Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Idiopathic Intracranial Hypertension Clinical Presentation

  • Author: Mark S Gans, MD; Chief Editor: Andrew G Lee, MD  more...
 
Updated: Jan 28, 2016
 

History

Patients with idiopathic intracranial hypertension (IIH) usually present with symptoms related to increased intracranial pressure (ICP) and papilledema, including headache, transient visual obscurations, and diplopia due to unilateral or bilateral abducens nerve (cranial nerve [CN] VI) palsy. Rarely, patients presenting with increased ICP with related optic nerve edema may be asymptomatic. Nonspecific symptoms may include dizziness, nausea, vomiting, photopsias, retrobulbar pain, and pulse-synchronous tinnitus.[2]

Symptoms of elevated intracranial pressure (ICP)

Headaches are recorded in almost all IIH patients.[52] They are typically nonspecific and vary in type, location, and frequency. The pain is generally described as being diffuse, worsening in the morning and being exacerbated by the Valsalva maneuver.

Patients who present with double vision most frequently complain of horizontal displacement of the images. Horizontal diplopia is a symptom of a false-localizing CN VI palsy. Vertical diplopia is rare, but it has been reported.

Pulsatile tinnitus may be reported. This is a rhythmic sound, heard in one or both ears, with a pulsing synchronous rhythm that may be exacerbated by the supine or bending position.

Radicular pain (usually in the arms) is an uncommon symptom.

Symptoms of papilledema

Transient visual obscurations occur in most patients. The disturbance can last up to 30 seconds and is described as a dimming or blackout of vision in one or both of the eyes. These obscurations may be predominantly or uniformly orthostatic (ie, developing with standing up or bending over).

Progressive loss of peripheral vision in one or both of the eyes may be noted. Typically, the vision loss starts in the nasal inferior quadrant and is followed by loss of the central visual field (possibly affecting visual acuity) and, finally, loss of color vision.

Blurring and distortion (ie, metamorphopsia) of central vision is caused by macular wrinkling and subretinal fluid spreading from the swollen optic disc.

Sudden visual loss is due to intraocular hemorrhage secondary to peripapillary subretinal neovascularization related to chronic papilledema.

Next

Physical Examination

The most significant physical finding in patients with IIH is bilateral disc edema secondary to the increased ICP.

This papilledema varies from patient to patient and is indistinguishable from optic nerve swelling caused by intracranial space-occupying lesions. In more pronounced cases of disc swelling, macular involvement with subsequent edema and diminished central vision may be present. High-grade and atrophic papilledema in addition to subretinal hemorrhages are poor visual prognostic signs. In some instances, the disc swelling is asymmetric; in rare instances, the appearance of the optic nerve is relatively normal.

If left untreated, chronic disc swelling eventually leads to clinically significant visual loss. Although all patients present with enlarged blind spots during their initial perimetry, uncontrolled papilledema results in progressive peripheral visual field constriction or nerve fiber bundle defects (eg, nasal depression, nasal steps, and arcuate scotomas).

The central visual field is affected in end-stage chronic papilledema. Sudden loss of central vision may result from an associated anterior ischemic optic neuropathy, a vascular occlusion, or an associated subretinal neovascular membrane.

The diplopia noted in patients with idiopathic intracranial hypertension is invariably due to unilateral or bilateral CN VI palsy. These CN palsies diminish with the lowering of the ICP. Occasionally, patients with diplopia present with oculomotor or trochlear nerve palsy. In rare instances, vertical diplopia is due to a skew deviation.

Visual function testing

Visual function tests—in particular, ophthalmoscopy (funduscopy), visual field assessment, and ocular motility examination—are the most important parts of the neurologic examination for diagnosing and monitoring patients with IIH.

Ophthalmoscopy

Peripapillary flame hemorrhages, venous engorgement, and hard exudates are features consistent with acute papilledema. Telangiectatic vessels on the disc surface, optociliary shunt veins (which exit the disc at its margin), and optic disc pallor are associated with chronic papilledema (see the images below).

