Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Choroidal Neovascularization Treatment & Management

  • Author: Lihteh Wu, MD; Chief Editor: Hampton Roy, Sr, MD  more...
 
Updated: Mar 08, 2016
 

Medical Care

Current knowledge of molecular events in the pathogenesis of choroidal neovascularization (CNV) has allowed CNV to be targeted with very specific antiangiogenic factors. Targeting VEGF allows a two-hit strategy: antiangiogenesis and antipermeability. VEGF is 50,000 times more potent than histamine in inducing vascular permeability. An important component of decreased vision is the accumulation of subretinal fluid secondary to increased vascular permeability.[2]

The major limitation of anti-VEGF treatment is the injection burden. Most patients require multiple injections. Therefore, a number of different protocols are looking at combining photodynamic therapy, corticosteroids, and anti-VEGF drugs.[3, 4, 5, 6, 7]

Currently, the treatment of choice for CNV secondary to exudative ARMD is intravitreal anti-VEGF therapy. A reduced biological response to both intravitreal ranibizumab and bevacizumab has been reported by several authors.[19, 20, 21, 22, 23, 24] A distinction between tachyphylaxis and drug tolerance should be made.[25] Tachyphylaxis refers to the loss of drug effectiveness following repetitive use during a short period of time. In general, drug effectiveness is restored after a short drug holiday. In contrast, drug tolerance develops slowly over time. Increasing the drug dosage or shortening the dosing interval improves its effectiveness. A drug holiday does not restore its effectiveness.[25]

Several mechanisms have been proposed to explain these phenomena. VEGF blockade may lead to an increase in other angiogenic signaling pathways as a compensatory mechanism.[26] Up-regulation of VEGF production by macrophages within CNV has also been proposed.[21] Anti-bevacizumab and anti-ranibizumab auto-antibodies have been documented in the systemic circulation of patients undergoing chronic anti-VEGF therapy for exudative AMD. These auto-antibodies may neutralize the effect of anti-VEGF agents.[21] } CNV lesion composition might change with time with more mature and therefore less VEGF sensitive vessels.[21, 26]

A retrospective case series reported that tachyphylaxis occurred in 5 of the 59 patients treated with intravitreal bevacizumab.[21] In this study, the median time to develop tachyphylaxis with intravitreal bevacizumab was 100 weeks, with a median number of 8 intravitreal injections. Another retrospective case series identified tachyphylaxis in 2% of patients being treated with ranibizumab.[19]

Several strategies, including drug holidays, increasing the drug dosage, combination therapy, and switching from one anti-VEGF drug to another anti-VEGF agent, have been advocated to counteract these phenomena.[21, 22, 24, 25] Gasperini and colleagues showed that in 81% of cases, the switch from ranibizumab to bevacizumab and vice versa was at least somewhat effective in further reducing subretinal fluid.[22]

Several other antiangiogenic compounds are currently in different stages of development.[27] These agents include genetic therapy with vectors carrying anti-angiogenics,[28] si (small interference) RNA-VEGF, and combretastatin A4.

Pegaptanib sodium [8]

Pegaptanib sodium is an aptamer against VEGF165, the isoform identified with pathological angiogenesis. An aptamer is an oligonucleotide that acts like a high affinity antibody to VEGF, neutralizing it before it can contact its receptor.

Pegaptanib sodium is given as an intravitreal injection every 6 weeks.

Overall, pegaptanib sodium was able to decrease visual loss when compared to placebo in a similar fashion to that of PDT therapy with verteporfin. Only 6% of eyes were reported to have an improvement in visual acuity of 3 or more lines after 12 months of follow-up. Unlike therapy with verteporfin, all eyes with exudative ARMD benefited from treatment regardless of lesion composition. In addition, the trials using pegaptanib sodium included eyes with larger lesions than those eyes in the trials using verteporfin.[29]

Complications associated with the intravitreal injection of pegaptanib sodium are few but include retinal detachment and endophthalmitis.

