Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Senile Cataract Treatment & Management

  • Author: Vicente Victor D Ocampo, Jr, MD; Chief Editor: John D Sheppard, Jr, MD, MMSc  more...
 
Updated: Mar 01, 2016
 

Medical Care

No time-tested, FDA-approved, or clinically proven medical treatment exists to delay, prevent, or reverse the development of senile cataracts.

Aldose reductase inhibitors, which are believed to inhibit the conversion of glucose to sorbitol, have shown promising results in preventing sugar cataracts in animals. Other anticataract medications being investigated include sorbitol-lowering agents, aspirin, glutathione-raising agents, and antioxidant vitamins C and E.

Next

Surgical Care

The definitive management for senile cataract is lens extraction. Over the years, various surgical techniques have evolved from the ancient method of couching to the present-day technique of modern phacoemulsification. Phacoemulsification offers the advantage of a smaller incision size at the time of cataract surgery.[23] Historically parallel to the development of phacoemulsification is the evolution of advanced IOL design, which offers a wide selection of target implantation locations, materials, chromophores, premium features, and manner of implantation. Depending on the integrity of the posterior lens capsule, the 2 main types of lens surgery are the intracapsular cataract extraction (ICCE) and the extracapsular cataract extraction (ECCE). Below is a general description of the 3 commonly used surgical procedures in cataract extraction, namely ICCE, standard ECCE, and phacoemulsification. Referencing literature dedicated specifically to cataract surgeries for a more in-depth discussion of the topic, particularly with regard to technique and procedure, is also recommended.

Results from a large database study by Lundström et al indicate that poor visual outcome following surgery is most strongly determined by the following factors[24, 25] :

  • Short-term postoperative complications
  • Ocular comorbidity
  • Surgical complications
  • Complex surgery

Data (some self-reported) for the study were drawn from the European Registry of Quality Outcomes for Cataract and Refractive Surgery, which contained information on 368,256 cataract extractions. According to the investigators, although cataract surgery yielded excellent visual outcomes for more than 60% of patients in the study, vision was unchanged in 5.7% of them, while 1.7% of patients experienced a decrease in corrected distance visual acuity (CDVA).[24, 25]

Intracapsular cataract extraction

Prior to the onset of more modern microsurgical instruments and better IOLs, ICCE was the preferred method for cataract removal. It involves extraction of the entire lens, including the posterior capsule and mechanical or enzymatic lysis of the zonular support structures. In performing this technique, there is no need to worry about subsequent development and management of capsular opacity. The technique can be performed with less sophisticated equipment and in areas where operating microscopes and irrigating systems are not available.

However, a number of disadvantages and postoperative complications accompany ICCE. The larger limbal incision, often 160°-180°, is associated with the following risks: delayed healing, delayed visual rehabilitation, significant against-the-rule astigmatism, iris incarceration, postoperative wound leaks, and vitreous incarceration. Corneal edema is a common intraoperative and immediate postoperative complication.

Furthermore, endothelial cell loss is greater in ICCE than in ECCE. The same is true about the incidence of postoperative cystoid macular edema (CME) and retinal detachment. The broken integrity of the vitreous face can lead to postoperative complications, even after a seemingly uneventful operation. Finally, because the posterior capsule is not intact, the IOL to be implanted must be placed in the anterior chamber, sutured to the iris, or surgically fixated in the posterior chamber. Both techniques are more difficult to perform than simply placing an IOL in the capsular bag and are associated with postoperative complications, the most notorious of which is pseudophakic bullous keratopathy (PBK).

Although the myriad postoperative complications has led to the decline in popularity and use of ICCE, it still can be used when zonular integrity is too severely impaired to allow successful lens removal and IOL implantation with an ECCE, particularly carefully selected posttraumatic and hypermature cataracts. Furthermore, ICCE can be performed in remote areas where more sophisticated equipment is not available.

ICCE is contraindicated in children and young adults with cataracts and any case with traumatic capsular rupture where intact removal of the lens capsule unit may prove difficult or incomplete. Relative contraindications include high myopia, Marfan syndrome, morgagnian cataracts, and vitreous presenting in the anterior chamber. Many of these patients may benefit from a pars plana lensectomy by a vitreoretinal surgeon prior to judicious selection of the appropriate IOL type.