Left optic disc with moderate chronic papilledema Left optic disc with moderate chronic papilledema in a patient with idiopathic intracranial hypertension (pseudotumor cerebri). Paton lines (arc-shaped retinal wrinkles concentric with the disc margin) are seen along the temporal side of the optic nerve head.
Right optic disc with postpapilledema optic atroph Right optic disc with postpapilledema optic atrophy in a patient with idiopathic intracranial hypertension (pseudotumor cerebri). Diffuse pallor of disc and absence of small arterial vessels on surface are noted, with very little disc elevation. Disc margin at upper and lower poles and nasally is obscured by some residual edema in nerve fiber layer and gliosis that often persists even after all edema has resolved.

Visual field assessment

The first sign of incipient postpapilledema optic atrophy is constriction of the inferior nasal quadrant of the visual field with a border reflecting the nasal horizontal midline (nasal step). This starts in the most peripheral points in the visual field (ie, 50° from fixation) and progresses inward (see the image below).

Most common early visual field defect in papillede Most common early visual field defect in papilledema as optic nerve develops optic atrophy is inferior nasal defect, as shown in left eye field chart (left side of figure). Shaded area indicates defective portion of field. Note sharp line of demarcation between defective lower nasal quadrant and normal upper nasal quadrant along horizontal midline. This is characteristic of early papilledema optic atrophy and is referred to as nasal step or inferonasal step.

Goldmann-type dynamic perimetry is the best test, in that it provides reliable information concerning the most peripheral parts of the visual field. Computerized automated Humphrey-type static perimetry is generally unreliable beyond 30° of eccentricity and may not be as sensitive as dynamic perimetry for this problem.

Visual acuity is usually normal until significant peripheral visual field loss with progressive postpapilledema optic atrophy has occurred.

Color vision is usually tested in the office with color-confusion type plates, most commonly the Ishihara or Hardy-Rand-Rittler (HRR) plates. Unlike visual acuity testing, it is not sensitive in picking up early postpapilledema optic atrophy, because color perception is concentrated in the central visual field.

Ocular motility examination

Occasionally, limited abduction of one or both of the eyes results from increased ICP. This is termed false-localizing CN VI palsy. It can usually be observed as the patient follows the examiner’s hand to the right and the left with both eyes.

Typically, the involved eye does not move fully outward, leaving some white sclera showing lateral to the cornea on the involved side in comparison with the other side. The speed of the abducting movement also is usually less in the paretic eye than in the normal eye. Some patients with full abduction still show some sclera; therefore, when using this sign demonstrating asymmetry between the eyes in abduction is important.

Diplopia testing is another way to detect even a low-grade CN VI paresis. The patient is told to look at a focal light source (eg, a penlight or Finnoff head), preferably placed more than 3 m away. Either a red glass or a Maddox rod is placed in front of the patient’s right eye. The Maddox rod creates an image of a vertical red line when the patient views a focal light source through it.

In a positive test for limited abduction, the red image (the focal light or line) is displaced to the right of the light in the patient’s view (ie, homonymous or uncrossed diplopia). This indicates that the visual axes are convergent with respect to one another (esotropia, relative weakness of the lateral rectus muscle or muscles, or CN VI palsy).

Alternate cover testing also may reveal a slight corrective saccade when the other eye is covered in patients with CN VI palsies.

Previous
Next

Complications

The only severe and permanent complication of IIH is progressive blindness from postpapilledema optic atrophy. As optic nerve axons die, the apparent degree of papilledema may diminish, giving a false sense of improvement. For this reason (and others), the patients must be monitored with frequent visual field examinations.

The earliest visual loss is in the peripheral fields (outside 30°), and thus, Goldmann-type dynamic perimetry is preferred to computerized automated static perimetry. For reasons that are not clear, the earliest field loss tends to be in the inferior nasal quadrant. Visual acuity and color vision are not affected until late in the disease, when the peripheral visual field isopters are quite contracted.

Occasionally, a patient may develop an acute loss of vision due to ischemic optic neuropathy or a retinal vascular occlusion associated with the papilledema.

