Medscape is available in 5 Language Editions – Choose your Edition here.



  • Author: David L Nash, MD; Chief Editor: Hampton Roy, Sr, MD  more...
Updated: Nov 17, 2015


Postinjury accumulation of blood in the anterior chamber is one of the most challenging clinical problems encountered by the ophthalmologist. Even a small hyphema can be a sign of major intraocular trauma with associated damage to vascular and other intraocular tissues.

Blunt trauma to the eye may result in injury to the iris, papillary sphincter, angle structures, lens, zonules, retina, vitreous, optic nerve, and other intraocular structures. Blunt trauma associated with a rapid, marked elevation in intraocular pressure with sudden distortion of intraocular structures produces the dynamic changes responsible for hyphema formation.

The lack of an ideal therapeutic program, the potential for secondary hemorrhage, and the secondary onset of glaucoma all threaten to turn an eye with an initially good visual prognosis into a complex therapeutic problem with a poor final visual result.

Classification and characteristics

Traumatic hyphema is encountered in children and adults. Hyphema is usually the result of a projectile or deliberate punch that hits the exposed portion of the eye despite the protection of the bony orbital rim. Various missiles and objects have been incriminated, including balls, rocks, projectile toys, air gun pellets, BB gun pellets, hockey pucks, bungee cords, paint balls, and the human fist.[1, 2, 3] More recently, air gun pellets and BB gun pellets have been made of plastic polymers. There have been cases involving objects larger than the orbit, such as soccer balls, and even durian fruit falling on the unlucky person napping beneath the durian tree.[4, 5] Slow-motion photography has demonstrated deformation of the soccer balls as impact occurs with the orbital rim, thereby causing the hyphema. With the increase of child abuse, fists and belts have started to play a prominent role. Males are involved in three fourths of cases.[6, 7]

Hyphema can also occur intraoperatively or postoperatively. Surgical hyphema is a known complication of intraocular surgery and should be managed in a similar manner as traumatic hyphema.

Rarely, spontaneous hyphemas may occur and be confused with traumatic hyphemas. Spontaneous hyphemas are secondary to neovascularization (eg, diabetes mellitus, ischemia, cicatrix formation), ocular neoplasms (eg, retinoblastoma, medulloepitheliomas,[8] uveitis, and vascular anomalies (eg, juvenile xanthogranuloma). Vascular tufts that exist at the pupillary border have been implicated in spontaneous hyphemas.[9]

The angular vessels first described by Arlt, as seen in Fuchs uveitis syndrome, produce a filiform angular hemorrhage and subsequent microhyphema when a diagnostic 30-gauge needle is placed through the limbus. This is known as Arlt’s sign.

Finally, an idiopathic hyphema may occur with spontaneous resolution and no known cause or recurrence. This is extremely rare.

When there is no layering of blood but blood cells are seen within the anterior chamber, the term microhyphema can be used and graded with the Standardization of Uveitis Nomenclature (SUN) criteria scale for grading anterior segment cell. The following clinical grading system for traumatic macrohyphemas is preferred:

  • Grade 1 - Layered blood occupying less than one third of the anterior chamber
  • Grade 2 - Blood filling one third to one half of the anterior chamber
  • Grade 3 - Layered blood filling one half to less than total of the anterior chamber
  • Grade 4 - Total clotted blood, often referred to as blackball or 8-ball hyphema

Most hyphemas fill less than one third of the anterior chamber. When hyphemas are divided into 4 groups according to the amount of filling of the anterior chamber, 58% involve less than one third of the anterior chamber, 20% involve one third to one half of the anterior chamber, 14% involve one half to less than total of the anterior chamber, and 8% are total hyphemas. Slightly fewer than one half of all hyphemas settle inferiorly to form a level; approximately 40% form a definite clot, usually adherent to the iris stroma; and 10% have a dark clot in contact with the endothelium. This last form may portend a poor outcome and corneal staining.

An alternative method of grading hyphemas involves measuring (in millimeters) the hyphema from the inferior 6-o'clock limbus. This method may help in monitoring the progress of resolution or the occurrence of rebleeding. Digital imaging analysis is also useful and objective but is available in only a few research or academic facilities.

The cause of an anterior chamber hemorrhage in contusion injuries is thought to be related to the posterior displacement of tissue or to the resultant fluid wave in the aqueous humor and the vitreous. This sudden dynamic shift stretches the limbal vessels and displaces the iris and the lens. This displacement may result in a tear at the iris or the ciliary body, usually at the angle structures.[10] A tear at the anterior aspect of the ciliary body is the most common site of bleeding and occurs in about 71% of cases.[11] The blood exits from the anterior chamber via the trabecular meshwork and the Schlemm canal or the juxtacanalicular tissue.

The usual duration of an uncomplicated hyphema is 5-6 days. The mean duration of elevated intraocular pressure is 6 days.


Hyphema describes the condition of the aqueous humor when red blood cells form a suspension in it.

The choroid and the iris contain a rich complex of vessels. The pupil is outlined and controlled by a complex set of iridial muscles, sphincters, and dilators. These muscles can be ruptured by sharp and/or blunt trauma. This is a frequent source of intraocular hemorrhage (hyphema). In addition, the iris root and/or the ciliary spur is a common location of bleeding from blunt trauma.

Surgical intervention into the eye for anterior segment procedures is accomplished routinely through various approaches. The most commonly used approaches in modern small incision surgery are via the limbus and/or the clear cornea. Clear cornea surgery markedly reduces the risk of bleeding from limbal vessels since the cornea in its healthy state is avascular. Scleral tunnel incision is subject to unpredictable hemorrhage, and the incision must be closed carefully with sutures.

Hyphema can result from intraocular surgery, as follows:

  • Intraoperative bleeding: Ciliary body or iris injury may occur during a peripheral iridectomy, cataract extraction, cyclodialysis, canaloplasty, [12] and filtration procedure (laser peripheral iridectomy, especially with YAG laser than with argon laser; argon laser trabeculoplasty [ALT], not very common). Hyphema is encountered during insertion of microstents during several of the minimally invasive glaucoma surgeries (MIGS), which are becoming increasingly popular, as described by Hoeh et al with their experience with the CyPass Micro-Stent. [13]
  • Early postoperative bleeding: A traumatized uveal vessel that was in spasm and suddenly dilates or conjunctival bleeding that makes its way into the anterior chamber via a corneoscleral wound or sclerostomy
  • Late postoperative bleeding: New vessels growing across the corneoscleral wound that bleed when manipulated, a uveal wound that is reopened, or an intraocular lens (IOL) that causes chronic iris erosion (eg, uveitis-glaucoma-hyphema [UGH] syndrome)


In the United States, the incidence of hyphema is 17-20 per 100,000 people per year.


Herpes Simplex

Herpes Zoster

Juvenile Xanthogranuloma

Keratoconjunctivitis, Atopic

Melanoma, Choroidal

Melanoma, Ciliary Body

Melanoma, Iris


Fuchs Heterochromic Uveitis[14]

Herpes Zoster Uveitis[14]

Other problems to be considered


Intraocular surgery

Spontaneous hyphema

Iris microhemangiomas, iris varix, and pupillary microhemangiomas

Iris neovascularization

Clotting disorders

Following laser trabeculoplasty[15] or iridotomy

Anticoagulation therapy, such as warfarin (Coumadin), clopidogrel bisulfate (Plavix), or aspirin


Elevated Intraocular Pressure

Increased intraocular pressures may accompany hyphemas of any size. Elevated intraocular pressures (>22 mm Hg) may be anticipated in approximately 32% of all patients with hyphemas at some time during their course.[11] Higher, more prolonged elevations of intraocular pressure are more commonly associated with near total or total hyphemas. Patients predisposed to glaucoma or with preexisting glaucoma and decreased facility of trabecular outflow are also more likely to develop glaucoma with a hyphema.

These highly elevated intraocular pressures occur during the acute phase of the hyphema and are separate from those related to angle recession.[16] In patients with pressure elevations, abnormal tonometric readings are frequently detected during the first 24 hours after injury. This initial period of elevated intraocular pressure is often followed by a period of normal or below normal pressure from the second day to the sixth day. Careful monitoring of the intraocular pressure is important and may determine the course of treatment.[17]

The early period of elevated intraocular pressure is probably the result of trabecular plugging by erythrocytes and fibrin. The following period of reduced pressure is most likely due to reduced aqueous production and uveitis, and it may actually increase the chance of secondary hemorrhage. This period of hypotony is commonly followed by a subsequent rise in intraocular pressure, probably coincidental with the recovery of the ciliary body.

Intraocular hypertension then subsides with recovery of the trabecular meshwork and disappearance of the hyphema.

