Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Ocular Hypertension Treatment & Management

  • Author: Anne Chang-Godinich, MD, FACS; Chief Editor: Hampton Roy, Sr, MD  more...
 
Updated: Mar 22, 2016
 

Approach Considerations

A clinical management strategy that targets a 20% reduction in IOP in people with ocular hypertension has been shown to delay or prevent the onset of glaucoma.[54]

Considering the high average monthly cost of glaucoma medication, along with the possible risks of adverse effects or toxic reactions from drugs, inconvenience of use, and sometimes uncertainty of the overall efficacy of prophylactic therapy, there is strong reason not to treat indiscriminately.[55, 56, 57] The OHTS suggests that treatment of patients with IOP higher than 24 mm Hg among those who have a greater than 2% annual risk of developing glaucoma (see the Prognosis section) is cost-effective.[58]

Individualization of therapy is the key; an ideal pressure in one patient may cause glaucomatous damage in another person. Periodically reevaluating the target IOP and performing a review of IOP trends and optic nerve anatomy and function via visual-field testing is necessary to determine whether the patient is consistently maintaining his or her ideal pressure.

Medical care

When risk of progression to POAG is present, treatment with IOP-lowering medications is indicated. See Medication.

Surgical care

Generally, if control cannot be achieved with medications, reconsider the diagnosis of ocular hypertension as that of early POAG. Laser and surgical therapy are not viewed as mainstay treatments for ocular hypertension.

Next

Consultations

Referral to a subspecialist fellowship trained in glaucoma and/or neuro-ophthalmology should be considered if there is continued inadequate pressure control, loss of visual acuity, visual-field constriction, optic nerve pallor or cupping, associated systemic conditions, or atypical findings.

Previous
Next

Follow Up

Depending on the assessed annual risk of developing glaucoma and level of IOP control, patients may need to be seen at intervals ranging from yearly to every 2 months, or even more frequently if there is a marked lack of IOP control.[28]

Previous
Next

Long-Term Monitoring

Patients should be observed regularly over their lifetime because some are at increased risk for the development of glaucomatous damage. If treated with medications, the potential for adverse effects or toxic reactions from topical medications exists (see Medication).

Previous
 
 
Contributor Information and Disclosures
Author

Anne Chang-Godinich, MD, FACS Clinical Associate Professor, Department of Ophthalmology, Baylor College of Medicine; Physician, 1960 Eye Surgeons, PA; Attending Surgeon, Veterans Affairs Medical Center of Houston

Anne Chang-Godinich, MD, FACS is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, American Society of Cataract and Refractive Surgery, Texas Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Hampton Roy, Sr, MD Associate Clinical Professor, Department of Ophthalmology, University of Arkansas for Medical Sciences

Hampton Roy, Sr, MD is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, Pan-American Association of Ophthalmology

Disclosure: Nothing to disclose.

Acknowledgements

Jerald A Bell, MD Staff Physician, Department of Ophthalmology, Billings Clinic

Jerald A Bell, MD is a member of the following medical societies: American Academy of Ophthalmology

Disclosure: Nothing to disclose.

Judie F Charlton, MD Director, Division of Glaucoma, Professor and Chair, Department of Ophthalmology, West Virginia University School of Medicine

Judie F Charlton, MD is a member of the following medical societies: American Academy of Ophthalmology

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Bathija R, Gupta N, Zangwill L, et al. Changing definition of glaucoma. J Glaucoma. 1998 Jun. 7(3):165-9. [Medline].

  2. Eskridge JB. Ocular hypertension or early undetected glaucoma?. J Am Optom Assoc. 1987 Sep. 58(9):747-69. [Medline].

  3. Johnson TD, Zimmerman TJ. Ocular hypertension, glaucoma suspect, preglaucoma, or glaucoma? Synopsis of views. Ann Ophthalmol. 1986 Nov. 18(11):313-4. [Medline].

  4. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun. 120(6):714-20; discussion 829-30. [Medline].

  5. Chandler PA, Grant WM. Ocular hypertension' vs open-angle glaucoma. Arch Ophthalmol. 1977 Apr. 95(4):585-6. [Medline].

  6. Ritch R, Shields MB, Krupin T, eds. The Glaucomas. 2nd ed. 1992.

  7. Shields MB. Textbook of Glaucoma. 3rd ed. Lippincott Williams & Wilkins; 1992.

  8. Souzeau E, Burdon KP, Dubowsky A, Grist S, Usher B, Fitzgerald JT, et al. Higher prevalence of myocilin mutations in advanced glaucoma in comparison with less advanced disease in an Australasian disease registry. Ophthalmology. 2013 Jun. 120(6):1135-43. [Medline].

  9. Quigley HA, Enger C, Katz J, et al. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Arch Ophthalmol. 1994 May. 112(5):644-9. [Medline].

  10. Grus F, Sun D. Immunological mechanisms in glaucoma. Semin Immunopathol. 2008 Apr. 30(2):121-6. [Medline].

  11. Grus FH, Joachim SC, Wuenschig D, et al. Autoimmunity and glaucoma. J Glaucoma. 2008 Jan-Feb. 17(1):79-84. [Medline].

  12. Lee PP, Walt JW, Rosenblatt LC, et al. Association between intraocular pressure variation and glaucoma progression: data from a United States chart review. Am J Ophthalmol. 2007 Dec. 144(6):901-907. [Medline].

  13. Leske MC, Connell AM, Wu SY, et al. Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol. 1997 Aug. 115(8):1051-7. [Medline].

  14. Chihara E. Assessment of true intraocular pressure: the gap between theory and practical data. Surv Ophthalmol. 2008 May-Jun. 53(3):203-18. [Medline].

  15. Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991 Aug. 109(8):1090-5. [Medline].

  16. Varma R, Wang D, Wu C, et al. Four-year incidence of open-angle glaucoma and ocular hypertension: the los angeles latino eye study. Am J Ophthalmol. 2012 Aug. 154(2):315-325.e1. [Medline]. [Full Text].

  17. Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980 Nov-Dec. 25(3):123-9. [Medline].

  18. Higginbotham EJ, Gordon MO, Beiser JA, et al. The Ocular Hypertension Treatment Study: topical medication delays or prevents primary open-angle glaucoma in African American individuals. Arch Ophthalmol. 2004 Jun. 122(6):813-20. [Medline].

  19. Hoehn R, Mirshahi A, Hoffmann EM, Kottler UB, Wild PS, Laubert-Reh D, et al. Distribution of intraocular pressure and its association with ocular features and cardiovascular risk factors: the Gutenberg Health Study. Ophthalmology. 2013 May. 120(5):961-8. [Medline].

  20. Luntz MH, Schenker HI. Retinal vascular accidents in glaucoma and ocular hypertension. Surv Ophthalmol. 1980 Nov-Dec. 25(3):163-7. [Medline].

  21. Friedman DS, Wolfs RC, O'Colmain BJ, et al. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol. 2004 Apr. 122(4):532-8. [Medline]. [Full Text].

  22. Ashaye AO, Adeoye AO. Characteristics of patients who dropout from a glaucoma clinic. J Glaucoma. 2008 Apr-May. 17(3):227-32. [Medline].

  23. Rivera JL, Bell NP, Feldman RM. Risk factors for primary open angle glaucoma progression: what we know and what we need to know. Curr Opin Ophthalmol. 2008 Mar. 19(2):102-6. [Medline].

  24. Lin SC. Endoscopic and transscleral cyclophotocoagulation for the treatment of refractory glaucoma. J Glaucoma. 2008 Apr-May. 17(3):238-47. [Medline].

  25. Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol. 2008 Jun. 43(3):302-7. [Medline].

  26. Brandt JD, Beiser JA, Gordon MO, et al. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004 Nov. 138(5):717-22. [Medline].

  27. Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy. Am J Ophthalmol. 1992 Apr 15. 113(4):447-52. [Medline].

  28. American Academy of Ophthalmology. Preferred Practice Pattern Guidelines: Primary Open-Angle Glaucoma Suspect PPP - October 2010. Ophthalmic News and Education Network. Available at http://one.aao.org/CE/PracticeGuidelines/PPP_Content.aspx?cid=e2387c8a-e51c-4c21-be20-c30fbf4f3260. Accessed: August 6, 2012.

  29. Spaeth GL. Early primary open-angle glaucoma: diagnosis and management. Preface. Int Ophthalmol Clin. 1979 Spring. 19(1):vii-ix. [Medline].

  30. Tezel G, Kolker AE, Kass MA, et al. Parapapillary chorioretinal atrophy in patients with ocular hypertension. I. An evaluation as a predictive factor for the development of glaucomatous damage. Arch Ophthalmol. 1997 Dec. 115(12):1503-8. [Medline].

  31. Annette H, Kristina L, Bernd S, et al. Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dynamic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes. J Glaucoma. 2008 Aug. 17(5):361-5. [Medline].

  32. Brusini P, Salvetat ML, Zeppieri M, et al. Comparison of ICare tonometer with Goldmann applanation tonometer in glaucoma patients. J Glaucoma. 2006 Jun. 15(3):213-7. [Medline].

  33. Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with goldmann applanation tonometry. Invest Ophthalmol Vis Sci. 2004 Sep. 45(9):3118-21. [Medline].

  34. Ku JY, Danesh-Meyer HV, Craig JP, et al. Comparison of intraocular pressure measured by Pascal dynamic contour tonometry and Goldmann applanation tonometry. Eye. 2006 Feb. 20(2):191-8. [Medline].

  35. Sahin A, Niyaz L, Yildirim N. Comparison of the rebound tonometer with the Goldmann applanation tonometer in glaucoma patients. Clin Experiment Ophthalmol. 2007 May-Jun. 35(4):335-9. [Medline].

  36. Brandt JD. Corneal thickness in glaucoma screening, diagnosis, and management. Curr Opin Ophthalmol. 2004 Apr. 15(2):85-9. [Medline].

  37. Brandt JD, Beiser JA, Kass MA, et al. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology. 2001 Oct. 108(10):1779-88. [Medline].

  38. Shih CY, Graff Zivin JS, Trokel SL, et al. Clinical significance of central corneal thickness in the management of glaucoma. Arch Ophthalmol. 2004 Sep. 122(9):1270-5. [Medline].

  39. Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. 2000 Mar-Apr. 44(5):367-408. [Medline].

  40. Gordon MO, Kass MA. The Ocular Hypertension Treatment Study: design and baseline description of the participants. Arch Ophthalmol. 1999 May. 117(5):573-83. [Medline].

  41. Hodapp EA, Anderson DR. Treatment of early glaucoma. In: Focal Points. 1986. 4(4).

  42. Lin SC, Singh K, Jampel HD, et al. Optic nerve head and retinal nerve fiber layer analysis: a report by the American Academy of Ophthalmology. Ophthalmology. 2007 Oct. 114(10):1937-49. [Medline].

  43. Racette L, Sample PA. Short-wavelength automated perimetry. Ophthalmol Clin North Am. 2003 Jun. 16(2):227-36, vi-vii. [Medline].

  44. Reus NJ, Colen TP, Lemij HG. The prevalence of glaucomatous defects with short-wavelength automated perimetry in patients with elevated intraocular pressures. J Glaucoma. 2005 Feb. 14(1):26-9. [Medline].

  45. Landers JA, Goldberg I, Graham SL. Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Arch Ophthalmol. 2003 Dec. 121(12):1705-10. [Medline].

  46. Bengtsson B, Heijl A. Normal intersubject threshold variability and normal limits of the SITA SWAP and full threshold SWAP perimetric programs. Invest Ophthalmol Vis Sci. 2003 Nov. 44(11):5029-34. [Medline].

  47. Liu S, Lam S, Weinreb RN, et al. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. Invest Ophthalmol Vis Sci. 2011 Sep. 52(10):7325-31. [Medline].

  48. ElMallah MK, Asrani SG. New ways to measure intraocular pressure. Curr Opin Ophthalmol. 2008 Mar. 19(2):122-6. [Medline].

  49. Greenfield DS, Weinreb RN. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol. 2008 Apr. 145(4):598-603. [Medline].

  50. Medeiros FA, Zangwill LM, Bowd C, et al. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol. 2004 Jun. 122(6):827-37. [Medline].

  51. Gyatsho J, Kaushik S, Gupta A, Pandav SS, Ram J. Retinal nerve fiber layer thickness in normal, ocular hypertensive, and glaucomatous Indian eyes: an optical coherence tomography study. J Glaucoma. 2008 Mar. 17(2):122-7. [Medline].

  52. Weinreb RN, Zangwill LM, Jain S, et al. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to theOcular Hypertension Treatment Study. Ophthalmology. 2010 Sep. 117(9):1674-83. [Medline].

  53. Azuara-Blanco A, Burr JM. Assessment of glaucoma imaging technology. Ophthalmology. 2008 Jul. 115(7):1266-7; author reply 1267-8. [Medline].

  54. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun. 120(6):701-13; discussion 829-30. [Medline].

  55. Hernandez R, Rabindranath K, Fraser C, et al. Screening for open angle glaucoma: systematic review of cost-effectiveness studies. J Glaucoma. 2008 Apr-May. 17(3):159-68. [Medline].

  56. Bramley T, Peeples P, Walt JG, et al. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Arch Ophthalmol. 2008 Jun. 126(6):849-56. [Medline].

  57. Baudouin C, Renard JP, Nordmann JP, Denis P, Lachkar Y, Sellem E, et al. Prevalence and risk factors for ocular surface disease among patients treated over the long term for glaucoma or ocular hypertension. Eur J Ophthalmol. 2012 Jun 11. [Medline].

  58. Kymes SM, Kass MA, Anderson DR, Miller JP, Gordon MO. Management of ocular hypertension: a cost-effectiveness approach from the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2006 Jun. 141(6):997-1008. [Medline]. [Full Text].

  59. Lacey J, Cate H, Broadway DC. Barriers to adherence with glaucoma medications: a qualitative research study. Eye. 2008 Apr 25. [Medline].

  60. Cheung W, Guo L, Cordeiro MF. Neuroprotection in glaucoma: drug-based approaches. Optom Vis Sci. 2008 Jun. 85(6):406-16. [Medline].

  61. Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotection in glaucoma. Optom Vis Sci. 2008 Jun. 85(6):417-24. [Medline].

  62. Levin LA, Peeples P. History of neuroprotection and rationale as a therapy for glaucoma. Am J Manag Care. 2008 Feb. 14(1 Suppl):S11-4. [Medline].

  63. Lipton SA. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol. 2003 Apr. 48 Suppl 1:S38-46. [Medline].

  64. Naskar R, Dreyer EB. New horizons in neuroprotection. Surv Ophthalmol. 2001 May. 45 Suppl 3:S250-5; discussion S273-6. [Medline].

  65. Beckers HJ, Schouten JS, Webers CA, et al. Side effects of commonly used glaucoma medications: comparison of tolerability, chance of discontinuation, and patient satisfaction. Graefes Arch Clin Exp Ophthalmol. 2008 Oct. 246(10):1485-90. [Medline].

  66. Schuman JS. Clinical experience with brimonidine 0.2% and timolol 0.5% in glaucoma and ocular hypertension. Surv Ophthalmol. 1996 Nov. 41:S27-37. [Medline].

  67. Serle JB. A comparison of the safety and efficacy of twice daily brimonidine 0.2% versus betaxolol 0.25% in subjects with elevated intraocular pressure. The Brimonidine Study Group III. Surv Ophthalmol. 1996 Nov. 41:S39-47. [Medline].

  68. Brubaker RF. Mechanism of action of bimatoprost (Lumigan). Surv Ophthalmol. 2001 May. 45 Suppl 4:S347-51. [Medline].

  69. Woodward DF, Krauss AH, Chen J, et al. The pharmacology of bimatoprost (Lumigan). Surv Ophthalmol. 2001 May. 45 Suppl 4:S337-45. [Medline].

  70. Yu DY, Su EN, Cringle SJ, et al. Comparison of the vasoactive effects of the docosanoid unoprostone and selected prostanoids on isolated perfused retinal arterioles. Invest Ophthalmol Vis Sci. 2001 Jun. 42(7):1499-504. [Medline].

  71. Pacella F, Turchetti P, Santamaria V, Impallara D, Smaldone G, Brillante C, et al. Differential activity and clinical utility of latanoprost in glaucoma and ocular hypertension. Clin Ophthalmol. 2012. 6:811-5. [Medline]. [Full Text].

  72. Kahook MY, Noecker RJ. Comparison of corneal and conjunctival changes after dosing of travoprost preserved with sofZia, latanoprost with 0.02% benzalkonium chloride, and preservative-free artificial tears. Cornea. 2008 Apr. 27(3):339-43. [Medline].

  73. Aung T, Chew PT, Yip CC, et al. A randomized double-masked crossover study comparing latanoprost 0.005% with unoprostone 0.12% in patients with primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2001 May. 131(5):636-42. [Medline].

  74. Craven ER, Walters TR, Williams R, et al. Brimonidine and timolol fixed-combination therapy versus monotherapy: a 3-month randomized trial in patients with glaucoma or ocular hypertension. J Ocul Pharmacol Ther. 2005 Aug. 21(4):337-48. [Medline].

 
Previous
Next
 
Diagram of intraocular pressure distribution. Used with permission from Survey of Ophthalmology.
Flowchart for evaluation of a patient with suspected glaucoma. Used by permission of the American Academy of Ophthalmology.
Diagram showing the relative proportion of people in the general population who have elevated pressure (horizontally shaded lines) and/or damage from glaucoma (vertically shaded lines). Notice that most have elevated pressure but no sign of damage (ie, ocular hypertensives), but there are those with normal pressures who still have damage from glaucoma (ie, normal tension glaucoma). (Diagram used by permission of M. Bruce Shields.) OHT = horizontal lines only NTG = vertical lines only POAG and other glaucomas with both elevated intraocular pressure and damage = overlapping horizontal and vertical lines
Humphrey visual field, right eye, showing patient with advanced glaucomatous field loss. Notice both the arcuate extension from the blind spot (Bjerrum scotoma), as well as the loss nasally (nasal step), which often occurs early in the disease process. Courtesy of M. Bruce Shields.
Illustration of progressive optic nerve damage. Notice the deepening (saucerization) along the neural rim, along with notching and increased excavation/sloping of the optic nerve and circumlinear vessel inferiorly. Courtesy of M. Bruce Shields.
Example of progressive visual field loss over time (from top to bottom) in a patient with glaucoma. Notice the early appearance of an inferior nasal step and arcuate loss, with progressive enlargement and increasing density of the scotomata over time. Humphrey visual field courtesy of M. Bruce Shields.
Example of optic nerve asymmetry in a patient with glaucomatous damage, left eye, showing optic nerve excavation inferiorly similar to Image 5. Used by permission of M. Bruce Shields.
Glaucomatous optic nerve damage, with sloping and nerve fiber layer rim hemorrhage at the 7-o'clock position. Hemorrhage is indicative of progressive damage, usually due to inadequate pressure control. Further notching and pallor corresponding to the area of hemorrhage usually is seen several weeks after resorption of the blood. Courtesy of M. Bruce Shields.
Advanced glaucomatous damage with increased cupping and substantial pallor of the optic nerve head. Courtesy of M. Bruce Shields.
Correction values according to corneal thickness.
Ocular hypertension study (OHTS). Percentage of patients who developed glaucoma during this study, stratified by baseline intraocular pressure (IOP) and central corneal thickness (CCT).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.