Medscape is available in 5 Language Editions – Choose your Edition here.


Congenital Muscular Dystrophy Treatment & Management

  • Author: Glenn Lopate, MD; Chief Editor: Amy Kao, MD  more...
Updated: Dec 24, 2015

Medical Care

No specific treatment is available for any of the congenital muscular dystrophies.

Aggressive supportive care is essential to preserve muscle activity, to allow for maximal functional ability, and to prolong the patient's life expectancy.

  • The primary neuromuscular concerns include prevention and correction of skeletal abnormalities, such as scoliosis, foot deformities, and contractures, to maintain ambulation.
  • Aggressive use of passive stretching, bracing, and orthopedic procedures, such as spinal fusion, allows the patient to remain independent for as long as possible.

Pulmonary complications are the other main concern.

  • Early monitoring and intervention to treat respiratory insufficiency is important because effective therapies can help to improve function and prolong life expectancy.
  • Such therapies include noninvasive bilevel positive airway pressure and/or continuous positive airway pressure or permanent ventilation via a tracheostomy.

Cardiac complications are especially common in patients with a mutation in FKRP and occasionally in patients with laminin-α2 deficiency. Treatment of dilated cardiomyopathy with ACE inhibitors and beta-blockers may be necessary.

Children with congenital muscular dystrophy may have other neurologic treatment issues, including seizure management, need for supplementary gastric tube feedings, ophthalmologic care, and general medical concerns that occur in profoundly retarded children.

As with other hereditary myopathies, a team approach, including a neurologist, pulmonologist, ophthalmologist, cardiologist, orthopedic surgeon, physical medicine specialist, orthotist, and counselors, is required to ensure the best possible care.

In patients with CMD with familial junctional epidermolysis bullosa besides the above standard measures, management must include supportive care to protect the skin from blistering, appropriate dressings, and prevention of secondary infections. Activities should minimize skin trauma.


Surgical Care

Orthopedic surgery is often necessary in patients who live several years with their disease to prevent contractures and scoliosis.



According to evidence-based guidelines from the American Academy of Neurology, multidisciplinary care by experienced teams is important for diagnosing and promoting the health of children with CMD.[51]

Consultation with the following may prove helpful:

  • Ophthalmologist
  • Pulmonologist
  • Cardiologist
  • Orthopedic surgeon
  • Epileptologist
  • Physical medicine specialist
  • Dermatologist (patients with CMD with familial junctional epidermolyis bullosa)
Contributor Information and Disclosures

Glenn Lopate, MD Associate Professor, Department of Neurology, Division of Neuromuscular Diseases, Washington University School of Medicine; Consulting Staff, Department of Neurology, Barnes-Jewish Hospital

Glenn Lopate, MD is a member of the following medical societies: American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, Phi Beta Kappa

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Kenneth J Mack, MD, PhD Senior Associate Consultant, Department of Child and Adolescent Neurology, Mayo Clinic

Kenneth J Mack, MD, PhD is a member of the following medical societies: American Academy of Neurology, Child Neurology Society, Phi Beta Kappa, Society for Neuroscience

Disclosure: Nothing to disclose.

Chief Editor

Amy Kao, MD Attending Neurologist, Children's National Medical Center

Amy Kao, MD is a member of the following medical societies: American Academy of Neurology, American Epilepsy Society, Child Neurology Society

Disclosure: Have stock from Cellectar Biosciences; have stock from Varian medical systems; have stock from Express Scripts.

Additional Contributors

Robert Stanley Rust, Jr, MD, MA Thomas E Worrell Jr Professor of Epileptology and Neurology, Co-Director of FE Dreifuss Child Neurology and Epilepsy Clinics, Director, Child Neurology, University of Virginia School of Medicine; Chair-Elect, Child Neurology Section, American Academy of Neurology

Robert Stanley Rust, Jr, MD, MA is a member of the following medical societies: Child Neurology Society, Society for Pediatric Research, American Headache Society, International Child Neurology Association, American Academy of Neurology, American Epilepsy Society, American Neurological Association

Disclosure: Nothing to disclose.

  1. Fukuyama Y, Kwazura M, Haruna H. A peculiar form of congenital muscular dystrophy. Paediatr Univ Tokyo. 1960. 4:5-8:

  2. Sparks SE, Escolar DM. Congenital muscular dystrophies. Handb Clin Neurol. 2011. 101:47-79. [Medline].

  3. Mercuri E, Muntoni F. The ever-expanding spectrum of congenital muscular dystrophies. Ann Neurol. 2012 Jul. 72(1):9-17. [Medline].

  4. Graziano A, Bianco F, D'Amico A, Moroni I, Messina S, et al. Prevalence of congenital muscular dystrophy in Italy: a population study. Neurology. 2015 Mar 3. 84 (9):904-11. [Medline].

  5. Geranmayeh F, Clement E, Feng LH, et al. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul Disord. 2010 Apr. 20(4):241-50. [Medline].

  6. Bonnemann CG. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol. 2011 Jun 21. 7(7):379-90. [Medline].

  7. Scacheri PC, Gillanders EM, Subramony SH, et al. Novel mutations in collagen VI genes: expansion of the Bethlem myopathy phenotype. Neurology. 2002 Feb 26. 58(4):593-602. [Medline].

  8. Merlini L, Martoni E, Grumati P, et al. Autosomal recessive myosclerosis myopathy is a collagen VI disorder. Neurology. 2008 Oct 14. 71(16):1245-53. [Medline].

  9. Nakashima H, Kibe T, Yokochi K. Congenital muscular dystrophy caused by integrin alpha7 deficiency'. Dev Med Child Neurol. 2009 Mar. 51(3):245. [Medline].

  10. Forrest K, Mellerio JE, Robb S, et al. Congenital muscular dystrophy, myasthenic symptoms and epidermolysis bullosa simplex (EBS) associated with mutations in the PLEC1 gene encoding plectin. Neuromuscul Disord. 2010 Nov. 20(11):709-11. [Medline].

  11. Yiu EM, Klausegger A, Waddell LB, et al. Epidermolysis bullosa with late-onset muscular dystrophy and plectin deficiency. Muscle Nerve. 2011 Jul. 44(1):135-41. [Medline].

  12. Gundesli H, Talim B, Korkusuz P, et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet. 2010 Dec 10. 87(6):834-41. [Medline].

  13. Schara U, Kress W, Bonnemann CG, et al. The phenotype and long-term follow-up in 11 patients with juvenile selenoprotein N1-related myopathy. Eur J Paediatr Neurol. 2008 May. 12(3):224-30. [Medline].

  14. Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010 Dec 1. 120(12):4220-35. [Medline]. [Full Text].

  15. Mitsuhashi S, Ohkuma A, Talim B, et al. A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet. 2011 Jun 10. 88(6):845-51. [Medline]. [Full Text].

  16. Akiyama T, Ohtsuka Y, Takata T, Hattori J, Kawakita Y, Saito K. The mildest known case of Fukuyama-type congenital muscular dystrophy. Brain Dev. 2006 Sep. 28(8):537-40. [Medline].

  17. Godfrey C, Escolar D, Brockington M, et al. Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann Neurol. 2006 Nov. 60(5):603-10. [Medline].

  18. Murakami T, Hayashi YK, Noguchi S, Ogawa M, Nonaka I, Tanabe Y. Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann Neurol. 2006 Nov. 60(5):597-602. [Medline].

  19. Godfrey C, Clement E, Mein R, Brockington M, Smith J, Talim B. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007 Oct. 130(Pt 10):2725-35. [Medline].

  20. Messina S, Tortorella G, Concolino D, et al. Congenital muscular dystrophy with defective alpha-dystroglycan, cerebellar hypoplasia, and epilepsy. Neurology. 2009 Nov 10. 73(19):1599-601. [Medline].

  21. Mercuri E, Messina S, Bruno C, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology. 2009 May 26. 72(21):1802-9. [Medline].

  22. Balci B, Uyanik G, Dincer P, Gross C, Willer T, Talim B. An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscul Disord. 2005 Apr. 15(4):271-5. [Medline].

  23. Biancheri R, Falace A, Tessa A, et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun. 2007 Nov 30. 363(4):1033-7. [Medline].

  24. Clarke NF, Maugenre S, Vandebrouck A, et al. Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet. 2011 Apr. 19(4):452-7. [Medline].

  25. van Reeuwijk J, Grewal PK, Salih MA, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet. 2007 Jul. 121(6):685-90. [Medline].

  26. Zou Y, Zhang RZ, Sabatelli P, Chu ML, Bonnemann CG. Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol. 2008 Feb. 67(2):144-54. [Medline].

  27. Brinas L, Richard P, Quijano-Roy S, et al. Early onset collagen VI myopathies: Genetic and clinical correlations. Ann Neurol. 2010 Oct. 68(4):511-20. [Medline].

  28. Lampe AK, Zou Y, Sudano D, et al. Exon skipping mutations in collagen VI are common and are predictive for severity and inheritance. Hum Mutat. 2008 Jun. 29(6):809-22. [Medline].

  29. Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromuscul Disord. 2005 Mar. 15(3):207-17. [Medline].

  30. Chavanas S, Pulkkinen L, Gache Y, et al. A homozygous nonsense mutation in the PLEC1 gene in patients with epidermolysis bullosa simplex with muscular dystrophy. J Clin Invest. 1996 Nov 15. 98(10):2196-200. [Medline]. [Full Text].

  31. Pulkkinen L, Smith FJ, Shimizu H, et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum Mol Genet. 1996 Oct. 5(10):1539-46. [Medline].

  32. Rezniczek GA, Walko G, Wiche G. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol Clin. 2010 Jan. 28(1):33-41. [Medline].

  33. Jimenez-Mallebrera C, Torelli S, Feng L, et al. A comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of alpha-dystroglycan does not consistently correlate with clinical severity. Brain Pathol. 2009 Oct. 19(4):596-611. [Medline]. [Full Text].

  34. Clement EM, Godfrey C, Tan J, et al. Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol. 2008 Jan. 65(1):137-41. [Medline].

  35. Keramaris-Vrantsis E, Lu PJ, Doran T, Zillmer A, Ashar J, Esapa CT. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo. Muscle Nerve. 2007 Oct. 36(4):455-65. [Medline].

  36. Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of a-dystroglycan. Nat Genet. 2012 May. 44(5):581-5. [Medline]. [Full Text].

  37. Willer T, Lee H, Lommel M, et al. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet. 2012 May. 44(5):575-80. [Medline]. [Full Text].

  38. Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M, et al. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am J Hum Genet. 2012 Dec 7. 91(6):1135-43. [Medline]. [Full Text].

  39. Cirak S, Foley AR, Herrmann R, et al. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain. 2013 Jan. 136:269-81. [Medline]. [Full Text].

  40. Manzini MC, Tambunan DE, Hill RS, et al. Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet. 2012 Sep 7. 91(3):541-7. [Medline]. [Full Text].

  41. Jae LT, Raaben M, Riemersma M, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013 Apr 26. 340(6131):479-83. [Medline].

  42. Stevens E, Carss KJ, Cirak S, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of a-dystroglycan. Am J Hum Genet. 2013 Mar 7. 92(3):354-65. [Medline]. [Full Text].

  43. Jae LT, Raaben M, Riemersma M, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013 Apr 26. 340(6131):479-83. [Medline].

  44. Buysse K, Riemersma M, Powell G, et al. Missense mutations in ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet. 2013 May 1. 22(9):1746-54. [Medline]. [Full Text].

  45. Carss KJ, Stevens E, Foley AR, et al. Mutations in GDP-Mannose Pyrophosphorylase BCause Congenital and Limb-Girdle Muscular DystrophiesAssociated with Hypoglycosylation of a-Dystroglycan. American Journal of Human Genetics. 2013/07. 93:1-13. [Full Text].

  46. Kranz C, Jungeblut C, Denecke J, et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet. 2007 Mar. 80(3):433-40. [Medline]. [Full Text].

  47. Kapusta L, Zucker N, Frenckel G, et al. From discrete dilated cardiomyopathy to successful cardiac transplantation in congenital disorders of glycosylation due to dolichol kinase deficiency (DK1-CDG). Heart Fail Rev. 2013 Mar. 18(2):187-96. [Medline]. [Full Text].

  48. Barone R, Aiello C, Race V, et al. DPM2-CDG: a muscular dystrophy-dystroglycanopathy syndrome with severe epilepsy. Ann Neurol. 2012 Oct. 72(4):550-8. [Medline].

  49. Lefeber DJ, Schonberger J, Morava E, et al. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet. 2009 Jul. 85(1):76-86. [Medline]. [Full Text].

  50. Mercuri E, Clements E, Offiah A, et al. Muscle magnetic resonance imaging involvement in muscular dystrophies with rigidity of the spine. Ann Neurol. 2010 Feb. 67(2):201-8. [Medline].

  51. Kang PB, Morrison L, Iannaccone ST, Graham RJ, Bönnemann CG, et al. Evidence-based guideline summary: evaluation, diagnosis, and management of congenital muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology. 2015 Mar 31. 84 (13):1369-78. [Medline].

  52. Baker NL, Morgelin M, Peat R, et al. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum Mol Genet. 2005 Jan 15. 14(2):279-93. [Medline].

  53. Barresi R, Michele DE, Kanagawa M. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med. 2004 Jul. 10(7):696-703. [Medline].

  54. Batten FE. Three cases of myopathy, infantile type. Brain. 1903. 26:147-8.

  55. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A, et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet. 2002 Nov. 71(5):1033-43. [Medline]. [Full Text].

  56. Brockington M, Torelli S, Prandini P, et al. Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum Mol Genet. 2005 Mar 1. 14(5):657-65. [Medline].

  57. Camacho Vanegas O, Bertini E, Zhang RZ, et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci U S A. 2001 Jun 19. 98(13):7516-21. [Medline].

  58. Center for Human and Clinical Genetics. Leiden University Medical Center. Leiden Muscular Dystrophy Pages: Duchenne and Duchenne-like muscular dystrophies. Available at: [Full Text].

  59. Currier SC, Lee CK, Chang BS, et al. Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome. Am J Med Genet A. 2005 Feb 15. 133A(1):53-7. [Medline].

  60. D'Amico A, Haliloglu G, Richard P, et al. Two patients with 'Dropped head syndrome' due to mutations in LMNA or SEPN1 genes. Neuromuscul Disord. 2005 Aug. 15(8):521-4. [Medline].

  61. D'Amico A, Tessa A, Bruno C, et al. Expanding the clinical spectrum of POMT1 phenotype. Neurology. 2006 May 23. 66(10):1564-7; discussion 1461. [Medline].

  62. Di Blasi C, Piga D, Brioschi P, et al. LAMA2 gene analysis in congenital muscular dystrophy: new mutations, prenatal diagnosis, and founder effect. Arch Neurol. 2005 Oct. 62(10):1582-6. [Medline].

  63. Dubowitz V. Rigid spine syndrome: a muscle syndrome in search of a name. Proc R Soc Med. 1973 Mar. 66(3):219-20. [Medline].

  64. Esapa CT, McIlhinney RA, Blake DJ. Fukutin-related protein mutations that cause congenital muscular dystrophy result in ER-retention of the mutant protein in cultured cells. Hum Mol Genet. 2005 Jan 15. 14(2):295-305. [Medline].

  65. Giusti B, Lucarini L, Pietroni V, et al. Dominant and recessive COL6A1 mutations in Ullrich scleroatonic muscular dystrophy. Ann Neurol. 2005 Sep. 58(3):400-10. [Medline].

  66. Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE. Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet. 2001 Jun. 28(2):151-4. [Medline].

  67. Grewal PK, McLaughlan JM, Moore CJ, Browning CA, Hewitt JE. Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology. 2005 Oct. 15(10):912-23. [Medline].

  68. Guglieri M, Magri F, Comi GP. Molecular etiopathogenesis of limb girdle muscular and congenital muscular dystrophies: boundaries and contiguities. Clin Chim Acta. 2005 Nov. 361(1-2):54-79. [Medline].

  69. Haliloglu G, Gross C, Senbil N, Talim B, Hehr U, Uyanik G. Clinical spectrum of muscle-eye-brain disease: from the typical presentation to severe autistic features. Acta Myol. 2004 Dec. 23(3):137-9. [Medline].

  70. Hayashi YK, Chou FL, Engvall E, et al. Mutations in the integrin alpha7 gene cause congenital myopathy. Nat Genet. 1998 May. 19(1):94-7. [Medline].

  71. Helbling-Leclerc A, Zhang X, Topaloglu H, et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995 Oct. 11(2):216-8. [Medline].

  72. Henion TR, Qu Q, Smith FI. Expression of dystroglycan, fukutin and POMGnT1 during mouse cerebellar development. Brain Res Mol Brain Res. 2003 Apr 10. 112(1-2):177-81. [Medline].

  73. Howard RA. A case of congenital defect of the muscular system (dystrophia muscularis congenita) and its association with congenital talipes equino-varus. Proc R Soc Med. 1908. 1:157-66.

  74. Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci. 2005 Apr. 62(7-8):809-23. [Medline].

  75. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998 Jul 23. 394(6691):388-92. [Medline].

  76. Lampe AK, Bushby KM. Collagen VI related muscle disorders. J Med Genet. 2005 Sep. 42(9):673-85. [Medline]. [Full Text].

  77. Liu J, Ball SL, Yang Y, et al. A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev. 2006 Mar. 123(3):228-40. [Medline].

  78. Longman C, Brockington M, Torelli S, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet. 2003 Nov 1. 12(21):2853-61. [Medline].

  79. Martin PT. The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin Pediatr Neurol. 2005 Sep. 12(3):152-8. [Medline]. [Full Text].

  80. Matsumoto H, Hayashi YK, Kim DS, et al. Congenital muscular dystrophy with glycosylation defects of alpha-dystroglycan in Japan. Neuromuscul Disord. 2005 May. 15(5):342-8. [Medline].

  81. Mayer U, Saher G, Fassler R, et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 1997 Nov. 17(3):318-23. [Medline].

  82. Mercuri E, Topaloglu H, Brockington M, et al. Spectrum of brain changes in patients with congenital muscular dystrophy and FKRP gene mutations. Arch Neurol. 2006 Feb. 63(2):251-7. [Medline].

  83. Moghadaszadeh B, Petit N, Jaillard C, et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001 Sep. 29(1):17-8. [Medline].

  84. Moore SA, Saito F, Chen J, et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature. 2002 Jul 25. 418(6896):422-5. [Medline].

  85. Pestronk A. Washington University Neuromuscular Disease Center Web page. 1999. Available at: [Full Text].

  86. Raitta C, Lamminen M, Santavuori P, Leisti J. Ophthalmological findings in a new syndrome with muscle, eye and brain involvement. Acta Ophthalmol (Copenh). 1978 Jun. 56(3):465-72. [Medline].

  87. Rederstorff M, Krol A, Lescure A. Understanding the importance of selenium and selenoproteins in muscle function. Cell Mol Life Sci. 2006 Jan. 63(1):52-9. [Medline]. [Full Text].

  88. Santavuori P, Leisti J, Kruus S. Muscle-eye-brain disease: a new syndrome. Neuropadiatrie. 1977. 8(suppl):550.

  89. Taniguchi K, Kobayashi K, Saito K, et al. Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet. 2003 Mar 1. 12(5):527-34. [Medline].

  90. Tome FM, Evangelista T, Leclerc A, et al. Congenital muscular dystrophy with merosin deficiency. C R Acad Sci III. 1994 Apr. 317(4):351-7. [Medline].

  91. Tsao CY, Mendell JR. The childhood muscular dystrophies: making order out of chaos. Semin Neurol. 1999. 19(1):9-23. [Medline].

  92. Vainzof M, Richard P, Herrmann R, et al. Prenatal diagnosis in laminin alpha2 chain (merosin)-deficient congenital muscular dystrophy: a collective experience of five international centers. Neuromuscul Disord. 2005 Oct. 15(9-10):588-94. [Medline].

  93. van Reeuwijk J, Janssen M, van den Elzen C, et al. POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J Med Genet. 2005 Dec. 42(12):907-12. [Medline]. [Full Text].

  94. van Reeuwijk J, Maugenre S, van den Elzen C, et al. The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum Mutat. 2006 May. 27(5):453-9. [Medline].

  95. Voit T, Tome FS. The congenital muscular dystrophies. In: Engel AG, Franzini-Armstrong C, eds. Myology. New York: McGraw-Hill. 2004: 1203-38:

  96. Walker AE. Lissencephaly. Arch Neurol Psychiat. 1942. 48:13-29.

  97. Warburg M. Heterogeneity of congenital retinal non-attachment, falciform folds and retinal dysplasia. A guide to genetic counselling. Hum Hered. 1976. 26(2):137-48. [Medline].

  98. Willer T, Prados B, Falcon-Perez JM, et al. Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci U S A. 2004 Sep 28. 101(39):14126-31. [Medline]. [Full Text].

  99. Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001 Nov. 1(5):717-24. [Medline].

Dystrophin-glycoprotein complex. The complex bridges the inner cytoskeleton (F-actin) and the basal lamina. Mutations in laminin-α2, integrin α7, and O-glycosyltransferases that glycosylate alpha-dystroglycan all can cause congenital muscular dystrophy (CMD). Furthermore, mutations in collagen (not shown), which binds alpha-dystroglycan through perlecan and other proteoglycans, can cause CMD. Mutations in dystrophin, the sarcoglycans, dysferlin, and caveolin-3 can also cause muscular dystrophies. Reprinted with permission from Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. In: Neuromuscular Disorders. Vol. 15. Cohn RD. Elsevier; 2005: 207-17. 7, 20
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.