Exceptions include patients with a hyphema occupying greater than 75% of the anterior chamber and those with a total hyphema, in whom pressure elevation frequently has its onset simultaneously with the initial hyphema and remains continually elevated until the hyphema has had considerable resolution. When large segments of the anterior chamber angle are irreparably damaged and/or when organization of the fibrin or clot produces extensive peripheral anterior synechiae, the intraocular hypertension continues, becoming intractable glaucoma.

Ghost cell glaucoma with hyphema and vitreous hemorrhage may cause elevated intraocular pressure 2 weeks to 3 months after the initial injury.[18] Gradual clearing of the hyphema occurs, with erythrocytes losing hemoglobin and becoming so-called ghost cells in the vitreous cavity. The ghost cells then circulate forward into the anterior chamber, with resultant trabecular blockage due to the distorted, bulky configuration of the crenated red blood cell. Considerable delayed elevation of intraocular pressure may occur with ghost cell glaucoma, particularly in patients with poor facility of outflow.


Secondary Hemorrhage

Secondary bleeding into the anterior chamber results in a markedly worse prognosis. Eventual visual recovery to a visual acuity of 20/50 (6/15) or better occurs in approximately 64% of patients with secondary hemorrhage as compared with 79.5% of patients in whom no rebleeding occurred.[6, 11] True secondary bleeding into the anterior chamber is indicated by an obvious increase in the amount of blood in the anterior chamber. Secondary hemorrhage occurs in approximately 25% (range, 7-38%) of all patients with hyphema.[6, 11] The incidence of secondary hemorrhage is higher in hyphemas classified as Grades 3 and 4.[7]

With near total to total hyphemas, in which the blood is dark and clotted, bright red blood often begins to appear at the periphery of the clot on the fourth day to the sixth day. This probably results from early dissolution of the clot and does not necessarily indicate a secondary hemorrhage. A large proportion (33%) of patients younger than 6 years has secondary hemorrhages; the likelihood of secondary hemorrhages decreases with age. Secondary hemorrhage usually occurs on the third day or the fourth day, but it may occur from the second day to the seventh day after trauma.[6, 19]

Secondary hemorrhage is probably due to lysis and retraction of the clot and fibrin aggregates that have occluded the initially traumatized vessel.[11] The secondary bleeding may result in increased intraocular pressure and corneal staining and is associated with a poorer visual prognosis.[20, 21]

Several studies have documented that secondary hemorrhage occurs more frequently in African American patients. In 1990, Spoor et al observed secondary hemorrhage in 24.2% of African American patients and in only 4.5% of white patients.[22] Two other studies demonstrated greater rates of secondary hemorrhage in African American patients that are highly significant (P < 0.05).[23, 24] In the initial systemic aminocaproic acid (ACA) study, African American patients comprised 66.2% of the population[11] ; 34% of African American patients in the placebo group developed secondary hemorrhage, and 20% of them had positive sickle cell trait by hemoglobin electrophoresis. There have also been studies showing a higher incidence of rebleeding in cases of hemophilia.[25]


Postoperative Hyphema

Early postsurgical hyphemas can be caused by bleeding from the ciliary body, from cut ends of the Schlemm canal, from the iris or iris root, and from the corneoscleral wounds. Wounds located more posteriorly tend to bleed more.

Iris neovascularization can also result in a hyphema due to fragile iris vessels that can bleed from intraoperative manipulation.

Late-onset postsurgical hyphemas occur from the fine arborizing neovascular vessels that form in the inner aspect of the cataract incision site. These vessels are fragile and bleed spontaneously after minor trauma. Hyphemas in this setting may be caused by posterior chamber intraocular lens (PCIOL) haptics eroding the ciliary sulcus. Anterior chamber intraocular lens (ACIOL) haptics also may cause bleeding by chafing the iris surface.

Rubeosis, or iris neovascularization, can also be a source of late postoperative hyphema.

Uveitis-glaucoma-hyphema (UGH) syndrome is seen weeks to months after surgery. Postoperative hyphema may also occur after laser procedures.

After ALT, bleeding may occur from an inadvertent laser treatment of the iris root vessel or from reflux of blood in the Schlemm canal.

After a laser iridotomy, bleeding may occur from an inadvertent laser treatment of the iris root vessel. The physician should apply pressure with the focusing lens to reduce the rate of bleeding and the size of hyphema formation if promptly recognized.


Complications of Hyphema

Complications of traumatic hyphema may be directly attributed to the retention of blood in the anterior chamber. The four most significant complications include posterior synechiae, peripheral anterior synechiae, corneal bloodstaining, and optic atrophy.[11, 26]

Posterior synechiae

Posterior synechiae may form in patients with traumatic hyphema. This complication is secondary to iritis or iridocyclitis. However, they are relatively rare complications in patients who are medically treated. Posterior synechiae occur more frequently in patients who have had surgical evacuation of the hyphema.

Peripheral anterior synechiae

Peripheral anterior synechiae occur frequently in medically treated patients in whom the hyphema has remained in the anterior chamber for a prolonged period, typically 9 or more days. The pathogenesis of peripheral anterior synechiae may be due to a prolonged iritis associated with the initial trauma and/or chemical iritis resulting from blood in the anterior chamber. Alternately, the clot in the chamber angle may subsequently organize, producing trabecular meshwork fibrosis that closes the angle. Both mechanisms are likely to be involved.[6, 11]

Corneal bloodstaining

Corneal bloodstaining primarily occurs in patients with a total hyphema and associated elevation of intraocular pressure. The following factors may increase the likelihood of corneal bloodstaining; all of these factors affect endothelial integrity:

  • Initial state of the corneal endothelium; decreased viability resulting from trauma or advanced age (eg, cornea guttata)
  • Surgical trauma to the endothelium
  • Large amount of formed clot in contact with the endothelium
  • Prolonged elevation of intraocular pressure

Corneal bloodstaining may occur with low or normal intraocular pressure; rarely, it may also occur in less than total hyphemas. However, these latter 2 instances probably can be anticipated only in eyes with a severely damaged or compromised endothelium. Corneal bloodstaining is more likely to occur in patients who have a total hyphema that remains for at least 6 days with concomitant, continuous intraocular pressures of greater than 25 mm Hg.[6] Clearing of the corneal bloodstains may require several or many months. Generally, the corneal bloodstains form centrally and then spread to the periphery of the corneal endothelium. During resolution, corneal bloodstaining clears peripherally and then centrally, reversing the sequence of the initial staining process.

Optic atrophy

Optic atrophy may result from either acute, transiently elevated intraocular pressure or chronically elevated intraocular pressure; each occurrence was studied in a series of patients with hyphema in an attempt to identify predisposing factors.[11, 27]

Nonglaucomatous optic atrophy in patients with hyphema may be due to either the initial trauma or the transient periods of markedly elevated intraocular pressure. Diffuse optic pallor (and not glaucomatous cupping) is the result of transient periods of markedly elevated intraocular pressure. Pallor occurs with constant pressure of 50 mm Hg or higher for 5 days or 35 mm Hg or higher for 7 days.[6, 11]

The authors have observed numerous patients with sickle cell trait who developed a nonglaucomatous optic atrophy with relatively low elevations of intraocular pressure of 35-39 mm Hg for 2-4 days.[6] In spite of maximum medical therapy, final visual acuity was less than 20/400 in all patients. The authors continue to observe optic atrophy in patients with sickle cell trait who are referred to their institution and who have not had vigorous control of intraocular pressure and/or delay in paracentesis. Other studies indicate that patients with sickle cell hemoglobinopathies and anterior chamber hyphemas have more sickled erythrocytes in their anterior chambers than in their circulating venous blood.[28] The sickled erythrocytes obstruct the trabecular meshwork more effectively than healthy cells, and a consequent elevation of intraocular pressure occurs with lesser amounts of hyphema.

Systemic hypotensive agents, such as acetazolamide and methazolamide, may not always be successful in reducing the intraocular pressure. In fact, they may be contraindicated in high or repeated dose regimens because of their possible contribution to intravascular hemoconcentration and increased microvascular sludging, both of which are detrimental in sickle cell hemoglobinopathy.

The increased intraocular pressure may not be tolerated well in these patients because of the increased susceptibility to impaired vascular perfusion within the optic nerve and the retina. Indeed, moderate elevation of intraocular pressure in patients with sickle cell hemoglobinopathy may produce rapid deterioration of visual function because of profound reduction of central retinal artery and posterior ciliary artery perfusion.[29, 30] For African American patients, the prevention of secondary hemorrhage is a critical factor.

Other complications associated with hyphema involve disruption of the posterior segment. These complications include, but are not limited to, choroidal rupture, macular scarring, retinal detachment, vitreous hemorrhage, and zonular dialysis. Even a case of sympathetic ophthalmia following hyphema has been reported.[31]


Prognosis and Treatment

Recognizing that the prognosis for visual recovery is directly related to the following 3 factors is important:

  • Amount of associated damage to other ocular structures (ie, choroidal rupture, macular scarring)
  • Whether secondary hemorrhage occurs
  • Whether complications of glaucoma, corneal bloodstaining, or optic atrophy occur

Treatment modalities should be directed at reducing both the incidence of secondary hemorrhage and the risk of corneal bloodstaining and optic atrophy.

The success of hyphema treatment, as judged by the recovery of visual acuity, is good in approximately 75% of patients. Approximately 80% of those with less than one third filling of the anterior chamber regain visual acuity of 20/40 (6/12) or better. Approximately 60% of those with a hyphema occupying greater than one half but less than total of the anterior chamber regain visual acuity of 20/40 (6/12) or better, while only approximately 35% of those with an initially total hyphema or a Grade 4 hyphema have good visual results. Approximately 60% of patients younger than 6 years have good visual results; older age groups have progressively higher percentages of good visual recovery.

The severity of the trauma is frequently related to the final visual outcome. Lens opacities, choroidal rupture, vitreous hemorrhage, angle-recession glaucoma, secondary macular edema, and retinal detachment are commonly associated with traumatic hyphema, compromising the final visual result.

Of patients with hyphema, 14% have poor visual results from associated trauma, including such complications as glaucoma, vitreous hemorrhage, retinal detachment, choroidal rupture, or scleral rupture. Poor visual outcome in traumatic hyphema can be directly attributed to the hyphema in 11% of patients[27, 11] ; the poor visual outcome is usually the result of secondary hemorrhage associated with optic atrophy or corneal bloodstaining.

For excellent patient education resources, visit eMedicineHealth's Eye and Vision Center. Also, see eMedicineHealth's patient education articles Hyphema (Bleeding in Eye) and Eye Injuries.



Lab studies

In African American patients, a sickle cell prep should be ordered if a hyphema is seen because the presence of a hyphema in patients with sickle cell trait or disease can produce significant ocular complications. Sickled red blood cells can more easily obstruct the trabecular meshwork and result in a high IOP, even in the presence of a relatively small hyphema. In addition, ischemic complications of the retina and the optic nerve are greater in patients with sickle cell trait and disease.

A hemoglobin electrophoresis is also helpful. It helps distinguish sickle cell trait from disease once the sickle cell prep is positive.

Imaging studies

Infrequently, a B-scan and/or a CT scan may be necessary to rule out an intraocular tumor or a foreign body if a thorough examination is not possible and the reasons for postoperative hyphema are not clear.

Other tests

Rarely, an iris fluorescein angiogram may be needed if early iris neovascularization is suspected as an underlying cause of the hyphema.


Examination of the angle structures is critical to understanding the extent of the blunt trauma precipitating a hyphema. This can be delayed until after the critical 5-day, high-risk, re-bleed period, particularly dynamic gonioscopy. Angle abnormalities, synechiae, and recession may commonly be found. Rarely, a focus of bleeding can be photocoagulated with the argon laser on low-power settings, up to 300 mW with a 200-µm spot size.


Medical Management

The customary treatment of patients with traumatic hyphema has included hospitalization, bed rest, bilateral patching, topical cycloplegics, topical steroids, systemic steroids, and sedation.[32] However, studies have not indicated that rigidly following this regimen is necessary to achieve acceptable therapeutic results. These studies provide evidence that no statistically significant difference exists in most areas of comparison between patients treated with bed rest, bilateral patches, and sedation and those treated with ambulation, a patch and shield on the injured eye only, and no sedation.[11, 33, 34, 35]

The authors recommend ambulation and a patch and shield for the injured eye. Sedation is recommended only in the extremely apprehensive individual. Hospitalization may be warranted in cases of severe trauma and rebleeding, when abuse is suspected, and when noncompliance to medical regimens or bed rest is a concern.

If analgesics are required for pain relief, acetaminophen (Tylenol) with or without codeine, depending on the severity of the pain, is preferred. The antiplatelet effect of aspirin tends to increase the incidence of rebleeding in patients with traumatic hyphema and should be strictly avoided.[20] Nonsteroidal anti-inflammatory drugs (NSAIDs) with analgesic activity, such as mefenamic acid (Ponstel) or naproxen (Aleve), share this deleterious antiplatelet effect.

In any therapeutic regimen, the injured globe requires adequate protection with a patch and shield.[36] Elevating the head of the bed 30-45° facilitates settling of the hyphema in the inferior anterior chamber and aids in classifying the hyphema. Inferior settling facilitates more rapid improvement of visual acuity, earlier evaluation of the posterior pole, and greater clearing of the anterior chamber angle. A better estimate of the decrease or increase in the amount of blood in the anterior chamber is also possible during subsequent biomicroscope examinations.

Various topical medications have been recommended for treating patients with traumatic hyphema, including cycloplegics for traumatic iridocyclitis and miotics to increase the surface area of the iris to enhance resorption of the hyphema.[21, 37, 38] Topical corticosteroids and estrogens[38, 39] have been recommended with contradictory results.[39]

Investigations conducted by the authors of patients with traumatic hyphema excluded the use of topical medications because of a lack of definite evidence of their advantages.[6, 27] One recommendation regarding topical medication is that the topical use of steroids after the third day or the fourth day of retained hyphema may be advantageous to decrease the associated iridocyclitis and to prevent or deter the development of peripheral anterior synechiae or posterior synechiae. Secondly, topical atropine (1%) is indicated in hyphemas occupying more than 50% of the anterior chamber to break the pupillary block.

Several double-masked studies clearly establish the value of systemic aminocaproic acid (ACA, AMICAR) in the prevention of recurrent hemorrhages.[6, 40] If secondary hemorrhages are the result of lysis and retraction of a clot that has produced an occlusion of the traumatized vessel, then prevention of normally occurring clot lysis for 5-6 days should be advantageous to allow the injured blood vessel to more completely repair its integrity.[6] The antifibrinolytic activity of ACA given systemically has been demonstrated in other areas of the body to decrease the incidence of secondary hemorrhage.

ACA retards clot lysis by preventing plasmin from binding to the lysine in the fibrin clot. As a lysine analog, ACA competitively inactivates plasmin by occupying the site on plasmin that would normally bind to fibrin. In a similar manner, ACA binds to plasminogen, so that when activated to plasmin, it cannot attach to fibrin.

When ACA was administered orally in a dosage of 100 mg/kg every 4 hours for 5 days, a statistically significant reduction in the incidence of rebleeding of traumatic hyphemas was observed.[6] Systemic ACA should be used in hyphemas occupying 75% or less of the anterior chamber because the clot may persist in the anterior chamber for an increased period during administration of the drug. The continued retention of the clot in the anterior chamber could be a potential disadvantage with larger Grade 4 hyphemas.

In a prospective study by the authors, as well as 2 additional studies, patient groups treated with ACA and placebo were randomized and double-masked.[6, 23, 41, 40] In the ACA-treated group, the incidence of secondary hemorrhage varied 3-4%.[6, 23, 41, 40] In the placebo-treated group, the incidence was 28-33%. ACA in a dosage of 50 mg/kg every 4 hours is equally as effective as 100 mg/kg every 4 hours, orally, for 5 days.[23] The total dosage of ACA should not exceed 30 grams per day.

Systemic ACA should not be used in patients who are pregnant or those with renal or hepatic insufficiency.

Since systemic ACA significantly reduces the incidence of secondary hemorrhage, a topical preparation could decrease the incidence of adverse effects. By concentrating the drug in the aqueous humor, a topical preparation would decrease the systemic concentration of ACA associated with many of the adverse effects.

For systemically administered ACA to be effective, it must penetrate into the anterior segment in sufficient concentration to retard fibrinolysis. To directly determine the concentration of ACA in the aqueous humor following systemic administration, using an animal model, the authors compared plasma and aqueous humor concentrations of ACA following intravenous (IV) administration of 50 mg/kg and 100 mg/kg, as well as after constant infusion of 25 mg/kg/h.[42] After IV administration, plasma levels were 10-fold higher than levels in the aqueous humor. Antifibrinolytic activity correlated directly with ACA concentration in plasma or the aqueous humor. The time to clot dissolution was greatest (2.5 times control) when the ACA concentration in the aqueous humor reached 30-35 mg/dL, which, thus, became the target concentration to achieve with topical therapy.

The authors' long-range goal is to improve the management of hyphema by decreasing the incidence of secondary hemorrhage using topical drug therapy that is more effective, less toxic, and better accepted by both patients and ophthalmologists than the currently available oral therapy with ACA.