Extracapsular cataract extraction

In contrast to ICCE, ECCE involves the removal of the lens nucleus through an opening in the anterior capsule with retention of posterior capsular integrity. ECCE possesses a number of advantages over ICCE, most of which are related to an intact posterior capsule, as follows:

  • A smaller incision is required in ECCE, and, as such, less trauma to the corneal endothelium is expected. Only the diameter of the nucleus must be accommodated by the opening rather than the diameter of the entire lens capsule unit.
  • Short- and long-term complications of vitreous adherence to the cornea, iris, and incision are minimized or eliminated.
  • A better anatomical placement of the IOL is achieved with an intact posterior capsule.
  • An intact posterior capsule also (1) reduces the iris and vitreous mobility that occurs with saccadic movements (eg, endophthalmodonesis); (2) provides a barrier restricting the exchange of some molecules between the aqueous and the vitreous; (3) reduces the incidence of CME, retinal detachment, and corneal edema; and (4) reduces movement of the IOL upon eye movements and eye rubbing (pseudophakodonesis).
  • Conversely, an intact capsule prevents bacteria and other microorganisms inadvertently introduced into the anterior chamber during surgery from gaining access to the posterior vitreous cavity and causing endophthalmitis.
  • Secondary IOL implantation, filtration surgery, corneal transplantation, and wound repairs are performed more easily with a higher degree of safety with an intact posterior capsule.

The main requirements for a successful ECCE and endocapsular IOL implantation are zonular integrity and an intact posterior capsule. As such, when zonular support is insufficient or appears suspect to allow a safe removal of the cataract via ECCE, ICCE or pars plana lensectomy should be considered.

Phacoemulsification

Standard ECCE and phacoemulsification are similar in that extraction of the lens nucleus is performed through an opening in the anterior capsule or anterior capsulotomy. Both techniques also require mechanisms to irrigate and aspirate fluid and cortical material during surgery. Finally, both procedures place the IOL in the posterior capsular bag, which is far more anatomically correct than the anteriorly placed IOL.

Needless to say, significant differences exist between the 2 techniques. Removal of the lens nucleus in ECCE can be performed manually in standard ECCE or with an ultrasonically driven needle to fragment the nucleus of the cataract and then to aspirate the lens substrate through a needle port in a process termed phacoemulsification.

The more modern of the 2 techniques, phacoemulsification offers the advantage of using smaller incisions, minimizing complications arising from improper wound closure, and affording more rapid wound healing and faster visual rehabilitation. Furthermore, it uses a relatively closed system during both phacoemulsification and aspiration with better control of intraocular pressure during surgery, providing safeguards against positive vitreous pressure and choroidal hemorrhage. A closed system also minimizes fluid turbulence within the anterior chamber, reducing endothelial and trabecular meshwork trauma. However, more sophisticated and expensive machines, disposables, and instruments are required to perform phacoemulsification.

Ultimately, the choice of which of the 2 procedures to use in cataract extraction depends on the patient, the type of cataract, the availability of the proper instruments, and the degree to which the surgeon is comfortable and proficient in performing standard ECCE or phacoemulsification. The vast majority of modern cataract surgeons perform and prefer phacoemulsification.

The surgeon should also consider whether to use topical or regional anesthesia during the procedure. A study by Zhao et al examined the clinical outcomes of topical anesthesia and regional anesthesia including retrobulbar anesthesia and peribulbar anesthesia in phacoemulsification. The authors found that regional anesthesia provides better perioperative pain control, but that surgical outcomes were the same for both.[26]

Other Considerations

Although single-eye cataract surgery improves vision, including the second eye may yield greater rewards, according to a prospective, population-based study by Lee et al. The investigators studied 1739 participants aged 65-84 years at enrollment, 90 of whom following enrollment had unilateral cataract surgery, and 29 of whom had bilateral surgery. In the 1620 patients who did not undergo surgery, bilateral baseline best-corrected visual acuity logarithm of the minimum angle of resolution (BCVA of logMAR) was no greater than 0.3 (at least 20/40).[27, 28]

BCVA of logMAR improved by 0.04 in the unilateral group and 0.13 in the bilateral group, while reading speed increased by 12 words per minute in the unilateral group and 31 words per minute in the bilateral group. Moreover, the Activities of Daily Vision Scale scores (measuring vision at a distance, close-up, glare, and day and night driving) showed a 5-point relative improvement in the bilateral group, while the unilateral group actually showed a 5-point relative decrease.

Bell et al reviewed exposure to alpha-adrenergic blockers frequently prescribed to treat benign prostatic hypertrophy (BPH) and their association with serious postoperative adverse effects following cataract surgery.[29] The study included more than 96,000 older men who had cataract surgery over a 5-year period (3.7% had recent exposure to tamsulosin and 7.7% had recent exposure to other alpha blockers). Exposure to tamsulosin within 14 days of cataract surgery was significantly associated with serious postoperative ophthalmic adverse events (7.5% vs 2.7%; adjusted odds ratio [OR], 2.33; 95% confidence interval [CI], 1.22-4.43), specifically intraoperative floppy iris syndrome and its complications (ie, retinal detachment, lost lens or fragments, uveitis, endophthalmitis). No significant associations were noted with exposure to other alpha blocker medications (7.5% vs 8%; adjusted OR, 0.91; 95% CI, 0.54-1.54) or to previous exposure to tamsulosin or other alpha blockers.