Previous
 
 
Contributor Information and Disclosures
Author

Mark S Gans, MD Associate Professor, Director of Neuro-Ophthalmology, Interim Chair, Department of Ophthalmology, McGill University Faculty of Medicine; Clinical Director, Department of Ophthalmology, Adult Sites, McGill University Hospital Center, Canada

Mark S Gans, MD is a member of the following medical societies: American Academy of Ophthalmology, Canadian Medical Association, North American Neuro-Ophthalmology Society, Canadian Ophthalmological Society

Disclosure: Nothing to disclose.

Chief Editor

Andrew G Lee, MD Chair, Department of Ophthalmology, Houston Methodist Hospital; Clinical Professor, Associate Program Director, Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch; Clinical Professor, Department of Surgery, Division of Head and Neck Surgery, University of Texas MD Anderson Cancer Center; Professor of Ophthalmology, Neurology, and Neurological Surgery, Weill Medical College of Cornell University; Clinical Associate Professor, University of Buffalo, State University of New York School of Medicine

Andrew G Lee, MD is a member of the following medical societies: American Academy of Ophthalmology, Association of University Professors of Ophthalmology, American Geriatrics Society, Houston Neurological Society, Houston Ophthalmological Society, International Council of Ophthalmology, North American Neuro-Ophthalmology Society, Pan-American Association of Ophthalmology, Texas Ophthalmological Association

Disclosure: Received ownership interest from Credential Protection for other.

Acknowledgements

Robert A Egan, MD Director of Neuro-Ophthalmology, St Helena Hospital

Robert A Egan, MD is a member of the following medical societies: American Academy of Neurology, American Heart Association, North American Neuro-Ophthalmology Society, and Oregon Medical Association

Disclosure: Nothing to disclose.

Eric R Eggenberger, DO, MS, FAAN Professor, Vice-Chairman, Department of Neurology and Ophthalmology, Colleges of Osteopathic Medicine and Human Medicine, Michigan State University; Director of Michigan State University Ocular Motility Laboratory; Director of National Multiple Sclerosis Society Clinic, Michigan State University

Eric R Eggenberger, DO, MS, FAAN is a member of the following medical societies: American Academy of Neurology, American Academy of Ophthalmology, American Osteopathic Association, and North American Neuro-Ophthalmology Society

Disclosure: Nothing to disclose.

James Goodwin, MD Associate Professor, Departments of Neurology and Ophthalmology, University of Illinois College of Medicine; Director, Neuro-Ophthalmology Service, University of Illinois Eye and Ear Infirmary

James Goodwin, MD is a member of the following medical societies: American Academy of Neurology, Illinois State Medical Society, North American Neuro-Ophthalmology Society, and Royal Society of Medicine

Disclosure: Nothing to disclose.

Edsel Ing, MD, FRCSC Associate Professor, Department of Ophthalmology and Vision Sciences, University of Toronto Faculty of Medicine; Consulting Staff, Toronto East General Hospital, Canada

Edsel Ing, MD, FRCSC is a member of the following medical societies: American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus, American Society of Ophthalmic Plastic and Reconstructive Surgery, Canadian Ophthalmological Society, North American Neuro-Ophthalmology Society, and Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Brian R Younge, MD Professor of Ophthalmology, Mayo Clinic School of Medicine

Brian R Younge, MD is a member of the following medical societies: American Medical Association, American Ophthalmological Society, and North American Neuro-Ophthalmology Society

Disclosure: Nothing to disclose.

References
  1. Jindal M, Hiam L, Raman A, Rejali D. Idiopathic intracranial hypertension in otolaryngology. Eur Arch Otorhinolaryngol. 2009 Jun. 266(6):803-6. [Medline].

  2. Wall M. Idiopathic intracranial hypertension (pseudotumor cerebri). Curr Neurol Neurosci Rep. 2008 Mar. 8(2):87-93. [Medline].

  3. Feldon SE. Visual outcomes comparing surgical techniques for management of severe idiopathic intracranial hypertension. Neurosurg Focus. 2007. 23(5):E6. [Medline].

