmyelinated fibers
Type IV Autosomal recessive, 1q21-1q22 Congenital onset Widespread anhidrosis, lost sense of pain, mental retardation Loss of myelinated and small unmyelinated fibers
Type V Autosomal recessive Congenital onset Pain insensitivity in extremities Not applicable
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.