Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Pediatric Idiopathic Intracranial Hypertension Workup

  • Author: Jasvinder Chawla, MD, MBA; Chief Editor: Amy Kao, MD  more...
 
Updated: Feb 02, 2015
 

Laboratory Studies

The diagnosis of idiopathic intracranial hypertension (IIH) is made after other causes of increased intracranial pressure (ICP)—such as mass lesions (particularly those involving the midline [eg, medulloblastoma], and causes of recurrent or chronic headache (eg, migraine and hydrocephalus) have been excluded.

Laboratory studies should include evaluation for endocrine abnormalities if such evaluation is indicated by the history or the physical examination findings.

Next

MRI and Ultrasonography

Magnetic resonance imaging (MRI) of the brain with magnetic resonance venography (MRV) is preferred. In children, computed tomography (CT) of the head should be avoided when possible to minimize radiation exposure. The addition of MRV should enable one to exclude thrombosis of a major venous sinus.[20] Stenosis of the transverse sinus is a common finding in IIH but is probably the result of increased ICP. Brain MRI is normal but may show relatively small ventricles. Horev et al demonstrated narrowing of the transverse sinuses in IIH patients.[22] The main finding of their study is the increase in cerebral sinuses diameter after lumbar puncture. This observation should be considered when evaluating cerebral venous sinuses after lumbar puncture. The authors have recommended a larger scale study to validate their findings.

In a study from Shofty et al, pediatric patients with IIH, the optic nerve sheath diameter on MRI is significantly larger than that in healthy controls regardless of age group and sex.[23] This measurement might prove to be an auxiliary tool in the diagnosis of increased ICP in pediatric patients.

Brain imaging should be obtained before a lumbar puncture is performed. Careful measurements of opening and closing pressures should be obtained. Cerebrospinal fluid (CSF) studies yield normal results, except for an elevated opening pressure.

In the emergency department, bedside ultrasonography has been used to identify intracranial hypertension by measuring the diameter of the optic nerve sheath.[24]

Previous
Next

Lumbar Puncture

Performing lumbar puncture in children can be challenging and difficult; sedation may be required. CSF pressure may be falsely elevated in a crying child. In addition, no consensus exists as to what constitutes the upper limit of normal for different age groups.[12] In their review, Soler et al[25] gave the following values:

  • 0-2 years - 75 mm water
  • 2-5 years - 135 mm water

An intracranial pressure of 280 mm water has recently been established as the upper limit of normal in children.[3]

Diurnal variations in CSF pressure are seen; therefore, the pressure measured at any given time may not reflect the peaks. CSF pressure may be normal in patients with florid papilledema. If the diagnosis of IIH is suspected, repeat lumbar puncture or prolonged pressure monitoring (ie, with a Camino catheter or lumbar pressure catheter) should be considered.

The diagnosis of IIH requires that the CSF be of normal composition with respect to cell count, protein, and glucose.

Previous
 
 
Contributor Information and Disclosures
Author

Jasvinder Chawla, MD, MBA Chief of Neurology, Hines Veterans Affairs Hospital; Professor of Neurology, Loyola University Medical Center

Jasvinder Chawla, MD, MBA is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, American Clinical Neurophysiology Society, American Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Kenneth J Mack, MD, PhD Senior Associate Consultant, Department of Child and Adolescent Neurology, Mayo Clinic

Kenneth J Mack, MD, PhD is a member of the following medical societies: American Academy of Neurology, Child Neurology Society, Phi Beta Kappa, Society for Neuroscience

Disclosure: Nothing to disclose.

Chief Editor

Amy Kao, MD Attending Neurologist, Children's National Medical Center

Amy Kao, MD is a member of the following medical societies: American Academy of Neurology, American Epilepsy Society, Child Neurology Society

Disclosure: Have stock from Cellectar Biosciences; have stock from Varian medical systems; have stock from Express Scripts.

Additional Contributors

Raj D Sheth, MD Chief, Division of Pediatric Neurology, Nemours Children's Clinic; Professor of Neurology, Mayo College of Medicine; Professor of Pediatrics, University of Florida College of Medicine

Raj D Sheth, MD is a member of the following medical societies: American Academy of Neurology, American Academy of Pediatrics, American Epilepsy Society, American Neurological Association, Child Neurology Society

Disclosure: Nothing to disclose.

Acknowledgements

William C Robertson Jr, MD Professor, Departments of Neurology, Pediatrics, and Family Practice, Clinical Title Series, University of Kentucky College of Medicine

William C Robertson Jr, MD is a member of the following medical societies: American Academy of Neurology and Child Neurology Society

Disclosure: Nothing to disclose.