  4. Friedman DI, Jacobson DM. Idiopathic intracranial hypertension. J Neuroophthalmol. 2004 Jun. 24(2):138-45. [Medline].

  5. Friedman DI, Jacobson DM. Diagnostic criteria for idiopathic intracranial hypertension. Neurology. 2002 Nov 26. 59(10):1492-5. [Medline].

  6. Miller NR, Newman NJ. Pseudotumor cerebri (benign intracranial hypertension). In:. Walsh and Hoyt’s Clinical Neuro-Ophthalmology. Vol 1. 5th ed. 1999:523-38.:

  7. Bateman GA, Stevens SA, Stimpson J. A mathematical model of idiopathic intracranial hypertension incorporating increased arterial inflow and variable venous outflow collapsibility. J Neurosurg. 2009 Mar. 110(3):446-56. [Medline].

  8. Farb RI, Vanek I, Scott JN, Mikulis DJ, Willinsky RA, Tomlinson G, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology. 2003 May 13. 60(9):1418-24. [Medline].

  9. Bateman GA. Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension. J Clin Neurosci. 2006 Jun. 13(5):550-6; discussion 557. [Medline].

  10. Bateman GA. Arterial inflow and venous outflow in idiopathic intracranial hypertension associated with venous outflow stenoses. J Clin Neurosci. 2008 Apr. 15(4):402-8. [Medline].

  11. Corbett JJ. The first Jacobson Lecture. Familial idiopathic intracranial hypertension. J Neuroophthalmol. 2008 Dec. 28(4):337-47. [Medline].

  12. Daniels AB, Liu GT, Volpe NJ, Galetta SL, Moster ML, Newman NJ, et al. Profiles of obesity, weight gain, and quality of life in idiopathic intracranial hypertension (pseudotumor cerebri). Am J Ophthalmol. 2007 Apr. 143(4):635-41. [Medline].

  13. Radhakrishnan K, Ahlskog JE, Garrity JA, Kurland LT. Idiopathic intracranial hypertension. Mayo Clin Proc. 1994 Feb. 69(2):169-80. [Medline].

  14. Rogers AH, Rogers GL, Bremer DL, McGregor ML. Pseudotumor cerebri in children receiving recombinant human growth hormone. Ophthalmology. 1999 Jun. 106(6):1186-9; discussion 1189-90. [Medline].

  15. Howell SJ, Wilton P, Shalet SM. Growth hormone replacement in patients with Langerhan's cell histiocytosis. Arch Dis Child. 1998 May. 78(5):469-73. [Medline]. [Full Text].

  16. Crock PA, McKenzie JD, Nicoll AM, Howard NJ, Cutfield W, Shield LK, et al. Benign intracranial hypertension and recombinant growth hormone therapy in Australia and New Zealand. Acta Paediatr. 1998 Apr. 87(4):381-6. [Medline].

  17. Williams JB. Adverse effects of thyroid hormones. Drugs Aging. 1997 Dec. 11(6):460-9. [Medline].

  18. Raghavan S, DiMartino-Nardi J, Saenger P, Linder B. Pseudotumor cerebri in an infant after L-thyroxine therapy for transient neonatal hypothyroidism. J Pediatr. 1997 Mar. 130(3):478-80. [Medline].

  19. Sacchi S, Russo D, Avvisati G, Dastoli G, Lazzarino M, Pelicci PG, et al. All-trans retinoic acid in hematological malignancies, an update. GER (Gruppo Ematologico Retinoidi). Haematologica. 1997 Jan-Feb. 82(1):106-21. [Medline].

  20. Visani G, Bontempo G, Manfroi S, Pazzaglia A, D'Alessandro R, Tura S. All-trans-retinoic acid and pseudotumor cerebri in a young adult with acute promyelocytic leukemia: a possible disease association. Haematologica. 1996 Mar-Apr. 81(2):152-4. [Medline].