Seven topical preparations containing ACA were studied to assess which could deliver the required amount of ACA into the aqueous humor.[43] The greatest ACA concentrations were obtained using either polyvinyl alcohol or carboxypolymethylene (CPM), 51 mg/dL and 58 mg/dL, respectively. The latter had a longer duration of action. Using an experimental model for hyphema, ACA in CPM was applied topically every 6 hours for 6 days or until a secondary hemorrhage occurred.[44] Compared to no treatment or the administration of a placebo (eg, vehicle without ACA), topical application of ACA significantly decreased the incidence of rebleeds from 33% to 10% (P < 0.05). No ocular adverse effects occurred after topical application of either formulation.

Additional studies have been performed to optimize the concentration of the vehicle and the drug.[45] The optimal combination is 30% ACA to 2% CPM. However, this combination did not lead to an increase in the duration of action using hyaluronic acid (Healon) or collagen shields as a depot.[46] The gel is administered in a glass syringe 4 times per day for 7 days. The gel is well tolerated by patients, including children.

Studies of 25% ACA have not seen a significant benefit in reducing rebleeding rates and increased the time to clot resolution.[47] However, a study concluded ACA was beneficial in treating patients with hyphema.[48]

The authors established a prospective, multicenter, double-masked, randomized clinical trial comparing oral and topical ACA.[49]

In the trial, 64 patients with traumatic hyphema treated with topical or systemic ACA were compared with 54 control patients with hyphema. Compared with the control group, topical and systemic ACA were statistically significant in preventing secondary hemorrhage. Only 3% (2/64) of the patients who received topical ACA (35 patients) or systemic ACA (29 patients) had secondary hemorrhage, compared with 22% (12/54) of the control group (P=0.002). Final visual acuity was 20/40 or better in 30 patients (86%) in the topical ACA group, compared with 23 patients (43%) in the control group (P=0.001). Final visual acuity was 20/40 or better in 20 patients (69%) in the systemic ACA group, compared with 23 patients (43%) in the control group (P=0.04). A final visual acuity of 20/40 or better was regained by 86% of patients in the topical ACA group, compared with 69% of patients in the systemic ACA group.[49]

Topical ACA appears to be a safe, effective treatment to prevent secondary hemorrhage in patients with traumatic hyphema. It is as effective as systemic ACA in reducing secondary hemorrhage, and no systemic adverse effects were observed with topical use. Topical ACA provides an effective outpatient treatment for traumatic hyphemas.

Although not approved for ophthalmic use in the United States, another lysine analog, tranexamic acid, also has antifibrinolytic properties. In a series of children treated with tranexamic acid (25 mg/kg/d), the incidence of secondary hemorrhage was significantly reduced.[50] Like ACA, tranexamic acid has been associated with nausea, vomiting, and hypotension. Unlike ACA, tranexamic acid is associated with visual abnormalities, which could complicate the ophthalmologic evaluation of the patient. In addition, some patients in this study were treated with other drugs, including topical steroids. One study found that tranexamic acid was better than oral steroids in preventing rebleeding rates.[51] A meta-analysis of hyphema literature determined antifibrinolytics had a significant impact on hyphema rebleeding.[52] The authors suggested antifibrinolytics use in patients at high risk for associated hyphema complications.

A 2013 Cochrane review concluded that the antifibrinolytics ACA (both topical and systemic), tranexamic acid, and aminomethylbenzoic acid all reduced the rate of secondary hemorrhage.[35] Until a commercial option becomes readily available, topical ACA can be ordered through Leiter's Pharmacy.

Other investigators have suggested that systemic steroids decrease the incidence of secondary hemorrhage. Initial studies supporting this claim were neither randomized nor double-masked.[37, 53] In 1980, a randomized, double-masked, prospective study by Spoor and associates observed a secondary hemorrhage rate of 20% in controls and 13% in treated patients, which was not statistically significant.[22] In 1991, Farber and colleagues compared treatment with oral ACA with oral prednisone in a well-controlled trial.[54] Their study suggested that both drugs decrease the incidence of secondary hemorrhage by a similar amount, albeit by different mechanisms. Because of the small number of rebleeds, the confidence limits were large and may have masked a real difference.

The previously mentioned 2013 Cochrane review noted that the evidence for the use of corticosteroids in traumatic hyphema is limited owing to studies with small sample sizes and low rates of complications. However, conflicting data continue to emerge.[35] A 2014 retrospective analysis that examined visual outcomes, incidence of rebleeding, and intraocular pressures in 98 eyes treated with corticosteroid therapy (as well as bed rest, elevation of head of bed, and hydration) and in 108 eyes treated with supportive therapy alone identified no difference between the visual outcomes or incidence of rebleeding. The intraocular pressure was significantly lower in the supportive therapy group.[55]

Other studies have recommended oral steroids combined with traditional treatments to reduce rebleeding rates.[51, 36] A randomized, comparative study of ACA versus oral steroids found no significant difference in the outcomes between the 2 treatments.[54] Despite conflicting data, many practitioners still tend to prescribe topical corticosteroids at least anecdotally for the potential benefits of avoiding complications due to intraocular inflammation.

The major difficulty with this study was that controls were not used. The lack of a true control population is unfortunate in comparing the 2 groups. In addition, the study excluded all patients with sickle cell trait. These patients are one group that should be considered for systemic ACA or systemic corticosteroid treatment. In addition, patients with gastric ulcer or diabetes mellitus and those who were intoxicated or had bleeding were excluded. The mode of action of prednisone is unclear and may be related to an anti-inflammatory influence on traumatized blood vessels with reduced engorgement and a propensity for rebleeding. Additional randomized studies with controls would be extremely helpful in determining whether or not a significant reduction of secondary hemorrhage occurs with systemic prednisone in comparison with systemic ACA.

Some studies have investigated the application of intracameral tissue plasminogen activator (t-PA) in the management of traumatic hyphema.[56] However, these studies have been neither large nor randomized. A potential problem with t-PA is the associated risk of rebleeding of the initial wound.

Application of t-PA has been considered in resolving hyphemas that either fail to clear spontaneously or are associated with malignant intraocular pressure,[57] although the actual timing of t-PA administration from the initial injury has yet to be determined.

Topical antiglaucomatous medications usually lower intraocular pressure. With the advent of newer glaucoma modalities, initiating therapy incrementally with brimonidine tartrate (Alphagan, Allergan), followed by latanoprost (Xalatan, Pharmacia) and timolol maleate (Timoptic-XE, Merck), is recommended. If intraocular pressure is still elevated, a topical carbonic anhydrase inhibitor should be added. In patients with sickle cell trait or sickle cell disease, methazolamide and topical beta-blockers should be substituted.[10, 58]

If intraocular pressure is still uncontrolled, systemic medication should be given during the acute phase of the hyphema. Acetazolamide (20 mg/kg/d) may be administered in 4 divided doses for intraocular pressure of greater than 22 mm Hg. However, acetazolamide can increase the concentration of anterior chamber ascorbate, lower the pH of human plasma, and exacerbate sickling of erythrocytes. Therefore, methazolamide (10 mg/kg/d), administered in 4 divided doses, is preferred in pediatric patients with sickle cell trait or sickle cell disease.[6, 28]

Osmotic agents (preferably mannitol) should be considered for intraocular pressure above 35 mm Hg in spite of topical medications. Orally administered glycerol is effective; however, nausea and vomiting are often associated with its administration in patients with elevated intraocular pressure. Mannitol is administered intravenously, 1.5 g/kg (usually in a 10% solution), over a period of approximately 45 minutes. This agent may be given 2 times a day (or every 8 hours in patients with extremely high pressure) in attempt to keep the intraocular pressure below 35 mm Hg. Renal output, blood urea nitrogen, and electrolyte values should be monitored in all patients in whom such therapy is continued for several days.


Outpatient Versus Hospitalization

With increasing emphasis on cost containment, outpatient management of hyphema has become more popular in recent years. Several studies have demonstrated no significant difference in final visual acuities in patients with smaller hyphemas treated at home or those treated in hospitals.[59, 46, 60, 61, 40, 62]

Microhyphemas can be treated on an outpatient basis, unless secondary hemorrhage occurs or elevated intraocular pressure is uncontrolled. Patients with traumatic hyphema occupying less than one third of the anterior chamber can be treated on an outpatient basis with systemic or topical ACA. If the hyphema occupies more than one third of the anterior chamber, intraocular pressure is elevated beyond 30 mm Hg, or both, hospitalization is recommended. The decision to hospitalize also depends on the cooperation of the patient, family members, and the extent of ocular injury. For outpatients, daily ocular examinations, including an evaluation of the amount of hyphema and intraocular pressure, should be performed. Daily ophthalmic sketches are helpful in estimating the amount and the rate of resolution or rebleeding. Applanation tonometry must be performed at least once daily and twice daily in patients with elevated intraocular pressures.

Minimal bloodstaining is often difficult to detect against a background of blood in the anterior chamber. Under such circumstances, the cornea often assumes a yellowish cast, which is reflected from the yellowish fibrinous coagulum in the anterior chamber. The most typical early sign of corneal bloodstaining is the presence of tiny yellowish granules that initially appear in the posterior third of the corneal stroma. An additional finding is a lack of definition or a blurred appearance of the ordinarily sharply defined fibrillar structure of the involved corneal stroma. The latter is independent of the yellowish color transmitted to the stroma by the contents of the anterior chamber.

The authors have found this sign to be useful in recognizing the very early stages of corneal bloodstaining. These biomicroscopic signs of corneal bloodstaining usually precede gross staining by only 24-36 hours. Surgical treatment in this early stage may prevent gross staining, and the cornea may clear in 4-6 months. However, once grossly visible staining develops, many months may elapse before clearing is complete.


Surgical Intervention

Generally, medical management seems to produce the best visual results for patients with less than total hyphemas. Certainly, other causes of inflammation or bleeding should be ruled out, particularly when the history of trauma is questionable.[63]

For several reasons, surgical management is fraught with complication.[40] First, surgery is chosen for the most severe presentations of hyphema, thus selecting out the most difficult cases. Surgical intervention is rarely indicated for hyphemas that occupy less than one half of the anterior chamber; these lesser hyphemas (either primary or secondary) usually resolve spontaneously under any medical regimen and require no surgical intervention.

In 2 prospective series totaling 196 patients, no corneal bloodstaining or optic atrophy was noted in hyphemas of 50% or less.[6, 11] Corneal bloodstaining, with rare exceptions, only occurs in patients with hyphemas that are total at some time during their course. The results of surgical evacuation to improve secondary glaucoma in small hyphemas (75% or less) are disappointing. The ocular hypertension in these instances results more frequently from damage to the trabecular structures than from plugging by red cells and fibrin. Surgical evacuation in these instances may produce only temporary postsurgical hypotony, with a rapid return to preoperative intraocular pressure.

The authors believe that most hyphemas, including total hyphemas, should be medically treated for the first 4 days. Spontaneous resolution of the hyphema occurs quite rapidly during this period, and these cases have the best prognosis. In one series of 20 eyes with total hyphemas, 4 of these 20 eyes (20%) cleared sufficiently by day 4 to rule out surgery.[27] An additional 4 eyes resolved spontaneously on medical treatment over a longer period.

Surgical intervention is usually indicated on or after the fourth day. Overall, indications for surgical intervention are outlined below.[6, 27]

  • Four days after onset of total hyphema
  • Microscopic corneal bloodstaining (at any time)
  • Total hyphema with intraocular pressures of 50 mm Hg or more for 4 days (to prevent optic atrophy)
  • Total hyphemas or hyphemas filling greater than 75% of the anterior chamber present for 6 days with pressures of 25 mm Hg or more (to prevent corneal bloodstaining)
  • Hyphemas filling greater than 50% of the anterior chamber retained longer than 8-9 days (to prevent peripheral anterior synechiae)
  • In patients with sickle cell trait or sickle cell disease who have hyphemas of any size that are associated with intraocular pressures of greater than 35 mm Hg for more than 24 hours

If intraocular pressure remains elevated at 50 mm Hg or more for 4 days, surgery should not be delayed. One study noted optic atrophy in 50% of patients with total hyphemas when surgery was delayed. Corneal bloodstaining occurred in 43% of patients.[64] A 2013 study of 138 pediatric traumatic hyphemas found an increased likelihood of required surgical intervention if patients presented with increased intraocular pressure.[3]

Patients with sickle cell hemoglobinopathies and even those with sickle cell trait require surgical intervention if intraocular pressure is not controlled within 24 hours.[6, 28] An interesting study of hyphema in rabbits measured partial oxygen pressure in the aqueous humor after injection of blood from a patient with sickle cell versus injection of an air or oxygen bubble with the blood from the patient. After 10 hours, the partial pressure of oxygen was 123.35 mm Hg in the blood plus air bubble group and 306.47 mm Hg in the blood plus oxygen group, compared to 78.45 mm Hg and 73.97 mm Hg for the placebo (no injection) and blood only injection groups, respectively. The authors recommended leaving an air or oxygen bubble in the anterior chamber after a washout in patients with sickle cell disease or trait.[65]

MomPremier et al described a two-needle, office-based technique for performing an air-fluid exchange (see image below) in several patients without sickle cell.[66] The authors of this article have not attempted this technique.

Air-fluid exchange two-needle technique: (a) Entry Air-fluid exchange two-needle technique: (a) Entry into the anterior chamber superiorly with gas-filled syringe. (b) After partial gas injection, entry into the deepened anterior chamber inferiorly with evacuation syringe, plunger removed. (c) Evacuation of hyphema with complete or near complete anterior chamber fluid-gas exchange. (d) Inferior needle is removed while superior gas-filled syringe is used to equilibrate intraocular pressure. Courtesy of Hindawi Publishing Corp under Creative Commons Attribution License [MomPremier M, Sadhwani D, Shaikh S. An Office-Based Procedure for Hyphema Treatment. Case Reports in Ophthalmological Medicine. Vol 2015; Article 321076;].

Surgery for patients with hyphema should be cautiously approached. In 2 series involving 196 patients, surgery was performed in only 14 patients (7.1%).[6, 11] Risks of surgery include damage to the corneal endothelium, the lens, and/or the iris; prolapse of the intraocular contents; rebleeding; and increased synechiae formation. With the exception of patients with sickle cell trait, no patients in these series required surgery if the hyphema occupied less than 50% of the anterior chamber. Total hyphema evacuation by vitrectomy instrumentation, peripheral iridectomy, and trabeculectomy has been recommended.

Generally, the authors recommend the type of surgical intervention with which the surgeon is most familiar. Hyphema surgery should be preceded by intravenous acetazolamide and mannitol if the intraocular pressure is elevated. The operation should be performed under general anesthesia in all patients. The operating microscope should be used in all instances. Presently, the 4 major approaches include the following:

  • Hyphema evacuation with closed vitrectomy instrumentation
  • Paracentesis
  • Irrigation and aspiration through a small incision
  • Clot irrigation with trabeculectomy

Currently, the preferred technique is evacuation of the hyphema with vitrectomy instrumentation. The initial clear corneal incision is made with a diamond blade. To avoid both the iris and the lens, the blade is oriented and pushed into the anterior chamber in such a manner that it is parallel to the plane of the iris. A 20-gauge Ocutome or similar guillotine instrument, attached to an infusion line of balanced salt solution plus (BSS-Plus), is gently placed into the anterior chamber. The bottle of BSS-Plus should be 30-40 cm above the eye to maintain normal intraocular pressure. With the Ocutome cutting port half open and the infusion line in place, irrigating and aspirating free blood from the formed clot are possible. The suction mode is initially set at 4, and the cutting speed is set at 150 for the procedure. An anterior chamber maintainer can help stabilize fluctuations in intraocular pressure during clot evacuation.[67]

Extreme care is required to avoid any contact with the iris, the lens, or the corneal endothelium. Directing the guillotine port anteriorly and keeping the port in view at all times generally avoids intraoperative uveal tissue injury. This operative procedure is used to remove the central portion of the clot. Removing the entire clot in the periphery of the anterior chamber is not necessary.

If a secondary hemorrhage occurs during the operative procedure, the authors recommend tamponade of the bleeding by elevation of the infusion bottle to approximately 70 cm above the eye for several minutes. If the bleeding continues, filling the anterior chamber with an air bubble after evacuating the clot is helpful. If bleeding persists, bimanual bipolar diathermy is extremely helpful when the bleeding site is visible.[68] At the end of the surgical procedure, filling the anterior chamber with an air bubble is helpful. This also helps to control any secondary bleeding. The corneal incision is closed with two 10-0 nylon sutures. The response in lowering intraocular pressure with the Ocutome instrumentation has been quite successful. Each eye operated on with this technique has shown an initial decrease in intraocular pressure associated with the surgery.

Paracentesis causes little surgical trauma and relieves the elevated intraocular pressure. Paracentesis is especially beneficial in patients with sickle cell trait or sickle cell disease. However, the decrease in intraocular pressure may be transient, and appreciable reduction may not occur in the amount of the formed clot.

Irrigation by a single or double needle technique has the advantage of a small incision. The authors prefer using a diamond blade and entering at the 1-o'clock position in the right eye and at the 11-o'clock position in the left eye. The entry should be through clear cornea. The irrigating needle should extend just through the corneal endothelium, and a slow push-pull maneuver with the single needle technique washes out the erythrocytes from the anterior chamber clot, often leaving the fibrin matrix. To reduce the likelihood of rebleeding during the operative procedure, care should be undertaken not to produce violent alterations in the anterior chamber pressure. If rebleeding does occur, an air bubble can be effectively introduced for tamponade. After a 5-minute wait, irrigation maneuvers can be resumed. Using the single or double needle technique, the surgeon must be particularly careful to have direct visualization of the anterior chamber.

This technique has some disadvantages. Sometimes, maintaining the position of the needle tip in the anterior chamber during the procedure is difficult. A hazardous situation is created when the collar-button type of formed clot occupies both the anterior and posterior chambers. This produces pupillary block with anterior displacement of the iris-lens diaphragm.

Generally, trabeculectomy is not used in smaller hyphemas. However, in patients with total hyphema, trabeculectomy with peripheral iridectomy should be considered. Trabeculectomy is performed with gentle irrigation of the anterior chamber hyphema. This surgery is relatively safe and should be performed early for patients with total hyphema unless the elevated intraocular pressure is medically controlled and resolution of the hyphema is clearly imminent.

The authors currently perform trabeculectomy on patients with total hyphema persisting to day 4 and find it superior to clot evacuation. Several patients referred to the authors' institution have had attempts at clot evacuation. One patient sustained complete iridodialysis related to attempted clot evacuation. In addition, the authors have treated other patients who have been referred after optic atrophy developed with total hyphemas.

When trabeculectomy is performed, the authors use a partial-thickness lamellar technique. Superficial episcleral vessels are coagulated with the bipolar cautery. A superficial lamellar flap is developed through one-third scleral thickness, creating a 3 X 3-mm trap door hinged at the limbal area. A 1 X 4-mm window through the scleral root and the trabecular meshwork into the anterior chamber is fashioned with a diamond knife. Peripheral iridectomy is performed, followed by gentle irrigation of the clot in the area of the trabeculectomy site. Two 10-0 nylon scleral flap sutures are used to close the trabeculectomy site. First the Tenon capsule and then the conjunctiva are closed with a running 8-0 or 9-0 Vicryl suture in a layered, anatomical fashion. Once the conjunctiva has healed, the nylon scleral suture(s) can be lasered to open up the trabeculectomy site (when necessary). This technique has been invaluable in difficult total hyphema cases.

Topically applied mitomycin-C may be a useful adjunct in the prevention of long-term trabeculectomy failure, particularly in patients with trauma and, therefore, a predisposition to inflammation.

Because each of these surgical procedures has its own set of complications, the surgeon should approach each patient with caution and individualize the surgical strategy. Postoperative care should include meticulous control of nausea and emesis to avoid significant fluctuations in intraocular pressure.

Postoperative hyphemas may be seen at the time of surgery or within the first 2-3 days after surgery. If bleeding is identified intraoperatively, it must be identified and coagulated if it does not cease on its own. The surgeon can reduce postsurgical hyphemas by creating internal sclerostomy as anteriorly as possible to reduce bleeding during filtration surgery. In uveitis-glaucoma-hyphema (UGH) syndrome associated with archaic design anterior chamber IOLs and sulcus posterior chamber IOLs, the treatment may require removal of the lens that is causing the problem and replacing it with another lens.

A chaffing lens haptic can be diagnosed with ultrasound biomicroscopy (UBM)[69] or the video feature of endoscopic cyclophotocoagulation (ECP). ECP may also serve a role in treating areas of chaffing, potentially resolving UGH.

Contributor Information and Disclosures

David L Nash, MD Chief Resident, Department of Ophthalmology, Eastern Virginia Medical School

David L Nash, MD is a member of the following medical societies: American Academy of Ophthalmology, Virginia Society of Eye Physicians and Surgeons

Disclosure: Nothing to disclose.


John D Sheppard, Jr, MD, MMSc Professor of Ophthalmology, Microbiology and Molecular Biology, Clinical Director, Thomas R Lee Center for Ocular Pharmacology, Ophthalmology Residency Research Program Director, Eastern Virginia Medical School; President, Virginia Eye Consultants

John D Sheppard, Jr, MD, MMSc is a member of the following medical societies: American Academy of Ophthalmology, American Society for Microbiology, American Society of Cataract and Refractive Surgery, Association for Research in Vision and Ophthalmology, American Uveitis Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Christopher J Rapuano, MD Professor, Department of Ophthalmology, Jefferson Medical College of Thomas Jefferson University; Director of the Cornea Service, Co-Director of Refractive Surgery Department, Wills Eye Hospital

Christopher J Rapuano, MD is a member of the following medical societies: American Academy of Ophthalmology, American Ophthalmological Society, American Society of Cataract and Refractive Surgery, Contact Lens Association of Ophthalmologists, International Society of Refractive Surgery, Cornea Society, Eye Bank Association of America

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Cornea Society, Allergan, Bausch & Lomb, Bio-Tissue, Shire, TearScience, TearLab<br/>Serve(d) as a speaker or a member of a speakers bureau for: Allergan, Bausch & Lomb, Bio-Tissue, TearScience.

Chief Editor

Hampton Roy, Sr, MD Associate Clinical Professor, Department of Ophthalmology, University of Arkansas for Medical Sciences

Hampton Roy, Sr, MD is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, Pan-American Association of Ophthalmology

Disclosure: Nothing to disclose.

Additional Contributors

Jack L Wilson, PhD Distinguished Professor, Department of Anatomy and Neurobiology, University of Tennessee Health Science Center College of Medicine

Jack L Wilson, PhD is a member of the following medical societies: American Association of Anatomists, American Heart Association, American Association of Clinical Anatomists

Disclosure: Nothing to disclose.


Earl R Crouch, Jr, MD, FACS Chairman and Professor, Department of Ophthalmology, Associate Professor, Department of Pediatrics, Eastern Virginia Medical School

Earl R Crouch, Jr, MD, FACS is a member of the following medical societies: American Academy of Ophthalmology, American Academy of Pediatrics, American College of Surgeons, American Medical Association, Association for Research in Vision and Ophthalmology, Norfolk Academy of Medicine, Pan-American Association of Ophthalmology, Phi Beta Kappa, and Southern Medical Association

Disclosure: Nothing to disclose.

Eric R Crouch, MD Associate Professor of Ophthalmology, Eastern Virginia Medical School; Assistant Professor of Pediatrics, Children's Hospital of The King's Daughters; Consulting Staff, Virginia Pediatric Eye Center

Eric R Crouch, MD is a member of the following medical societies: American Academy of Ophthalmology, American Academy of Pediatrics, American Association for Pediatric Ophthalmology and Strabismus, and American College of Surgeons

Disclosure: Nothing to disclose.

Enrique Garcia-Valenzuela, MD, PhD Clinical Assistant Professor, Department of Ophthalmology, University of Illinois Eye and Ear Infirmary; Consulting Staff, Vitreo-Retinal Surgery, Midwest Retina Consultants, SC, Parkside Center

Enrique Garcia-Valenzuela, MD, PhD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Association for Research in Vision and Ophthalmology, Retina Society, and Society for Neuroscience

Disclosure: Nothing to disclose.

Shobit Rastogi, MD Assistant Professor Of Ophthalmology, State University of New York Downstate Eye Center, Downstate Medical Center

Shobit Rastogi, MD is a member of the following medical societies: American Academy of Ophthalmology, American Glaucoma Society, and American Society of Cataract and Refractive Surgery

Disclosure: Nothing to disclose.

Patricia B Williams, PhD Professor, Departments of Ophthalmology and Pharmacology, Director, Thomas R Lee Center for Ocular Pharmacology, Eastern Virginia Medical School

Patricia B Williams, PhD is a member of the following medical societies: American College of Clinical Pharmacology, American Heart Association, American Society for Pharmacology and Experimental Therapeutics, and Association for Research in Vision and Ophthalmology

Disclosure: EyeRx Reserach, Inc. Ownership interest Consulting; OcuCure Therapeutics, Inc. Consulting fee Consulting

  1. Morris DS. Ocular blunt trauma: loss of sight from an ice hockey injury. Br J Sports Med. 2006 Mar. 40(3):e5; discussion e5. [Medline]. [Full Text].

  2. Listman DA. Paintball injuries in children: more than meets the eye. Pediatrics. 2004 Jan. 113(1 Pt 1):e15-8. [Medline].

  3. Soohoo JR, Davies BW, Braverman RS, Enzenauer RW, McCourt EA. Pediatric traumatic hyphema: a review of 138 consecutive cases. J AAPOS. 2013 Nov 8. [Medline].

  4. Reddy SC. Ocular injuries by durian fruit. Int J Ophthalmol. 2012. 5(4):530-4. [Medline]. [Full Text].

  5. Kent JS, Eidsness RB, Colleaux KM, et al. Indoor soccer-related eye injuries: should eye protection be mandatory?. Can J Ophthalmol. 2007 Aug. 42(4):605-8. [Medline].

  6. Crouch ER Jr, Frenkel M. Aminocaproic acid in the treatment of traumatic hyphema. Am J Ophthalmol. 1976 Mar. 81(3):355-60. [Medline].

  7. Edwards WC, Layden WE. Traumatic hyphema. A report of 184 consecutive cases. Am J Ophthalmol. 1973 Jan. 75(1):110-6. [Medline].

  8. Kiratli H, Tarlan B, Kasim B, Soylemezoglu F. [Malignant teratoid medulloepithelioma of the ciliary body presenting with spontaneous hyphema]. J Fr Ophtalmol. 2014 Nov. 37(9):e137-9. [Medline].

  9. Podolsky MM, Srinivasan BD. Spontaneous hyphema secondary to vascular tuft of pupillary margin of the iris. Arch Ophthalmol. 1979 Feb. 97(2):301-2. [Medline].

  10. Hoskins HD. Secondary glaucoma. Heilman K, Richardson KT, eds. Glaucoma: Conceptions of a Disease, Pathogenesis, Diagnosis Therapy. Philadelphia Pa: WB Saunders; 1978. 376.

  11. Read JE, Goldberg MF. Traumatic hyphema: Comparison of medical treatment. Trans Am Acad Ophthalmol Otolaryngol. 1974. 78:799.

  12. Brusini P, Caramello G, Benedetti S, Tosoni C. Canaloplasty in Open-angle Glaucoma: Mid-term Results From a Multicenter Study. J Glaucoma. 2014 Oct 14. [Medline].

  13. Hoeh H, Vold SD, Ahmed IK, Anton A, Rau M, Singh K. Initial Clinical Experience With the CyPass Micro-Stent: Safety and Surgical Outcomes of a Novel Supraciliary Microstent. J Glaucoma. 2014 Oct 9. [Medline].

  14. Okunuki Y, Sakai J, Kezuka T, Goto H. A case of herpes zoster uveitis with severe hyphema. BMC Ophthalmol. 2014 May 29. 14:74. [Medline]. [Full Text].

  15. Rhee DJ, Krad O, Pasquale LR. Hyphema following selective laser trabeculoplasty. Ophthalmic Surg Lasers Imaging. 2009 Sep-Oct. 40(5):493-4. [Medline].

  16. Blanton FM. Anterior chamber angle recession and secondary glaucoma. A study of the aftereffects of traumatic hyphemas. Arch Ophthalmol. 1964 Jul. 72:39-43. [Medline].

  17. Recchia FM, Saluja RK, Hammel K, et al. Outpatient management of traumatic microhyphema. Ophthalmology. 2002 Aug. 109(8):1465-70; discussion 1470-1. [Medline].

  18. Campbell DG. Ghost cell glaucoma following trauma. Ophthalmology. 1981 Nov. 88(11):1151-8. [Medline].

  19. Pilger IS. Medical treatment of traumatic hyphema. Surv Ophthalmol. 1975 Jul-Aug. 20(1):28-34. [Medline].

  20. Crawford JS, Lewandowski RL, Chan W. The effect of aspirin on rebleeding in traumatic hyphema. Am J Ophthalmol. 1975 Sep. 80(3 Pt 2):543-5. [Medline].

  21. Gilbert HD, Jensen AD. Atropine in the treatment of traumatic hyphema. Ann Ophthalmol. 1973 Dec. 5(12):1297-300. [Medline].

  22. Spoor TC, Kwitko GM, O'Grady JM, et al. Traumatic hyphema in an urban population. Am J Ophthalmol. 1990 Jan 15. 109(1):23-7. [Medline].

  23. Palmer DJ, Goldberg MF, Frenkel M, et al. A comparison of two dose regimens of epsilon aminocaproic acid in the prevention and management of secondary traumatic hyphemas. Ophthalmology. 1986 Jan. 93(1):102-8. [Medline].

  24. Skalka HW. Recurrent hemorrhage in traumatic hyphema. Ann Ophthalmol. 1978 Sep. 10(9):1153-7. [Medline].

  25. Wilker SC, Singh A, Ellis FJ. ecurrent bleeding following traumatic hyphema due to mild hemophilia B (Christmas disease). J AAPOS. 2007. 11:622-3. [Medline].

  26. Crouch ER Jr. Traumatic hyphema. J Pediatr Ophthalmol Strabismus. 1986 Mar-Apr. 23(2):95-7. [Medline].

  27. Read J. Traumatic hyphema: surgical vs medical management. Ann Ophthalmol. 1975 May. 7(5):659-62, 664-6, 668-70. [Medline].

  28. Goldberg MF. The diagnosis and treatment of sickled erythrocytes in human hyphemas. Trans Am Ophthalmol Soc. 1978. 76:481-501. [Medline].

  29. Michelson PE, Pfaffenbach D. Retinal arterial occlusion following ocular trauma in youths with sickle-trait hemoglobinopathy. Am J Ophthalmol. 1972 Sep. 74(3):494-7. [Medline].

  30. Radius RL, Finkelstein D. Central retinal artery occlusion (reversible in sickle trait with glaucoma. Br J Ophthalmol. 1976 Jun. 60(6):428-30. [Medline].

  31. Bakri SJ, Peters GB 3rd. Sympathetic ophthalmia after a hyphema due to nonpenetrating trauma. Ocul Immunol Inflamm. 2005 Feb. 13(1):85-6. [Medline].

  32. Milauskas AT, Fueger GF. Serious ocular complications associated with blowout fractures of the orbit. Am J Ophthalmol. 1966 Oct. 62(4):670-2. [Medline].

  33. Rakusin W. Traumatic hyphema. Am J Ophthalmol. 1972 Aug. 74(2):284-92. [Medline].

  34. Rocha KM, Martins EN, Melo LA Jr, et al. Outpatient management of traumatic hyphema in children: prospective evaluation. J AAPOS. 2004 Aug. 8(4):357-61. [Medline].

  35. Gharaibeh A, Savage HI, Scherer RW, Goldberg MF, Lindsley K. Medical interventions for traumatic hyphema. Cochrane Database Syst Rev. 2013 Dec 3. 12:CD005431. [Medline].

  36. Romano PE. Systemic prednisolone prevents rebleeding in traumatic hyphema. Ophthalmology. 2000 May. 107(5):812-4. [Medline].

  37. Yasuna E. Management of traumatic hyphema. Arch Ophthalmol. 1974 Mar. 91(3):190-1. [Medline].

  38. Milstein BA. Traumatic hyphema. A study of 83 consecutive cases. South Med J. 1971 Sep. 64(9):1081-5. [Medline].

  39. Spaeth GL, Levy PM. Traumatic hyphema: its clinical characteristics and failure of estrogens to alter its course. A double-blind study. Am J Ophthalmol. 1966 Dec. 62(6):1098-106. [Medline].

  40. Kutner B, Fourman S, Brein K, et al. Aminocaproic acid reduces the risk of secondary hemorrhage in patients with traumatic hyphema. Arch Ophthalmol. 1987 Feb. 105(2):206-8. [Medline].

  41. McGetrick JJ, Jampol LM, Goldberg MF, et al. Aminocaproic acid decreases secondary hemorrhage after traumatic hyphema. Arch Ophthalmol. 1983 Jul. 101(7):1031-3. [Medline].

  42. Loewy DM, Williams PB, Crouch ER Jr, et al. Systemic aminocaproic acid reduces fibrinolysis in aqueous humor. Arch Ophthalmol. 1987 Feb. 105(2):272-6. [Medline].

  43. Allingham RR, Williams PB, Crouch ER Jr, et al. Topically applied aminocaproic acid concentrates in the aqueous humor of the rabbit in therapeutic levels. Arch Ophthalmol. 1987 Oct. 105(10):1421-3. [Medline].

  44. Allingham RR, Crouch ER Jr, Williams PB, et al. Topical aminocaproic acid significantly reduces the incidence of secondary hemorrhage in traumatic hyphema in the rabbit model. Arch Ophthalmol. 1988 Oct. 106(10):1436-8. [Medline].

  45. Ehlers WH, Crouch ER Jr, Williams PB, et al. Factors affecting therapeutic concentration of topical aminocaproic acid in traumatic hyphema. Invest Ophthalmol Vis Sci. 1990 Nov. 31(11):2389-94. [Medline].

  46. Mattox C, Williams PB, Crouch ER, et al. Aqueous humor concentrations after use of reservoir systems for topical delivery of aminocaproic acid. Invest Ophthalmol Visual Sci. 1991. 32:1293.

  47. Karkhaneh R, Naeeni M, Chams H, et al. Topical aminocaproic acid to prevent rebleeding in cases of traumatic hyphema. Eur J Ophthalmol. 2003 Jan-Feb. 13(1):57-61. [Medline].

  48. Pieramici DJ, Goldberg MF, Melia M, et al. A phase III, multicenter, randomized, placebo-controlled clinical trial of topical aminocaproic acid (Caprogel) in the management of traumatic hyphema. Ophthalmology. 2003 Nov. 110(11):2106-12. [Medline].

  49. Crouch ER Jr, Williams PB, Gray MK, et al. Topical aminocaproic acid in the treatment of traumatic hyphema. Arch Ophthalmol. 1997 Sep. 115(9):1106-12. [Medline].

  50. Deans R, Noel LP, Clarke WN. Oral administration of tranexamic acid in the management of traumatic hyphema in children. Can J Ophthalmol. 1992 Jun. 27(4):181-3. [Medline].

  51. Rahmani B, Jahadi HR. Comparison of tranexamic acid and prednisolone in the treatment of traumatic hyphema. A randomized clinical trial. Ophthalmology. 1999 Feb. 106(2):375-9. [Medline].

  52. Gharaibeh A, Savage HI, Scherer RW, Goldberg MF, Lindsley K. Medical interventions for traumatic hyphema. Cochrane Database Syst Rev. 2011. 1:CD005431. [Medline].

  53. Rynne MV, Romano PE. Systemic corticosteroids in the treatment of traumatic hyphema. J Pediatr Ophthalmol Strabismus. 1980 May-Jun. 17(3):141-3. [Medline].

  54. Farber MD, Fiscella R, Goldberg MF. Aminocaproic acid versus prednisone for the treatment of traumatic hyphema. A randomized clinical trial. Ophthalmology. 1991 Mar. 98(3):279-86. [Medline].

  55. Turkoglu EB, Celik T, Celik E, Ozkan N, Bursali O, Coskun SB. Is topical corticosteroid necessary in traumatic hyphema?. J Fr Ophtalmol. 2014 Oct. 37(8):613-7. [Medline].

  56. Laatikainen L, Mattila J. The use of tissue plasminogen activator in post-traumatic total hyphaema. Graefes Arch Clin Exp Ophthalmol. 1996 Jan. 234(1):67-8. [Medline].

  57. Starck T, Hopp L, Held KS, et al. Low-dose intraocular tissue plasminogen activator treatment for traumatic total hyphema, postcataract, and penetrating keratoplasty fibrinous membranes. J Cataract Refract Surg. 1995 Mar. 21(2):219-24. [Medline].

  58. Parver LM, Dannenberg AL, Blacklow B, et al. Characteristics and causes of penetrating eye injuries reported to the National Eye Trauma System Registry, 1985-91. Public Health Rep. 1993 Sep-Oct. 108(5):625-32. [Medline].

  59. Walton W, Von Hagen S, Grigorian R, Zarbin M. Management of traumatic hyphema. Surv Ophthalmol. 2002 Jul-Aug. 47(4):297-334. [Medline].

  60. Crouch ER Jr, Williams PB. Trauma: ruptures and bleeding. Tasman W, Jaeger EM, eds. Duane's Clinical Ophthalmology. Philadelphia, Pa: JB Lippincott; 1993. 1-18.

  61. Kennedy RH, Brubaker RF. Traumatic hyphema in a defined population. Am J Ophthalmol. 1988 Aug 15. 106(2):123-30. [Medline].

  62. Wright KW, Sunalp M, Urrea P. Bed rest versus activity ad lib in the treatment of small hyphemas. Ann Ophthalmol. 1988 Apr. 20(4):143-5. [Medline].

  63. Sheppard JD, Nozik RA. Practical diagnostic approach to uveitis. Duane TA, Jaeger EW, eds. Clinical Ophthalmology. Philadelphia: JB Lippincott; 1989. Vol 4: chap 33.

  64. Witteman GJ, Brubaker SJ, Johnson M, et al. The incidence of rebleeding in traumatic hyphema. Ann Ophthalmol. 1985 Sep. 17(9):525-6, 528-9. [Medline].

  65. Ayintap E, Keskin U, Sadigov F, Coskun M, Ilhan N, Motor S. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease. J Ophthalmol. 2014. 2014:696302. [Medline].

  66. MomPremier M, Sadhwani D, Shaikh S. An office-based procedure for hyphema treatment. Case Rep Ophthalmol Med. 2015. 2015:321076. [Medline]. [Full Text].

  67. Yu T, Dahan E, Yin ZQ, et al. Use of an anterior chamber maintainer in the surgical management of traumatic hyphaemas. Clin Experiment Ophthalmol. 2008 Apr. 36(3):206-8. [Medline].

  68. Weiss JS, Parrish RK, Anderson DR. Surgical therapy of traumatic hyphema. Ophthalmic Surg. 1983 Apr. 14(4):343-5. [Medline].

  69. Mostafavi D, Nagel D, Danias J. Haptic-induced postoperative complications. Evaluation using ultrasound biomicroscopy. Can J Ophthalmol. 2013 Dec. 48(6):478-81. [Medline].

  70. Albert DM. Principles and Practice of Ophthalmology. 1994. Vol 5: 1473-1438, 3386-93.

  71. Becker B. Becker-Shaffer's Diagnosis and Therapy of the Glaucomas. 1989. 506, 515.

  72. Darr JL, Passmore JW. Management of traumatic hyphema. Am J Ophthalmol. 1967 Jan. 63(1):134-6. [Medline].

  73. Diddie KR, Dinsmore S, Murphree AL. Total hyphema evacuation by vitrectomy instrumentation. Ophthalmology. 1981 Sep. 88(9):917-21. [Medline].

  74. McCuen BW, Fung WE. The role of vitrectomy instrumentation in the treatment of severe traumatic hyphema. Am J Ophthalmol. 1979 Nov. 88(5):930-4. [Medline].

  75. Michels RG, Rice TA. Bimanual bipolar diathermy for treatment of bleeding from the anterior chamber angle. Am J Ophthalmol. 1977 Dec. 84(6):873-4. [Medline].

  76. Parrish R, Bernardino V Jr. Iridectomy in the surgical management of eight-ball hyphema. Arch Ophthalmol. 1982 Mar. 100(3):435-7. [Medline].

  77. Ritch R, Shields MB, Krupin T. The Glaucomas. 1989. 648, 682, 1324.

  78. Romano PE, Robinson JA. Traumatic hyphema: a comprehensive review of the past half century yields 8076 cases for which specific medical treatment reduces rebleeding 62%, from 13% to 5% (P<.0001). Binocul Vis Strabismus Q. 2000. 15(2):175-86. [Medline].

  79. Sharan S, Painter G, Grigg JR. Total hyphema following postoperative enoxaparin (Clexane). Eye. 2005 Jul. 19(7):827-8. [Medline].

  80. Shields MB. Textbook of Glaucoma. 1998. 356-7, 496, 524, 526.

  81. Spoor TC, Hammer M, Belloso H. Traumatic hyphema. Failure of steroids to alter its course: a double-blind prospective study. Arch Ophthalmol. 1980 Jan. 98(1):116-9. [Medline].

  82. Stern WH, Mondal KM. Vitrectomy instrumentation for surgical evacuation of total anterior chamber hyphema and control of recurrent anterior chamber hemorrhage. Ophthalmic Surg. 1979 Jan. 10(1):34-7. [Medline].

  83. Terebuh A, Leen M. Ophthalmology secrets. Traumatic Glaucoma and Hyphema. 1997. 151-160.

  84. Wilson FM. Traumatic hyphema. Pathogenesis and management. Ophthalmology. 1980 Sep. 87(9):910-9. [Medline].

Air-fluid exchange two-needle technique: (a) Entry into the anterior chamber superiorly with gas-filled syringe. (b) After partial gas injection, entry into the deepened anterior chamber inferiorly with evacuation syringe, plunger removed. (c) Evacuation of hyphema with complete or near complete anterior chamber fluid-gas exchange. (d) Inferior needle is removed while superior gas-filled syringe is used to equilibrate intraocular pressure. Courtesy of Hindawi Publishing Corp under Creative Commons Attribution License [MomPremier M, Sadhwani D, Shaikh S. An Office-Based Procedure for Hyphema Treatment. Case Reports in Ophthalmological Medicine. Vol 2015; Article 321076;].
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.