Raj D Sheth, MD Professor, Mayo College of Medicine; Chief, Division of Pediatric Neurology, Nemours Children's Clinic

Raj D Sheth, MD is a member of the following medical societies: American Academy of Neurology, American Academy of Pediatrics, American Epilepsy Society, American Neurological Association, and Child Neurology Society

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Dessardo NS, Dessardo S, Sasso A, Sarunic AV, Dezulovic MS. Pediatric idiopathic intracranial hypertension: clinical and demographic features. Coll Antropol. 2010 Apr. 34 Suppl 2:217-21. [Medline].

  2. Jindal M, Hiam L, Raman A, Rejali D. Idiopathic intracranial hypertension in otolaryngology. Eur Arch Otorhinolaryngol. 2009 Jun. 266(6):803-6. [Medline].

  3. Phillips PH. Pediatric pseudotumor cerebri. Int Ophthalmol Clin. 2012 Summer. 52(3):51-9, xii. [Medline].

  4. Standridge SM. Idiopathic intracranial hypertension in children: a review and algorithm. Pediatr Neurol. 2010 Dec. 43(6):377-90. [Medline].

  5. Malm J, Kristensen B, Markgren P, Ekstedt J. CSF hydrodynamics in idiopathic intracranial hypertension: a long-term study. Neurology. 1992 Apr. 42(4):851-8. [Medline].

  6. Farb RI, Vanek I, Scott JN, Mikulis DJ, Willinsky RA, Tomlinson G, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology. 2003 May 13. 60(9):1418-24. [Medline].

  7. Szewka AJ, Bruce BB, Newman NJ, Biousse V. Pediatric idiopathic intracranial hypertension and extreme childhood obesity: A comment on visual outcomes. J Pediatr. 2012 Nov. 161(5):972. [Medline].

  8. Brara SM, Koebnick C, Porter AH, Langer-Gould A. Pediatric idiopathic intracranial hypertension and extreme childhood obesity. J Pediatr. 2012 Oct. 161(4):602-7. [Medline].

  9. Bursztyn LL, Sharan S, Walsh L, LaRoche GR, Robitaille J, De Becker I. Has rising pediatric obesity increased the incidence of idiopathic intracranial hypertension in children?. Can J Ophthalmol. 2014 Feb. 49(1):87-91. [Medline].

  10. Paley GL, Sheldon CA, Burrows EK, Chilutti MR, Liu GT, McCormack SE. Overweight and obesity in pediatric secondary pseudotumor cerebri syndrome. Am J Ophthalmol. 2015 Feb. 159(2):344-352.e1. [Medline].

  11. Ertekin V, Selimoglu MA, Tan H. Pseudotumor Cerebri Due to Hypervitaminosis A or Hypervitaminosis D or Both in Alagille Syndrome. Headache. 2009 Jul 8. [Medline].

  12. Tibussek D, Schneider DT, Vandemeulebroecke N, et al. Clinical spectrum of the pseudotumor cerebri complex in children. Childs Nerv Syst. 2009 Nov 10. [Medline].

  13. Kelly SJ, O'Donnell T, Fleming JC, Einhaus S. Pseudotumor cerebri associated with lithium use in an 11-year-old boy. J AAPOS. 2009 Apr. 13(2):204-6. [Medline].

  14. Wardly DE. Intracranial hypertension associated with obstructive sleep apnea: A discussion of potential etiologic factors. Med Hypotheses. 2014 Oct 19. 83(6):792-797. [Medline].

  15. Soiberman U, Stolovitch C, Balcer LJ, Regenbogen M, Constantini S, Kesler A. Idiopathic intracranial hypertension in children: visual outcome and risk of recurrence. Childs Nerv Syst. 2011 Nov. 27(11):1913-8. [Medline].

  16. Hacifazlioglu Eldes N, Yilmaz Y. Pseudotumour cerebri in children: Etiological, clinical features and treatment modalities. Eur J Paediatr Neurol. 2011 Nov 1. [Medline].

  17. Incecik F, Hergüner MO, Altunbasak S. Evaluation of sixteen children with pseudotumor cerebri. Turk J Pediatr. 2011 Jan-Feb. 53(1):55-8. [Medline].

  18. Ravid S, Shachor-Meyouhas Y, Shahar E, Kra-Oz Z, Kassis I. Reactivation of varicella presenting as pseudotumor cerebri: three cases and a review of the literature. Pediatr Neurol. 2012 Feb. 46(2):124-6. [Medline].

  19. Obeid M, Price J, Sun L, et al. Facial palsy and idiopathic intracranial hypertension in twins with cystic fibrosis and hypovitaminosis A. Pediatr Neurol. 2011 Feb. 44(2):150-2. [Medline].

  20. Wolf A, Hutcheson KA. Advances in evaluation and management of pediatric idiopathic intracranial hypertension. Curr Opin Ophthalmol. 2008 Sep. 19(5):391-7. [Medline].