A study by Baker et al found that 23-gauge pars plana vitrectomy is a possible surgical management approach in select cases of retained lens fragments. While 12 patients were successfully treated by this initial intervention, 8 required sclerotomy enlargement to a 20-gauge access.[30]

An association between cataract surgery and late age-related macular degeneration, independent of additional risk factors, has been shown in some studies.[31] Most surgeons do not believe that cataract extraction accelerates the onset of age-related macular degeneration. UV protection with sunglasses and hats is always recommended following cataract extraction.

Multifocal IOLs after cataract extraction are more effective at improving near vision than monofocal IOLS are, but whether this improvement outweighs the potential adverse effects of multifocal lenses varies between patients.[32] Careful patient selection to recommend a multifocal IOL only to patients with a pristine macula and ocular surface can be very rewarding for both the clinician and patient.

In 2008, the US Food and Drug Administration (FDA) approved the Alcon line of acrylic toric IOLs. In 2013, the FDA approved Abbott's Tecnis Toric 1-piece IOL to treat preexisting astigmatism in patients with cataract.[33] Toric IOLs are used to manage corneal astigmatism in patients who have undergone cataract surgery and whose natural lenses have been removed. Unlike other devices on the market, this 1-piece IOL can correct loss of focus of 1 diopter or greater. Clinical data show that the device offers exceptional rotational stability while improving visual results and improving distance and night vision.

In early 2014, the FDA approved a synthetic polyethylene glycol hydrogel sealant (ReSure Sealant, Ocular Therapeutix, Inc) for use in cataract surgery with IOL placement.[34] The sealant is indicated for prevention of postoperative fluid egress from incisions with a demonstrated wound leak after cataract surgery. Approval was based on a prospective, randomized, controlled multicenter study of 471 patients in which the sealant was more effective than a single suture in preventing incision leakage in the 7 days after surgery.

An increased risk for intraoperative floppy iris syndrome (IFIS) was observed during cataract surgery in patients with benign prostatic hypertrophy (BPH) who were taking a nonselective alpha1-antagonist. Alfuzosin and tamsulosin, 2 drugs commonly used to treat BPH, are both linked to permanent changes in the iris and associated with an increased risk of IFIS. A prospective, masked, cross-sectional multicenter study by Chang et al determined that patients taking systemic alfuzosin for BPH were less likely to experience moderate or severe IFIS during cataract surgery than patients taking tamsulosin.[35, 36]

Of the 226 eyes studied, 70 were in patients receiving systemic tamsulosin, 43 in patients receiving systemic alfuzosin, and 113 in patients with no history of systemic alpha1-antagonist therapy.[36] The incidence of IFIS was 34.3% in the tamsulosin group, 16.3% in the alfuzosin group, and 4.4% in the control group. Severe IFIS was statistically more likely with tamsulosin than with alfuzosin (P = 0.036). Thus, patients with symptomatic BPH and cataracts requiring a uroselective alpha1-antagonist may consider trying alfuzosin first.

Previous
Next

Consultations

Prior to surgery, a thorough preoperative evaluation must be conducted, which would also include a thorough explanation of the procedure to be performed and its accompanying risks.

Not all senile cataracts require removal at the time of diagnosis. If vision, performance of daily tasks, and quality of life are not impaired significantly or if the patient is not prepared medically, psychologically, and financially for surgery, periodic consultations are encouraged to assess progression of the cataract. The procedure is, by definition, almost always elective. Very rarely, lens-induced glaucoma or uveitis warrants urgent or emergent cataract surgery.

Postoperatively, regular follow-up visits are necessary to monitor visual rehabilitation, as well as to detect and address any immediate and late complications arising from the surgery.

Previous
Next

Diet

In relation to the surgery, no established dietary restrictions exist that would affect the course of the operation when a small corneal incision technique is planned. Larger scleral incisions, MIGS, simultaneous pars plana vitrectomy, or a planned retrobulbar anesthetic may dictate limitation of any dietary supplement (eg, fish oil) that may prolong bleeding times 2 weeks prior to surgery.