  21. Selleri C, Pane F, Notaro R, Catalano L, Santoro LE, Luciano L, et al. All-trans-retinoic acid (ATRA) responsive skin relapses of acute promyelocytic leukaemia followed by ATRA-induced pseudotumour cerebri. Br J Haematol. 1996 Mar. 92(4):937-40. [Medline].

  22. Ahmad S. Amiodarone and reversible benign intracranial hypertension. Cardiology. 1996 Jan-Feb. 87(1):90. [Medline].

  23. Varadi G, Lossos A, Or R, Kapelushnik J, Nagler A. Successful allogeneic bone marrow transplantation in a patient with ATRA-induced pseudotumor cerebri. Am J Hematol. 1995 Oct. 50(2):147-8. [Medline].

  24. Sivin I. Serious adverse events in Norplant users reported to the Food and Drug Administration's MedWatch Spontaneous Reporting System. Obstet Gynecol. 1995 Aug. 86(2):318-20. [Medline].

  25. Baqui AH, de Francisco A, Arifeen SE, Siddique AK, Sack RB. Bulging fontanelle after supplementation with 25,000 IU of vitamin A in infancy using immunization contacts. Acta Paediatr. 1995 Aug. 84(8):863-6. [Medline].

  26. Alder JB, Fraunfelder FT, Edwards R. Levonorgestrel implants and intracranial hypertension. N Engl J Med. 1995 Jun 22. 332(25):1720-1. [Medline].

  27. Malozowski S, Tanner LA, Wysowski DK, Fleming GA, Stadel BV. Benign intracranial hypertension in children with growth hormone deficiency treated with growth hormone. J Pediatr. 1995 Jun. 126(6):996-9. [Medline].

  28. Campos SP, Olitsky S. Idiopathic intracranial hypertension after L-thyroxine therapy for acquired primary hypothyroidism. Clin Pediatr (Phila). 1995 Jun. 34(6):334-7. [Medline].

  29. Nasr SZ, Schaffert D. Symptomatic increase in intracranial pressure following pancreatic enzyme replacement therapy for cystic fibrosis. Pediatr Pulmonol. 1995 Jun. 19(6):396-7. [Medline].

  30. Price DA, Clayton PE, Lloyd IC. Benign intracranial hypertension induced by growth hormone treatment. Lancet. 1995 Feb 18. 345(8947):458-9. [Medline].

  31. Kelly SJ, O'Donnell T, Fleming JC, Einhaus S. Pseudotumor cerebri associated with lithium use in an 11-year-old boy. J AAPOS. 2009 Apr. 13(2):204-6. [Medline].

  32. Mollan SP, Ball AK, Sinclair AJ, Madill SA, Clarke CE, Jacks AS, et al. Idiopathic intracranial hypertension associated with iron deficiency anaemia: a lesson for management. Eur Neurol. 2009. 62(2):105-8. [Medline].

  33. Lin A, Foroozan R, Danesh-Meyer HV, De Salvo G, Savino PJ, Sergott RC. Occurrence of cerebral venous sinus thrombosis in patients with presumed idiopathic intracranial hypertension. Ophthalmology. 2006 Dec. 113(12):2281-4. [Medline].

  34. Kesler A, Yatziv Y, Shapira I, Berliner S, Assayag EB. Increased red blood cell aggregation in patients with idiopathic intracranial hypertension. A hitherto unexplored pathophysiological pathway. Thromb Haemost. 2006 Oct. 96(4):483-7. [Medline].

  35. Warner JE, Larson AJ, Bhosale P, Digre KB, Henley C, Alder SC, et al. Retinol-binding protein and retinol analysis in cerebrospinal fluid and serum of patients with and without idiopathic intracranial hypertension. J Neuroophthalmol. 2007 Dec. 27(4):258-62. [Medline].

  36. Fraser JA, Bruce BB, Rucker J, Fraser LA, Atkins EJ, Newman NJ, et al. Risk factors for idiopathic intracranial hypertension in men: a case-control study. J Neurol Sci. 2010 Mar 15. 290(1-2):86-9. [Medline]. [Full Text].