Ranibizumab

Ranibizumab is a recombinant monoclonal antibody Fab fragment that neutralizes all active forms of VEGF-A.

Ranibizumab is delivered as a monthly intravitreal injection.

The US Food and Drug Administration approved the use of ranibizumab for the treatment of all angiographic subtypes of subfoveal neovascular ARMD.

Intravitreal ranibizumab is the first treatment that significantly improves visual acuity in up to 40% of eyes.[30] An extension study of patients who completed 1 of 3 different randomized clinical trials of ranibizumab for exudative age-related macular degeneration showed that intravitreal injections of ranibizumab were well tolerated for more than 4 years. However, less frequent follow-up led to fewer injections, which in turn led to a loss of the initial gains in visual acuity.[31]

Although infrequent, complications associated with this treatment include endophthalmitis and severe uveitis.

Bevacizumab

Bevacizumab is a humanized, recombinant monoclonal immunoglobulin G (IgG) antibody that binds and inhibits all VEGF isoforms and is currently approved for systemic use in metastatic colorectal cancer and non–small cell lung cancer.

Off-label use of intravitreal bevacizumab for CNV secondary to ARMD was first reported in 2005. Most of the reports of bevacizumab are uncontrolled, open-label case series that have suggested functional and anatomical efficacy, short-term safety, and low cost.

Results from several studies suggest that bevacizumab may be useful in the treatment of CNV secondary to multiple etiologies including myopia,[32] angioid streaks,[33] inflammatory conditions,[34, 35] and ARMD.[36, 37]

A retrospective study reported findings in 180 patients with choroidal neovascularization secondary to age-related macular degeneration who were injected with either 1.5 mg or 2.5 mg and were followed for a minimum of 24 months.[38] An average of 5 injections using a PRN protocol demonstrated improvement or stability in vision. No statistically significant differences between doses were noted.

Aflibercept

The VIEW 1 and VIEW 2, two similarly designed double-masked, randomized multicenter clinical trials, demonstrated that intravitreal aflibercept dosed monthly or every 2 months after a loading dose of 3 monthly doses was noninferior to monthly ranibizumab.[39]

Next

Surgical Care

See the list below:

  • The Macular Photocoagulation Study (MPS) proved the efficacy of laser photocoagulation in the treatment of CNV secondary to ARMD, POHS, and idiopathic causes.
  • The goal is to completely obliterate CNV.
  • Partial treatment of CNV is not beneficial when compared to observation.
    • Extrapolate these results to other conditions that are complicated by CNV on a case-by-case basis. Many patients and their physicians choose not to elect immediate loss or several lines of vision in an attempt to have a very modest visual improvement in 18 months.
    • Extrapolation of MPS results to CNV secondary to myopia probably is not indicated in juxtafoveal CNV.
    • Cases of enlargement of laser scars through the fovea with subsequent visual loss have been reported.
  • PDT uses light-activated drugs and nonthermal light to achieve selective destruction of CNV with minimal effects on the surrounding normal tissues.
    • Randomized clinical trials have shown that PDT with verteporfin is effective in reducing visual loss in certain eyes with CNV secondary to ARMD.
    • In eyes with at least some classic CNV, treatment with verteporfin reduced visual loss. Subgroup analysis revealed that eyes with a classic component of greater than 50% fared much better than those eyes with a classic component of less than 50%. In eyes with a classic component of less than 50%, no difference existed in visual loss between the eyes treated with placebo and the eyes treated with verteporfin.[40]
    • Another study reported that therapy with verteporfin for occult CNV secondary to ARMD was effective in slowing the progression of visual loss. However, such benefit was only seen after the second year of follow-up. Subgroup analysis revealed that eyes with a visual acuity of 20/50 or worse or eyes with lesions smaller than 4 disc areas in size had a better outcome. Further analysis of the data revealed that lesion size rather than lesion composition is a strong predictor of visual benefit following PDT with verteporfin.[41]
    • Despite all the encouraging initial results, PDT provides marginal benefit. Most eyes will continue losing vision, though at a slower rate, and only 15% of eyes will manifest some visual improvement.
    • PDT in combination with intravitreal triamcinolone, bevacizumab, or ranibizumab may have better visual outcomes than PDT alone in patients with ARMD.
  • High-speed ICG confocal angiography guided laser photocoagulation of feeder vessels is reportedly beneficial in selected patients with exudative ARMD but remains unproven.
  • Uncontrolled studies have recommended surgical excision of subfoveal CNV via pars plana vitrectomy. The goal is to remove CNV but to leave the underlying RPE and choriocapillaris intact.
    • Surgical excision of type 2 CNV would be more beneficial than type 1 CNV.
    • Pilot studies resulted in substantial numbers of patients with worse vision, many with unchanged vision, and a small number with apparent improved vision. The current rhetoric is that stabilization may occur with surgery.[42]
    • The Submacular Surgery Trial (SST), a randomized multicenter prospective trial sponsored by the National Eye Institute (NEI), confirmed that submacular surgery in eyes with CNV secondary to ARMD generally does not have a good visual outcome.[43] In addition, with CNV secondary to idiopathic causes and POHS, submacular surgery offers a modest benefit in eyes with a baseline visual acuity of 20/100 or worse.
  • Two surgical methods to translocate the fovea have been developed to treat subfoveal CNV. The previously subfoveal CNV is now juxtafoveal or extrafoveal; then, standard laser photocoagulation or PDT can be performed without damaging the fovea. Caution is warranted because high rates of retinal detachment, proliferative vitreoretinopathy (PVR), macular holes, recurrent CNV, cystoid macular edema (CME), and hemorrhage have been reported.
  • Low-dose radiation therapy has been effective in inhibiting neovascularization in different tissues.
    • A randomized clinical trial reported better visual outcomes in eyes with exudative ARMD receiving radiation therapy of 24 Gy given in 6 fractions of 4 Gy each compared to observation.[44]
    • However, other trials do not support radiation therapy as a treatment alternative in eyes with CNV secondary to ARMD. Long-term effects are unknown, and radiation retinopathy is definitely a concern.
Previous
Next

Consultations

Diagnosis and treatment is often difficult. Consider referring to a retinal specialist who is experienced with these conditions.

Previous
 
 
Contributor Information and Disclosures
Author

Lihteh Wu, MD Asociados de Macula Vitreo y Retina de Costa Rica

Lihteh Wu, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Association for Research in Vision and Ophthalmology, Club Jules Gonin, Macula Society, Pan-American Association of Ophthalmology, Retina Society

Disclosure: Received income in an amount equal to or greater than $250 from: Bayer Health; Quantel Medical; Heidelberg Engineering.

Coauthor(s)

Dhariana Acón, MD Ophthalmologist, Caja Costarricense Seguro Social, Hospital de Guapiles, Costa Rica

Disclosure: Nothing to disclose.

Specialty Editor Board

Simon K Law, MD, PharmD Clinical Professor of Health Sciences, Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, David Geffen School of Medicine

Simon K Law, MD, PharmD is a member of the following medical societies: American Academy of Ophthalmology, Association for Research in Vision and Ophthalmology, American Glaucoma Society

Disclosure: Nothing to disclose.

Steve Charles, MD Director of Charles Retina Institute; Clinical Professor, Department of Ophthalmology, University of Tennessee College of Medicine

Steve Charles, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Macula Society, Retina Society, Club Jules Gonin

Disclosure: Received royalty and consulting fees for: Alcon Laboratories.

Chief Editor

Hampton Roy, Sr, MD Associate Clinical Professor, Department of Ophthalmology, University of Arkansas for Medical Sciences

Hampton Roy, Sr, MD is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, Pan-American Association of Ophthalmology

Disclosure: Nothing to disclose.

Additional Contributors

Brian A Phillpotts, MD, MD 

Brian A Phillpotts, MD, MD is a member of the following medical societies: American Academy of Ophthalmology, American Diabetes Association, American Medical Association, National Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Teodoro Evans, MD Consulting Surgeon, Vitreo-Retinal Section, Clinica de Ojos, Costa Rica

Disclosure: Nothing to disclose.

References
  1. Rogers AH, Martidis A, Greenberg PB, Puliafito CA. Optical coherence tomography findings following photodynamic therapy of choroidal neovascularization. Am J Ophthalmol. 2002 Oct. 134(4):566-76. [Medline].

  2. Ip MS, Scott IU, Brown GC, Brown MM, Ho AC, Huang SS, et al. Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology. 2008 Oct. 115(10):1837-46. [Medline].

  3. Yip PP, Woo CF, Tang HH, Ho CK. Triple therapy for neovascular age-related macular degeneration using single-session photodynamic therapy combined with intravitreal bevacizumab and triamcinolone. Br J Ophthalmol. 2009 Jun. 93(6):754-8. [Medline]. [Full Text].

  4. Kaiser PK, Boyer DS, Garcia R, Hao Y, Hughes MS. Verteporfin photodynamic therapy combined with intravitreal bevacizumab for neovascular age-related macular degeneration. Ophthalmology. 2009 Apr. 116(4):747-55, 755.e1. [Medline].

  5. Shah GK, Sang DN, Hughes MS. Verteporfin combination regimens in the treatment of neovascular age-related macular degeneration. Retina. 2009 Feb. 29(2):133-48. [Medline].

  6. Kiss CG, Simader C, Michels S, Schmidt-Erfurth U. Combination of verteporfin photodynamic therapy and ranibizumab: effects on retinal anatomy, choroidal perfusion and visual function in the protect study. Br J Ophthalmol. 2008 Dec. 92(12):1620-7. [Medline].

  7. Antoszyk AN, Tuomi L, Chung CY, Singh A. Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration (FOCUS): year 2 results. Am J Ophthalmol. 2008 May. 145(5):862-74. [Medline].

  8. Singerman LJ, Masonson H, Patel M, Adamis AP, Buggage R, Cunningham E. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. Br J Ophthalmol. 2008 Dec. 92(12):1606-11. [Medline]. [Full Text].

  9. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003 Nov. 44(11):4908-13. [Medline].

  10. Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW. Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003 Nov. 44(11):4914-9. [Medline].

  11. Sengupta N, Caballero S, Mames RN, Timmers AM, Saban D, Grant MB. Preventing stem cell incorporation into choroidal neovascularization by targeting homing and attachment factors. Invest Ophthalmol Vis Sci. 2005 Jan. 46(1):343-8. [Medline].

  12. Tomita M, Yamada H, Adachi Y, Cui Y, Yamada E, Higuchi A. Choroidal neovascularization is provided by bone marrow cells. Stem Cells. 2004. 22(1):21-6. [Medline].

  13. Freund KB, Ho IV, Barbazetto IA, Koizumi H, Laud K, Ferrara D, et al. Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation. Retina. 2008 Feb. 28 (2):201-11. [Medline].

  14. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1992 Jun. 99(6):933-43. [Medline].

  15. Ghafour IM, Allan D, Foulds WS. Common causes of blindness and visual handicap in the west of Scotland. Br J Ophthalmol. 1983 Apr. 67(4):209-13. [Medline].

  16. Sperduto RD, Seigel D, Roberts J, Rowland M. Prevalence of myopia in the United States. Arch Ophthalmol. 1983 Mar. 101(3):405-7. [Medline].

  17. Feman SS, Podgorski SF, Penn MK. Blindness from presumed ocular histoplasmosis in Tennessee. Ophthalmology. 1982 Dec. 89(12):1295-8. [Medline].

  18. Chheda LV, Ferketich AK, Carroll CP, et al. Smoking as a risk factor for choroidal neovascularization secondary to presumed ocular histoplasmosis syndrome. Ophthalmology. 2012 Feb. 119(2):333-8. [Medline].

  19. Eghoj MS, Sorensen TL. Tachyphylaxis during treatment of exudative age-related macular degeneration with ranibizumab. Br J Ophthalmol. 2012 Jan. 96(1):21-3. [Medline].

  20. Forooghian F, Chew EY, Meyerle CB, Cukras C, Wong WT. Investigation of the role of neutralizing antibodies against bevacizumab as mediators of tachyphylaxis. Acta Ophthalmol. 2011 Mar. 89(2):e206-7. [Medline].

  21. Forooghian F, Cukras C, Meyerle CB, Chew EY, Wong WT. Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina. 2009 Jun. 29(6):723-31. [Medline]. [Full Text].

  22. Gasperini JL, Fawzi AA, Khondkaryan A, et al. Bevacizumab and ranibizumab tachyphylaxis in the treatment of choroidal neovascularisation. Br J Ophthalmol. 2012 Jan. 96(1):14-20. [Medline].

  23. Keane PA, Liakopoulos S, Ongchin SC, et al. Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008 Jul. 49(7):3115-20. [Medline]. [Full Text].

  24. Schaal S, Kaplan HJ, Tezel TH. Is there tachyphylaxis to intravitreal anti-vascular endothelial growth factor pharmacotherapy in age-related macular degeneration?. Ophthalmology. 2008 Dec. 115(12):2199-205. [Medline].

  25. Binder S. Loss of reactivity in intravitreal anti-VEGF therapy: tachyphylaxis or tolerance?. Br J Ophthalmol. 2012 Jan. 96(1):1-2. [Medline].

  26. Spaide RF. Rationale for combination therapy in age-related macular degeneration. Retina. 2009 Jun. 29(6 Suppl):S5-7. [Medline].

  27. Chappelow AV, Kaiser PK. Neovascular age-related macular degeneration: potential therapies. Drugs. 2008. 68(8):1029-36. [Medline].

  28. Kachi S, Binley K, Yokoi K, Umeda N, Akiyama H, Igball S, et al. EIAV vector-mediated co-delivery of Endostatin and Angiostatin driven by the RPE-specific VMD2 Promoter Inhibits Choroidal Neovascularization. Hum Gene Ther. 2008 Oct 7. [Medline].

  29. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004 Dec 30. 351(27):2805-16. [Medline].

  30. Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology. 2009 Jan. 116(1):57-65.e5. [Medline].

  31. Singer MA, Awh CC, Sadda S, Freeman WR, Antoszyk AN, Wong P, et al. HORIZON: An Open-Label Extension Trial of Ranibizumab for Choroidal Neovascularization Secondary to Age-Related Macular Degeneration. Ophthalmology. 2012 Feb 4. [Medline].

  32. Hayashi K, Ohno-Matsui K, Teramukai S, Shimada N, Moriyama M, Hayashi W, et al. Comparison of visual outcome and regression pattern of myopic choroidal neovascularization after intravitreal bevacizumab or after photodynamic therapy. Am J Ophthalmol. 2009 Sep. 148(3):396-408. [Medline].

  33. Wiegand TW, Rogers AH, McCabe F, Reichel E, Duker JS. Intravitreal bevacizumab (Avastin) treatment of choroidal neovascularisation in patients with angioid streaks. Br J Ophthalmol. 2009 Jan. 93(1):47-51. [Medline].

  34. Mansour AM, Arevalo JF, Ziemssen F, Mehio-Sibai A, Mackensen F, Adan A. Long-term visual outcomes of intravitreal bevacizumab in inflammatory ocular neovascularization. Am J Ophthalmol. 2009 Aug. 148(2):310-316.e2. [Medline].

  35. Wu L, Evans T, Saravia M, Schlaen A, Couto C. Intravitreal bevacizumab for choroidal neovascularization secondary to Vogt-Koyanagi-Harada syndrome. Jpn J Ophthalmol. 2009 Jan. 53(1):57-60. [Medline].

  36. Wu L, Fernando Arevalo J, Maia M, Berrocal MH, Sanchez J, Evans T. Comparing outcomes in patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration treated with two different doses of primary intravitreal bevacizumab: results of the Pan-American Collaborative Retina Study Group (PACORES) at the 12-month follow-up. Jpn J Ophthalmol. 2009 Mar. 53(2):125-30. [Medline].

  37. Bashshur ZF, Haddad ZA, Schakal AR, Jaafar RF, Saad A, Noureddin BN. Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: the second year of a prospective study. Am J Ophthalmol. 2009 Jul. 148(1):59-65.e1. [Medline].

  38. Arevalo JF, Sanchez JG, Wu L, et al. Intravitreal bevacizumab for subfoveal choroidal neovascularization in age-related macular degeneration at twenty-four months: the Pan-American Collaborative Retina Study. Ophthalmology. 2010 Oct. 117(10):1974-81, 1981.e1. [Medline].

  39. Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, Nguyen QD, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012 Dec. 119 (12):2537-48. [Medline].

  40. Photodynamic Therapy Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Arch Ophthalmol. 1999 Oct. 117(10):1329-45. [Medline].

  41. Blinder KJ, Bradley S, Bressler NM, et al. Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1. Am J Ophthalmol. 2003 Sep. 136(3):407-18. [Medline].

  42. Capone A Jr. Submacular surgical procedures. Int Ophthalmol Clin. 1995 Fall. 35(4):83-93. [Medline].

  43. Hawkins BS, Bressler NM, Bressler SB, et al. Surgical removal vs observation for subfoveal choroidal neovascularization, either associated with the ocular histoplasmosis syndrome or idiopathic: I. Ophthalmic findings from a randomized clinical trial: Submacular Surgery Trials (SST) Group H Trial: SST Report No. 9. Arch Ophthalmol. 2004 Nov. 122(11):1597-611. [Medline].

  44. Bergink GJ, Hoyng CB, van der Maazen RW, Vingerling JR, van Daal WA, Deutman AF. A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in age-related macular degeneration: radiation versus observation. Graefes Arch Clin Exp Ophthalmol. 1998 May. 236(5):321-5. [Medline].

  45. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001 Oct. 119(10):1417-36. [Medline].

  46. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol. 1991 Aug. 109(8):1109-14. [Medline].

  47. Macular Photocoagulation Study Group. Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol. 1994 Apr. 112(4):500-9. [Medline].

  48. Macular Photocoagulation Study Group. Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration. The influence of initial lesion size and initial visual acuity. Macular Photocoagulation Study Group. Arch Ophthalmol. 1994 Apr. 112(4):480-8. [Medline].

  49. Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration. Updated findings from two clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol. 1993 Sep. 111(9):1200-9. [Medline].

  50. Blinder KJ, Blumenkranz MS, Bressler NM, et al. Verteporfin therapy of subfoveal choroidal neovascularization in pathologic myopia: 2-year results of a randomized clinical trial--VIP report no. 3. Ophthalmology. 2003 Apr. 110(4):667-73. [Medline].

  51. Bressler NM, Bressler SB, Childs AL, et al. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: ophthalmic findings: SST report no. 13. Ophthalmology. 2004 Nov. 111(11):1993-2006. [Medline].

  52. Bressler NM, Bressler SB, Gragoudas ES. Clinical characteristics of choroidal neovascular membranes. Arch Ophthalmol. 1987 Feb. 105(2):209-13. [Medline].

  53. Bressler SB, Bressler NM, Fine SL, et al. Natural course of choroidal neovascular membranes within the foveal avascular zone in senile macular degeneration. Am J Ophthalmol. 1982 Feb. 93(2):157-63. [Medline].

  54. Chakravarthy U, Houston RF, Archer DB. Treatment of age-related subfoveal neovascular membranes by teletherapy: a pilot study. Br J Ophthalmol. 1993 May. 77(5):265-73. [Medline]. [Full Text].

  55. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999 Jul 9. 285(5425):245-8. [Medline].

  56. de Juan E Jr, Loewenstein A, Bressler NM, Alexander J. Translocation of the retina for management of subfoveal choroidal neovascularization II: a preliminary report in humans. Am J Ophthalmol. 1998 May. 125(5):635-46. [Medline].

  57. Emerson MV, Lauer AK, Flaxel CJ, et al. Intravitreal bevacizumab (Avastin) treatment of neovascular age-related macular degeneration. Retina. 2007 Apr-May. 27(4):439-44. [Medline].

  58. Eyetech Study Group. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology. 2003 May. 110(5):979-86. [Medline].

  59. Ferris FL 3rd, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 1984 Nov. 102(11):1640-2. [Medline].

  60. Folk JC, Reddy CV. White dot chorioretinal inflammatory syndromes. Medical and Surgical Retina Advances, Controversies, and Management. 1994. 385-399.

  61. Fuller B, Gitter KA. Traumatic choroidal rupture with late serous detachment of macula. Report of successful argon laser treatment. Arch Ophthalmol. 1973 Apr. 89(4):354-5. [Medline].

  62. Goff MJ, Johnson RN, McDonald HR, Ai E, Jumper JM, Fu A. Intravitreal bevacizumab for previously treated choroidal neovascularization from age-related macular degeneration. Retina. 2007 Apr-May. 27(4):432-8. [Medline].

  63. Gross JG, King LP, de Juan E Jr, Powers T. Subfoveal neovascular membrane removal in patients with traumatic choroidal rupture. Ophthalmology. 1996 Apr. 103(4):579-85. [Medline].

  64. Grossniklaus HE, Green WR. Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch Ophthalmol. 1998 Jun. 116(6):745-9. [Medline].

  65. Harrison P. Bevacizumab, Ranibizumab Improve Vision in Choroidal Osteoma. Available at http://www.medscape.com/viewarticle/810042. Accessed: September 1, 2013.

  66. Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology. 2004 Nov. 111(11):1967-80. [Medline].

  67. Ho AC, Yannuzzi LA, Pisicano K, DeRosa J. The natural history of idiopathic subfoveal choroidal neovascularization. Ophthalmology. 1995 May. 102(5):782-9. [Medline].

  68. Lambert HM, Capone A Jr, Aaberg TM, Sternberg P Jr, Mandell BA, Lopez PF. Surgical excision of subfoveal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1992 Mar 15. 113(3):257-62. [Medline].

  69. Laud K, Spaide RF, Freund KB, Slakter J, Klancnik JM Jr. Treatment of choroidal neovascularization in pathologic myopia with intravitreal bevacizumab. Retina. 2006 Oct. 26(8):960-3. [Medline].

  70. Lazic R, Gabric N. Verteporfin therapy and intravitreal bevacizumab combined and alone in choroidal neovascularization due to age-related macular degeneration. Ophthalmology. 2007 Jun. 114(6):1179-85. [Medline].

  71. Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration?. Graefes Arch Clin Exp Ophthalmol. 1993 Nov. 231(11):635-41. [Medline].

  72. Pharmacological Therapy for Macular Degeneration Study Group. Interferon alfa-2a is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial. Pharmacological Therapy for Macular Degeneration Study Group. Arch Ophthalmol. 1997 Jul. 115(7):865-72. [Medline].

  73. Rosenfeld PJ. Intravitreal avastin: the low cost alternative to lucentis?. Am J Ophthalmol. 2006 Jul. 142(1):141-3. [Medline].

  74. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006 Oct 5. 355(14):1419-31. [Medline].

  75. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005 Jul-Aug. 36(4):331-5. [Medline].

  76. Rosenfeld PJ, Rich RM, Lalwani GA. Ranibizumab: Phase III clinical trial results. Ophthalmol Clin North Am. 2006 Sep. 19(3):361-72. [Medline].

  77. Roth DB, Downie AA, Charles ST. Visual results after submacular surgery for neovascularization in age-related macular degeneration. Ophthalmic Surg Lasers. 1997 Nov. 28(11):920-5. [Medline].

  78. Schmidt-Erfurth U, Miller J, Sickenberg M, et al. Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples. Graefes Arch Clin Exp Ophthalmol. 1998 May. 236(5):365-74. [Medline].

  79. Sears J, Capone A Jr, Aaberg T Sr, et al. Surgical management of subfoveal neovascularization in children. Ophthalmology. 1999 May. 106(5):920-4. [Medline].

  80. Shiraga F, Ojima Y, Matsuo T, Takasu I, Matsuo N. Feeder vessel photocoagulation of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 1998 Apr. 105(4):662-9. [Medline].

  81. Sivagnanavel V, Evans JR, Ockrim Z, Chong V. Radiotherapy for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2004 Oct 18. CD004004. [Medline].

  82. Spaide RF, Guyer DR, McCormick B, et al. External beam radiation therapy for choroidal neovascularization. Ophthalmology. 1998 Jan. 105(1):24-30. [Medline].

  83. Spaide RF, Laud K, Fine HF, et al. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina. 2006 Apr. 26(4):383-90. [Medline].

  84. Spaide RF, Sorenson J, Maranan L. Photodynamic therapy with verteporfin combined with intravitreal injection of triamcinolone acetonide for choroidal neovascularization. Ophthalmology. 2005 Feb. 112(2):301-4. [Medline].

  85. Staurenghi G, Orzalesi N, La Capria A, Aschero M. Laser treatment of feeder vessels in subfoveal choroidal neovascular membranes: a revisitation using dynamic indocyanine green angiography. Ophthalmology. 1998 Dec. 105(12):2297-305. [Medline].

  86. Steen B, Sejersen S, Berglin L, Seregard S, Kvanta A. Matrix metalloproteinases and metalloproteinase inhibitors in choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1998 Oct. 39(11):2194-200. [Medline].

  87. Sternberg P Jr, Lewis H. Photodynamic therapy for age-related macular degeneration: a candid appraisal. Am J Ophthalmol. 2004 Mar. 137(3):483-5. [Medline].

  88. Teixeira A, Moraes N, Farah ME, Bonomo PP. Choroidal neovascularization treated with intravitreal injection of bevacizumab (Avastin) in angioid streaks. Acta Ophthalmol Scand. 2006 Dec. 84(6):835-6. [Medline].

  89. Tewari A, Dhalla MS, Apte RS. Intravitreal bevacizumab for treatment of choroidal neovascularization in pathologic myopia. Retina. 2006 Nov-Dec. 26(9):1093-4. [Medline].

  90. Thomas MA, Dickinson JD, Melberg NS, Ibanez HE, Dhaliwal RS. Visual results after surgical removal of subfoveal choroidal neovascular membranes. Ophthalmology. 1994 Aug. 101(8):1384-96. [Medline].

  91. [Guideline] Verteporfin Roundtable Participants. Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: update. Retina. 2005 Feb-Mar. 25(2):119-34. [Medline].

  92. Wood CM, Richardson J. Chorioretinal neovascular membranes complicating contusional eye injuries with indirect choroidal ruptures. Br J Ophthalmol. 1990 Feb. 74(2):93-6. [Medline].

  93. Wormald R, Evans J, Smeeth L, Henshaw K. Photodynamic therapy for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2003. CD002030. [Medline].

  94. Wu L, Murphy RP. Photodynamic therapy: a new approach to the treatment of choroidal neovascularization secondary to age-related macular degeneration. Curr Opin Ophthalmol. 1999 Jun. 10(3):217-20. [Medline].

  95. Wyhinny GJ, Jackson JL, Jampol LM, Caro NC. Subretinal neovascularization following multiple evanescent white-dot syndrome. Arch Ophthalmol. 1990 Oct. 108(10):1384-5. [Medline].

  96. Yamamoto I, Rogers AH, Reichel E, Yates PA, Duker JS. Intravitreal bevacizumab (Avastin) as treatment for subfoveal choroidal neovascularisation secondary to pathological myopia. Br J Ophthalmol. 2007 Feb. 91(2):157-60. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.