Previous
Next

Activity

After surgery, the patient is dissuaded from performing activities that would increase the intraocular pressure, especially after undergoing ICCE or standard ECCE. These activities include lifting heavy loads, chronic vigorous coughing, and straining. Similarly, trauma and exposure to toxic fumes or particular matter should specifically be avoided.

Previous
 
 
Contributor Information and Disclosures
Author

Vicente Victor D Ocampo, Jr, MD Head, Uveitis and Ocular Immunology Service, Veterans Memorial Medical Center, Philippines; Head, Uveitis and Ocular Immunology Service, Ospital ng Makati Medical Center, Philippines; Consulting Staff, Department of Ophthalmology, Asian Hospital and Medical Center, Philippines

Vicente Victor D Ocampo, Jr, MD is a member of the following medical societies: American Academy of Ophthalmology, Philippine Ocular Inflammation Society, Philippine Academy of Ophthalmology

Disclosure: Nothing to disclose.

Coauthor(s)

C Stephen Foster, MD, FACS, FACR, FAAO, FARVO Clinical Professor of Ophthalmology, Harvard Medical School; Consulting Staff, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary; Founder and President, Ocular Immunology and Uveitis Foundation, Massachusetts Eye Research and Surgery Institution

C Stephen Foster, MD, FACS, FACR, FAAO, FARVO is a member of the following medical societies: Alpha Omega Alpha, American Academy of Ophthalmology, American Association of Immunologists, American College of Rheumatology, American College of Surgeons, American Federation for Clinical Research, American Medical Association, American Society for Microbiology, American Uveitis Society, Association for Research in Vision and Ophthalmology, Massachusetts Medical Society, Royal Society of Medicine, Sigma Xi

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

J James Rowsey, MD Former Director of Corneal Services, St Luke's Cataract and Laser Institute

J James Rowsey, MD is a member of the following medical societies: American Academy of Ophthalmology, American Association for the Advancement of Science, American Medical Association, Association for Research in Vision and Ophthalmology, Florida Medical Association, Sigma Xi, Southern Medical Association, Pan-American Association of Ophthalmology

Disclosure: Nothing to disclose.

Chief Editor

John D Sheppard, Jr, MD, MMSc Professor of Ophthalmology, Microbiology and Molecular Biology, Clinical Director, Thomas R Lee Center for Ocular Pharmacology, Ophthalmology Residency Research Program Director, Eastern Virginia Medical School; President, Virginia Eye Consultants

John D Sheppard, Jr, MD, MMSc is a member of the following medical societies: American Academy of Ophthalmology, American Society for Microbiology, American Society of Cataract and Refractive Surgery, Association for Research in Vision and Ophthalmology, American Uveitis Society

Disclosure: Nothing to disclose.

Additional Contributors

Richard W Allinson, MD Associate Professor, Department of Ophthalmology, Texas A&M University Health Science Center; Senior Staff Ophthalmologist, Scott and White Clinic

Richard W Allinson, MD is a member of the following medical societies: American Academy of Ophthalmology, American Medical Association, Texas Medical Association

Disclosure: Nothing to disclose.

References
  1. Congdon N, Vingerling JR, Klein BE, West S, Friedman DS, Kempen J, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States. Arch Ophthalmol. 2004 Apr. 122(4):487-94. [Medline].

  2. You QS, Xu L, Yang H, Wang YX, Jonas JB. Five-Year Incidence of Visual Impairment and Blindness in Adult Chinese The Beijing Eye Study. Ophthalmology. 2011 Jan 4. [Medline].

  3. Liang YB, Friedman DS, Wong TY, Zhan SY, Sun LP, Wang JJ. Prevalence and causes of low vision and blindness in a rural chinese adult population: the Handan Eye Study. Ophthalmology. 2008 Nov. 115(11):1965-72. [Medline].

  4. Maberley DA, Hollands H. The prevalence of low vision and blindness in Canada. Eye(Lond). 2006/03. 20(3):341-6.

  5. Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006 Aug. 113(8):1354-62. [Medline].

  6. Buch H, Vinding T, Nielsen NV. Prevalence and causes of visual impairment according to World Health Organization and United States criteria in an aged, urban Scandinavian population: the Copenhagen City Eye Study. Ophthalmology. 2001 Dec. 108(12):2347-57. [Medline].

  7. Limburg H, Barria von-Bischhoffshausen F, Gomez P, Silva JC, Foster A. Review of recent surveys on blindness and visual impairment in Latin America. Br J Ophthalmol. 2008 Mar. 92(3):315-9. [Medline].

  8. Murthy GV, Vashist P, John N, Pokharel G, Ellwein LB. Prevelence and causes of visual impairment and blindness in older adults in an area of India with a high cataract surgical rate. Ophthalmic Epidemiol. 2010 Aug. 17(4):185-95. [Medline].