  37. Durcan FJ, Corbett JJ, Wall M. The incidence of pseudotumor cerebri. Population studies in Iowa and Louisiana. Arch Neurol. 1988 Aug. 45(8):875-7. [Medline].

  38. Radhakrishnan K, Ahlskog JE, Cross SA, Kurland LT, O'Fallon WM. Idiopathic intracranial hypertension (pseudotumor cerebri). Descriptive epidemiology in Rochester, Minn, 1976 to 1990. Arch Neurol. 1993 Jan. 50(1):78-80. [Medline].

  39. Radhakrishnan K, Thacker AK, Bohlaga NH, Maloo JC, Gerryo SE. Epidemiology of idiopathic intracranial hypertension: a prospective and case-control study. J Neurol Sci. 1993 May. 116(1):18-28. [Medline].

  40. Jirásková N, Rozsíval P. Idiopathic intracranial hypertension in pediatric patients. Clin Ophthalmol. 2008 Dec. 2(4):723-6. [Medline]. [Full Text].

  41. Bruce BB, Kedar S, Van Stavern GP, Monaghan D, Acierno MD, Braswell RA, et al. Idiopathic intracranial hypertension in men. Neurology. 2009 Jan 27. 72(4):304-9. [Medline]. [Full Text].

  42. Digre KB, Nakamoto BK, Warner JE, Langeberg WJ, Baggaley SK, Katz BJ. A comparison of idiopathic intracranial hypertension with and without papilledema. Headache. 2009 Feb. 49(2):185-93. [Medline].

  43. Corbett JJ, Savino PJ, Thompson HS, Kansu T, Schatz NJ, Orr LS, et al. Visual loss in pseudotumor cerebri. Follow-up of 57 patients from five to 41 years and a profile of 14 patients with permanent severe visual loss. Arch Neurol. 1982 Aug. 39(8):461-74. [Medline].

  44. Agostoni E, Aliprandi A. Alterations in the cerebral venous circulation as a cause of headache. Neurol Sci. 2009 May. 30 Suppl 1:S7-10. [Medline].

  45. Ney JJ, Volpe NJ, Liu GT, Balcer LJ, Moster ML, Galetta SL. Functional visual loss in idiopathic intracranial hypertension. Ophthalmology. 2009 Sep. 116(9):1808-1813.e1. [Medline].

  46. Wall M, George D. Visual loss in pseudotumor cerebri. Incidence and defects related to visual field strategy. Arch Neurol. 1987 Feb. 44(2):170-5. [Medline].

  47. Shah VA, Kardon RH, Lee AG, Corbett JJ, Wall M. Long-term follow-up of idiopathic intracranial hypertension: the Iowa experience. Neurology. 2008 Feb 19. 70(8):634-40. [Medline].

  48. Kupersmith MJ, Gamell L, Turbin R, Peck V, Spiegel P, Wall M. Effects of weight loss on the course of idiopathic intracranial hypertension in women. Neurology. 1998 Apr. 50(4):1094-8. [Medline].

  49. Rowe FJ, Sarkies NJ. Assessment of visual function in idiopathic intracranial hypertension: a prospective study. Eye (Lond). 1998. 12 ( Pt 1):111-8. [Medline].

  50. Sugerman HJ, Felton WL 3rd, Salvant JB Jr, Sismanis A, Kellum JM. Effects of surgically induced weight loss on idiopathic intracranial hypertension in morbid obesity. Neurology. 1995 Sep. 45(9):1655-9. [Medline].

  51. Sugerman HJ, Felton WL 3rd, Sismanis A, Kellum JM, DeMaria EJ, Sugerman EL. Gastric surgery for pseudotumor cerebri associated with severe obesity. Ann Surg. 1999 May. 229(5):634-40; discussion 640-2. [Medline]. [Full Text].

  52. González-Hernández A, Fabre-Pi O, Díaz-Nicolás S, López-Fernández JC, López-Veloso C, Jiménez-Mateos A. [Headache in idiopathic intracranial hypertension]. Rev Neurol. 2009 Jul 1-15. 49(1):17-20. [Medline].

  53. