Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Simple Partial Seizures Workup

  • Author: Jane G Boggs, MD; Chief Editor: Selim R Benbadis, MD  more...
 
Updated: Feb 22, 2016
 

Approach Considerations

Lumbar puncture should be performed in all cases of suspected meningitis, unless neuroimaging or funduscopic examination suggests increased intracranial pressure.

Brain biopsy is strongly suggested to confirm the diagnosis in suspected cases of Rasmussen encephalitis, or in focal progressive lesions of unknown etiology.

Next

Lab Studies

The following blood studies can be useful for excluding other disorders:

  • Electrolytes, including serum glucose
  • Thyroid-stimulating hormone and/or thyroid profile
  • Toxin and drug screen
Previous
Next

Electroencephalography

An electroencephalogram (EEG) fortuitously obtained during the patient's symptoms can provide clear support for a diagnosis. EEGs obtained soon after a suspected seizure often record nonspecific patterns or may be normal.

Activation by sleep deprivation, photic stimulation, and/or hyperventilation increases the ability to detect abnormalities on a single recording. Repeat or prolonged recording may increase the chance of recording interictal or ictal patterns of diagnostic significance.

Although interictal spikes in an appropriate anatomical location for the symptoms of the suspected seizure are highly suggestive of epilepsy, EEG abnormalities may be distant in location from the actual area of seizure onset, giving poor localizing information for possible epilepsy surgery. EEG performed with extra scalp electrodes or intracranial electrodes is necessary if involvement of mesial structures is suspected.

Single or rare interictal sharp waves may be normal variants, and further diagnostic confirmation should be pursued. Normal EEG findings do not exclude the possibility of epilepsy.

Video-electroencephalography

EEG-video monitoring is often necessary to record typical clinical events and to correlate them with any electrographic changes. Many SPS are characterized by EEG patterns that are difficult to record, and the diagnosis may depend entirely on video analysis of reproducible ictal semiology of multiple events, or on observation by trained personnel.

Previous
Next

Electrocardiographic Studies

Routine 12-lead ECG and a rhythm strip should be obtained in all subjects with cardiac, thoracic, gastrointestinal, or focal positive and negative sensations. Twenty-four–hour Holter monitoring and inpatient telemetry are appropriate if daily episodes are expected (based on history). A telephone transmittal cardiac recorder can be useful for episodes occurring infrequently.

Previous
Next

Imaging Studies

CT scan of the brain, with and without contrast, is primarily useful and appropriate in an emergency setting or for patients unable to have MRI studies. Coronal T2-weighted MRI with fluid-attenuated inversion recovery (FLAIR) and careful attention to the mesial temporal structures is more likely to demonstrate abnormalities if a diagnosis of SPS already has been established.

Low-resolution MRI, under 1.5 T, should be discouraged in any evaluation of epilepsy. This typically makes the use of "open MRI" inadequate.

Previous
Next

Histologic Findings

Various microscopic abnormalities, including the following, can be found in the epileptogenic zone:

  • Focal cortical dysplasia
  • Hippocampal sclerosis
  • Neoplasia
  • Cortical inflammation
  • Encephalomalacia
  • Vascular malformation
Previous
 
 
Contributor Information and Disclosures
Author

Jane G Boggs, MD Associate Professor of Neurology, Wake Forest University School of Medicine; Clinical Associate Professor, Virginia Commonwealth University School of Medicine, Medical College of Virginia

Jane G Boggs, MD is a member of the following medical societies: American Academy of Neurology, American Clinical Neurophysiology Society, American Epilepsy Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Selim R Benbadis, MD Professor, Director of Comprehensive Epilepsy Program, Departments of Neurology and Neurosurgery, Tampa General Hospital, University of South Florida College of Medicine

Selim R Benbadis, MD is a member of the following medical societies: American Academy of Neurology, American Medical Association, American Academy of Sleep Medicine, American Clinical Neurophysiology Society, American Epilepsy Society

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cyberonics; Eisai; Lundbeck; Sunovion; UCB; Upsher-Smith<br/>Serve(d) as a speaker or a member of a speakers bureau for: Cyberonics; Eisai; Glaxo Smith Kline; Lundbeck; Sunovion; UCB<br/>Received research grant from: Cyberonics; Lundbeck; Sepracor; Sunovion; UCB; Upsher-Smith.

References
  1. Engel J Jr. ILAE classification of epilepsy syndromes. Epilepsy Res. 2006 Aug. 70 Suppl 1:S5-10. [Medline].

  2. Gastaut H, Gastaut JL, Goncalves e Silva GE, et al. Relative frequency of different types of epilepsy: a study employing the classification of the International League Against Epilepsy. Epilepsia. 1975 Sep. 16(3):457-61. [Medline].

  3. Salanova V, Van Ness PC, Andermann F. Frontal, parietal and occipital epilepsies. In: Wyllie E, ed. The Treatment of Epilepsy: Principles and Practice. 2nd ed. Baltimore: Williams & Wilkins;. 1997:423-431.

  4. Ajmone-Marsan C, Goldhammer L. Clinical ictal patterns and electrographic data in cases of partial seizures of fronto-central-parietal origin. In: Epilepsy, its Phenomenon in Man. San Diego, Calif: Academic Press; 1973:. 235-58.

  5. Penfield W, Jasper H. In: Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown;. 1954:15-33.

  6. Fish DR, Gloor P, Quesney FL, Olivier A. Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiological implications. Brain. 1993 Apr. 116 ( Pt 2):397-414. [Medline].

  7. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993 Oct. 68(10):988-1001. [Medline].

  8. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Epilepsia. 1993 May-Jun. 34(3):453-68. [Medline].

  9. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia. 1989 Jul-Aug. 30(4):389-99. [Medline].

  10. Kotagal P, Luders H. Simple motor seizures. In: Engel J Jr, Pedley TA, eds. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven;. 1998:525-532.

  11. Alexopoulos AV and Dinner DS. Focal motor seizures, Epilepsia partialis continua, and Supplementary Sensorimotor Seizures In: Wyllie E, ed. The Treatment of Epilepsy: Principles and Practice. 4th ed. Baltimore: Williams & Wilkins;. 2006.

  12. Liporace JD, Sperling MR. Simple autonomic seizures. In: Engel J Jr, Pedley T, eds. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven: 1998:. 549-56.

  13. Keilson MJ, Hauser WA, Magrill JP. Electrocardiographic changes during electrographic seizures. Arch Neurol. 1989 Nov. 46(11):1169-70. [Medline].

  14. Kaada BR, Jasper H. Respiratory responses to stimulation of the temporal pole, insula and hippocampal and limbic gyri in man. J Neurophysiol. 1949. 12:385.

  15. Calleja J, Carpizo R, Berciano J. Orgasmic epilepsy. Epilepsia. 1988 Sep-Oct. 29(5):635-9. [Medline].

  16. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs I: treatment of new onset epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilep. Neurology. 2004 Apr 27. 62(8):1252-60. [Medline].

  17. French JA, Kanner AM, Bautista J, et al. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epil. Neurology. 2004 Apr 27. 62(8):1261-73. [Medline].

  18. Glauser T, Ben-Menachem E, Bourgeois B, et al. ILAE treatment guidelines: evidence-based analysis of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 2006 Jul. 47(7):1094-120. [Medline].

  19. Karceski S, Morrell M, Carpenter D. The Expert Consensus Guideline Series: Treatment of Epilepsy. Epilepsy Behav. 2001. 2:A1-A50.

  20. Karceski S, Morrell MJ, Carpenter D. Treatment of epilepsy in adults: expert opinion, 2005. Epilepsy Behav. 2005 Sep. 7 Suppl 1:S1-64; quiz S65-7. [Medline].

  21. Witrow CD. The ketogenic diet: mechanisms of anticonvulsant action. In: Glaser GH, Penry JK, Woodbury DM, eds. Symposium on Mechanisms of Action of Antiepileptic Drugs, St. Louis, Missouri, 1977. New York: Raven Press,. 1980; 27. 635-642.

  22. Huttenlocher PR, Wilbourn AJ, Signore JM. Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology. 1971 Nov. 21(11):1097-103. [Medline].

  23. Kossoff, Eric H and Dorward, Jennifer L. The Modified Atkins Diet. Epilepsia. Nov 2008. 49 (suppl. 8):37-41.

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.