  9. Meddings DR, Marion SA, Barer ML, Evans RG, Green B, Hertzman C, et al. Mortality rates after cataract extraction. Epidemiology. 1999 May. 10(3):288-93. [Medline].

  10. Hirsch RP, Schwartz B. Increased mortality among elderly patients undergoing cataract extraction. Arch Ophthalmol. 1983 Jul. 101(7):1034-7. [Medline].

  11. Sperduto RD, Hiller R. The prevalence of nuclear, cortical, and posterior subcapsular lens opacities in a general population sample. Ophthalmology. 1984 Jul. 91(7):815-8. [Medline].

  12. Nishikiori T, Yamamoto K. Epidemiology of cataracts. Dev Ophthalmol. 1987. 15:24-7. [Medline].

  13. Martinez GS, Campbell AJ, Reinken J, Allan BC. Prevalence of ocular disease in a population study of subjects 65 years old and older. Am J Ophthalmol. 1982 Aug. 94(2):181-9. [Medline].

  14. Kulaksızoglu S, Karalezli A. Aqueous Humour and Serum Levels of Nitric Oxide, Malondialdehyde and Total Antioxidant Status in Patients with Type 2 Diabetes with Proliferative Diabetic Retinopathy and Nondiabetic Senile Cataracts. Can J Diabetes. 2015 Sep 18. [Medline].

  15. Yousefi R, Javadi S, Amirghofran S, Oryan A, Moosavi-Movahedi AA. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients. Int J Biol Macromol. 2015 Oct 23. [Medline].

  16. West SK, Valmadrid CT. Epidemiology of risk factors for age-related cataract. Surv Ophthalmol. 1995 Jan-Feb. 39(4):323-34. [Medline].

  17. Miglior S, Marighi PE, Musicco M, Balestreri C, Nicolosi A, Orzalesi N. Risk factors for cortical, nuclear, posterior subcapsular and mixed cataract: a case-control study. Ophthalmic Epidemiol. 1994 Jun. 1(2):93-105. [Medline].

  18. Richter GM, Choudhury F, Torres M, Azen SP, Varma R. Risk factors for incident cortical, nuclear, posterior subcapsular, and mixed lens opacities: the Los Angeles Latino eye study. Ophthalmology. 2012 Oct. 119(10):2040-7. [Medline]. [Full Text].

  19. Johns KJ, Feder RS, Rosenfeld SI, et al. Lens and cataract. American Academy of Ophthalmology Basic and Clinical Science Course. 1999-2000. Vol. 11.:

  20. Al-Ghadyan AA, Cotlier E. Rise in lens temperature on exposure to sunlight or high ambient temperature. Br J Ophthalmol. 1986 Jun. 70(6):421-6. [Medline].

  21. Kanthan GL, Mitchell P, Burlutsky G, Rochtchina E, Wang JJ. Pseudoexfoliation syndrome and the long-term incidence of cataract and cataract surgery: the blue mountains eye study. Am J Ophthalmol. 2013 Jan. 155(1):83-88.e1. [Medline].

  22. Costello MJ, Oliver TN, Cobo LM. Cellular architecture in age-related human nuclear cataracts. Invest Ophthalmol Vis Sci. 1992 Oct. 33(11):3209-27. [Medline].

  23. Van den Bruel A, Gailly J, Devriese S, Welton NJ, Shortt AJ, Vrijens F. The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. Br J Ophthalmol. 2011 Jan. 95(1):5-10. [Medline].

  24. Lundström M, Barry P, Henry Y, et al. Visual outcome of cataract surgery; study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg. 2013 May. 39(5):673-9. [Medline].

  25. Pullen LC. Ocular Comorbidity Predicts Poor Cataract Surgery Outcomes. Medscape Medical News. May 1 2013. [Full Text].

  26. Zhao LQ, Zhu H, Zhao PQ, Wu QR, Hu YQ. Topical Anesthesia versus Regional Anesthesia for Cataract Surgery: A Meta-Analysis of Randomized Controlled Trials. Ophthalmology. 2012 Feb 22. [Medline].

  27. Douglas D. Cataract Surgery in Both Eyes May Boost Benefits. Medscape. Feb 4 2013. Available at http://www.medscape.com/viewarticle/778757. Accessed: Apr 17 2013.

  28. Lee BS, Munoz BE, West SK, Gower EW. Functional Improvement after One- and Two-Eye Cataract Surgery in the Salisbury Eye Evaluation. Ophthalmology. 2013 Jan 25. [Medline].