  21. Komur M, Sari A, Okuyaz C. Simultaneous papilledema and optic disc drusen in a child. Pediatr Neurol. 2012 Mar. 46(3):187-8. [Medline].

  22. Horev A, Hallevy H, Plakht Y, Shorer Z, Wirguin I, Shelef I. Changes in Cerebral Venous Sinuses Diameter After Lumbar Puncture in Idiopathic Intracranial Hypertension: A Prospective MRI Study. J Neuroimaging. 2012 Aug 22. [Medline].

  23. Shofty B, Ben-Sira L, Constantini S, Freedman S, Kesler A. Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol. 2012 Feb. 33(2):366-9. [Medline].

  24. Stone MB. Ultrasound diagnosis of papilledema and increased intracranial pressure in pseudotumor cerebri. Am J Emerg Med. 2009 Mar. 27(3):376.e1-376.e2. [Medline].

  25. Soler D, Cox T, Bullock P. Diagnosis and management of benign intracranial hypertension. Arch Dis Child. 1998 Jan. 78(1):89-94. [Medline].

  26. Chern JJ, Tubbs RS, Gordon AS, Donnithorne KJ, Oakes WJ. Management of pediatric patients with pseudotumor cerebri. Childs Nerv Syst. 2012 Jan 19. [Medline].

  27. Per H, Canpolat M, Gümüs H, et al. Clinical spectrum of the pseudotumor cerebri in children: Etiological, clinical features, treatment and prognosis. Brain Dev. 2012 Sep 13. [Medline].

  28. Ahmed RM, Zmudzki F, Parker GD, Owler BK, Halmagyi GM. Transverse Sinus Stenting for Pseudotumor Cerebri: A Cost Comparison with CSF Shunting. AJNR Am J Neuroradiol. 2013 Nov 28. [Medline].

  29. Elder BD, Rory Goodwin C, Kosztowski TA, Radvany MG, Gailloud P, Moghekar A, et al. Venous sinus stenting is a valuable treatment for fulminant idiopathic intracranial hypertension. J Clin Neurosci. 2015 Jan 8. [Medline].

  30. Spitze A, Lam P, Al-Zubidi N, Yalamanchili S, Lee AG. Controversies: Optic nerve sheath fenestration versus shunt placement for the treatment of idiopathic intracranial hypertension. Indian J Ophthalmol. 2014 Oct. 62(10):1015-21. [Medline]. [Full Text].

  31. Dave SB, Subramanian PS. Pseudotumor cerebri: an update on treatment options. Indian J Ophthalmol. 2014 Oct. 62(10):996-8. [Medline]. [Full Text].

  32. Jion YI, Raff A, Grosberg BM, Evans RW. The Risk and Management of Kidney Stones From the Use of Topiramate and Zonisamide in Migraine and Idiopathic Intracranial Hypertension. Headache. 2014 Dec 9. [Medline].

  33. Naarden MT, Schuitemaker A, Braakman HM, van Doormaal TP, Porro GL, Straver JS. [Idiopathic intracranial hypertension and obesity]. Ned Tijdschr Geneeskd. 2015. 159(0):A7980. [Medline].

  34. Sinclair AJ, Woolley R, Mollan SP. Idiopathic intracranial hypertension. JAMA. 2014 Sep 10. 312(10):1059-60. [Medline].

  35. Singleton J, Dagan A, Edlow JA, Hoffmann B. Real-time optic nerve sheath diameter reduction measured with bedside ultrasound after therapeutic lumbar puncture in a patient with idiopathic intracranial hypertension. Am J Emerg Med. 2014 Dec 19. [Medline].

 
Previous
Next
 
For IIH to be diagnosed, brain scans (such as MRI) must be performed to ensure there is no underlying cause for the increased pressure around the brain
Left optic disc with moderate chronic papilledema in patient with idiopathic intracranial hypertension (pseudotumor cerebri). Paton lines (arc-shaped retinal wrinkles concentric with disc margin) are seen along temporal side of inferior pole of disc.
Right optic disc with postpapilledema optic atrophy in patient with idiopathic intracranial hypertension (pseudotumor cerebri). Diffuse pallor of disc and absence of small arterial vessels on surface are noted, with very little disc elevation. Disc margin at upper and lower poles and nasally is obscured by some residual edema in nerve fiber layer and gliosis that often persists even after all edema has resolved.
Most common early visual field defect in papilledema as optic nerve develops optic atrophy is inferior nasal defect, as shown in left eye field chart (left side of figure). Shaded area indicates defective portion of field. Note sharp line of demarcation between defective lower nasal quadrant and normal upper nasal quadrant along horizontal midline. This is characteristic of early papilledema optic atrophy and is referred to as nasal step or inferonasal step.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.