  29. Bell CM, Hatch WV, Fischer HD, Cernat G, Paterson M, Gruneir A, et al. Association between tamsulosin and serious ophthalmic adverse events in older men following cataract surgery. JAMA. 2009 May 20. 301(19):1991-6. [Full Text].

  30. Baker PS, Spirn MJ, Chiang A, et al. 23-Gauge transconjunctival pars plana vitrectomy for removal of retained lens fragments. Am J Ophthalmol. 2011 Oct. 152(4):624-7. [Medline].

  31. Klein BE, Howard KP, Lee KE, Iyengar SK, Sivakumaran TA, Klein R. The Relationship of Cataract and Cataract Extraction to Age-related Macular Degeneration: The Beaver Dam Eye Study. Ophthalmology. 2012 Aug. 119(8):1628-33. [Medline]. [Full Text].

  32. Calladine D, Evans JR, Shah S, Leyland M. Multifocal versus monofocal intraocular lenses after cataract extraction. Cochrane Database Syst Rev. 2012 Sep 12. 9:CD003169. [Medline].

  33. Lewis R. FDA Approves Tecnis Toric Intraocular Lens. Medscape Medical News. Available at http://www.medscape.com/viewarticle/782778. Accessed: May 2, 2013.

  34. Brooks M. FDA OKs First Gel Sealant for Use in Cataract Surgery. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/818977. Accessed: January 20, 2014.

  35. Laidman J. Alfuzosin for BPH linked to fewer snags in cataract surgery. Medscape Medical News. February 13, 2014. [Full Text].

  36. Chang DF, Campbell JR, Colin J, Schweitzer C. Prospective Masked Comparison of Intraoperative Floppy Iris Syndrome Severity with Tamsulosin versus Alfuzosin. Ophthalmology. 2013 Dec 4. [Medline].

  37. Sarkar S, Mondal KK, Roy SS, Gayen S, Ghosh A, De RR. Comparison of preoperative nepafenac (0.1%) and flurbiprofen (0.03%) eye drops in maintaining mydriasis during small incision cataract surgery in patients with senile cataract: A randomized, double-blind study. Indian J Pharmacol. 2015 Sep-Oct. 47 (5):491-5. [Medline].

  38. Pullen LC. Experimental Plug Aids Recovery From Cataract Surgery. Medscape Medical News. Oct 27 2014. [Full Text].

  39. Asano S, Miyake K, Ota I, Sugita G, Kimura W, Sakka Y, et al. Reducing angiographic cystoid macular edema and blood-aqueous barrier disruption after small-incision phacoemulsification and foldable intraocular lens implantation: multicenter prospective randomized comparison of topical diclofenac 0.1% and betamethasone 0.1%. J Cataract Refract Surg. 2008 Jan. 34(1):57-63. [Medline].

  40. Szijarto Z, Schvoller M, Poto L, Kuhn F, Kovacs B. Pseudophakic retinal detachment after phacoemulsification. Ann Ophthalmol (Skokie). 2007 Jun. 39(2):134-9. [Medline].

  41. Cao X, Liu A, Zhang J, Li Y, Jie Y, Liu W, et al. Clinical analysis of endophthalmitis after phacoemulsification. Can J Ophthalmol. 2007 Dec. 42(6):844-8. [Medline].

  42. Rabin SM. Medicolegal concerns of cataract surgeons. Management and Care of the Cataract Patient. 1992. 331-8.

  43. Belkin M, Jacobs DR, Jackson SM, Zwick H. Senile cataracts and myopia. Ann Ophthalmol. 1982 Jan. 14(1):49-50. [Medline].

  44. Bellows JG, Bellows RT. Crosslinkage theory of senile cataracts. Ann Ophthalmol. 1976 Feb. 8(2):129-35. [Medline].

  45. Bilge AH, Aykan U, Akin T, Unsal U. Review of sterile, postoperative, anterior segment inflammation following cataract extraction and intraocular lens implantation. Eur J Ophthalmol. 2005 Mar-Apr. 15(2):224-7. [Medline].

  46. Bunce GE, Kinoshita J, Horwitz J. Nutritional factors in cataract. Annu Rev Nutr. 1990. 10:233-54. [Medline].

  47. Burgess CA, Sowers M. Systemic hypertension and senile cataracts: an epidemiologic study. Optom Vis Sci. 1992 Apr. 69(4):320-4. [Medline].

  48. Cataracts continue to be leading cause of vision loss and blindness in the United States. Prevent Blindness America. Available at http://www.preventblindness.org/.

  49. Charakidas A, Kalogeraki A, Tsilimbaris M, Koukoulomatis P, Brouzas D, Delides G. Lens epithelial apoptosis and cell proliferation in human age-related cortical cataract. Eur J Ophthalmol. 2005 Mar-Apr. 15(2):213-20. [Medline].

  50. Chatterjee A, Milton RC, Thyle S. Prevalence and aetiology of cataract in Punjab. Br J Ophthalmol. 1982 Jan. 66(1):35-42. [Medline].

  51. Chylack LT Jr. Mechanisms of senile cataract formation. Ophthalmology. 1984 Jun. 91(6):596-602. [Medline].

  52. Eckerskorn U, Hockwin O, Muller-Breitenkamp R, Chen TT, Knowles W, Dobbs RE. Evaluation of cataract-related risk factors using detailed classification systems and multivariate statistical methods. Dev Ophthalmol. 1987. 15:82-91. [Medline].

  53. Emery JM, Wilhelmus KA, Rosenberg S. Complications of phacoemulsification. Ophthalmology. 1978 Feb. 85(2):141-50. [Medline].

  54. Fujiwara H, Takigawa Y, Suzuki T, Nakata K. Superoxide dismutase activity in cataractous lenses. Jpn J Ophthalmol. 1992. 36(3):273-80. [Medline].

  55. Ghafour IM, Allan D, Foulds WS. Common causes of blindness and visual handicap in the west of Scotland. Br J Ophthalmol. 1983 Apr. 67(4):209-13. [Medline].

  56. Gibson JM, Rosenthal AR, Lavery J. A study of the prevalence of eye disease in the elderly in an English community. Trans Ophthalmol Soc U K. 1985. 104 (Pt 2):196-203. [Medline].

  57. Gibson JM, Shaw DE, Rosenthal AR. Senile cataract and senile macular degeneration: an investigation into possible risk factors. Trans Ophthalmol Soc U K. 1986. 105 (Pt 4):463-8. [Medline].

  58. Hirneiss C, Neubauer AS, Kampik A, Schönfeld CL. Comparison of prednisolone 1%, rimexolone 1% and ketorolac tromethamine 0.5% after cataract extraction: a prospective, randomized, double-masked study. Graefes Arch Clin Exp Ophthalmol. 2005 Aug. 243(8):768-73. [Medline].

  59. Hollows F, Moran D. Cataract--the ultraviolet risk factor. Lancet. 1981 Dec 5. 2(8258):1249-50. [Medline].

  60. Hu TS, Lao YX. An epidemiologic survey of senile cataract in China. Dev Ophthalmol. 1987. 15:42-51. [Medline].

  61. Imbach P, Odavic R, Bleher EA, Bucher U, Deubelbeiss KA, Wagner HP. [Autologous bone marrow reimplantation in children with advanced tumor. First experiences of feasibility]. Schweiz Med Wochenschr. 1979 Feb 24. 109(8):283-7. [Medline].

  62. Jacques PF, Chylack LT Jr, McGandy RB, Hartz SC. Antioxidant status in persons with and without senile cataract. Arch Ophthalmol. 1988 Mar. 106(3):337-40. [Medline].

  63. Javitt JC, Taylor HR. Cataract and latitude. Doc Ophthalmol. 1994-1995. 88(3-4):307-25. [Medline].

  64. Kador PF. Overview of the current attempts toward the medical treatment of cataract. Ophthalmology. 1983 Apr. 90(4):352-64. [Medline].

  65. Kahn HA, Leibowitz HM, Ganley JP, Kini MM, Colton T, Nickerson RS, et al. The Framingham Eye Study. I. Outline and major prevalence findings. Am J Epidemiol. 1977 Jul. 106(1):17-32. [Medline].

  66. Kamei A. Characterization of water-insoluble proteins in normal and cataractous human lens. Jpn J Ophthalmol. 1990. 34(2):216-24. [Medline].

  67. Kamei A. Glutathione levels of the human crystalline lens in aging and its antioxidant effect against the oxidation of lens proteins. Biol Pharm Bull. 1993 Sep. 16(9):870-5. [Medline].

  68. Katoh N, Sasaki K, Shibata T, Obazawa H, Fujiwara T, Kogure F, et al. Case-control study of senile cataract in Japan: a preliminary report. Jpn J Ophthalmol. 1993. 37(4):467-77. [Medline].

  69. Ke Y, Jiang J, Chen P, Weng Y, Yang Y. Phacoemulsification and posterior chamber intraocular lens implantation. Zhonghua Yan Ke Za Zhi. 1996 Mar. 32(2):85-91. [Medline].

  70. Kini MM, Leibowitz HM, Colton T, Nickerson RJ, Ganley J, Dawber TR. Prevalence of senile cataract, diabetic retinopathy, senile macular degeneration, and open-angle glaucoma in the Framingham eye study. Am J Ophthalmol. 1978 Jan. 85(1):28-34. [Medline].

  71. Knekt P, Heliövaara M, Rissanen A, Aromaa A, Aaran RK. Serum antioxidant vitamins and risk of cataract. BMJ. 1992 Dec 5. 305(6866):1392-4. [Medline].

  72. Lee SM, Lin SY, Li MJ, Liang RC. Possible mechanism of exacerbating cataract formation in cataractous human lens capsules induced by systemic hypertension or glaucoma. Ophthalmic Res. 1997. 29(2):83-90. [Medline].

  73. Lu M, Taylor A, Chylack LT Jr, Rogers G, Hankinson SE, Willett WC, et al. Dietary fat intake and early age-related lens opacities. Am J Clin Nutr. 2005 Apr. 81(4):773-9. [Medline].

  74. Lydahl E. Infrared radiation and cataract. Acta Ophthalmol Suppl. 1984. 166:1-63. [Medline].

  75. Moffat BA, Landman KA, Truscott RJ, Sweeney MH, Pope JM. Age-related changes in the kinetics of water transport in normal human lenses. Exp Eye Res. 1999 Dec. 69(6):663-9. [Medline].

  76. Mozaffarieh M, Heinzl H, Sacu S, Wedrich A. Clinical outcomes of phacoemulsification cataract surgery in diabetes patients: visual function (VF-14), visual acuity and patient satisfaction. Acta Ophthalmol Scand. 2005 Apr. 83(2):176-83. [Medline].

  77. Packer M, Fishkind WJ, Fine IH, Seibel BS, Hoffman RS. The physics of phaco: a review. J Cataract Refract Surg. 2005 Feb. 31(2):424-31. [Medline].

  78. Papamatheakis DG, Demers P, Vachon A, Jaimes LB, Lapointe Y, Harasymowycz PJ. Thrombocytopenia and the risks of intraocular surgery. Ophthalmic Surg Lasers Imaging. 2005 Mar-Apr. 36(2):103-7. [Medline].

  79. Recchia FM, Busbee BG, Pearlman RB, Carvalho-Recchia CA, Ho AC. Changing trends in the microbiologic aspects of postcataract endophthalmitis. Arch Ophthalmol. 2005 Mar. 123(3):341-6. [Medline].

  80. Robertson JM, Donner AP, Trevithick JR. A possible role for vitamins C and E in cataract prevention. Am J Clin Nutr. 1991 Jan. 53(1 Suppl):346S-351S. [Medline].

  81. Sack R, Cohen J. Comparative diets of a idiopathic senile cataract and normal population: dietary risk factors in cataractogenesis. Metab Pediatr Syst Ophthalmol. 1987. 10(1):9-13. [Medline].

  82. Shaikh MR, Janjua MZ. Morphological and morphometrical study of human lens in senile cataract. J Pak Med Assoc. 1997 May. 47(5):141-4. [Medline].

  83. Sharma YR, Vajpayee RB, Honavar SG. Sunlight and cortical cataract. Arch Environ Health. 1994 Sep-Oct. 49(5):414-7. [Medline].

  84. Sommer A. Cataracts as an epidemiologic problem. Am J Ophthalmol. 1977 Mar. 83(3):334-9. [Medline].

  85. Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt JC, et al. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N Engl J Med. 1991 Nov 14. 325(20):1412-7. [Medline].

  86. Steinkuller PG. Cataract: the leading cause of blindness and vision loss in Africa. Soc Sci Med. 1983. 17(22):1693-702. [Medline].

  87. Street DA, Javitt JC. National five-year mortality after inpatient cataract extraction. Am J Ophthalmol. 1992 Mar 15. 113(3):263-8. [Medline].

  88. Tseng SH, Tang MJ. Na,K-ATPase in lens epithelia from patients with senile cataracts. J Formos Med Assoc. 1999 Sep. 98(9):627-32. [Medline].

  89. Tseng SH, Yen JS, Chien HL. Lens epithelium in senile cataract. J Formos Med Assoc. 1994 Feb. 93(2):93-8. [Medline].

  90. Worgul BV, Merriam GR Jr, Medvedovsky C. Cortical cataract development--an expression of primary damage to the lens epithelium. Lens Eye Toxic Res. 1989. 6(4):559-71. [Medline].

  91. Wu TT, Amini L, Leffler CT, Schwartz SG. Cataracts and cataract surgery in mentally retarded adults. Eye Contact Lens. 2005 Mar. 31(2):50-3. [Medline].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.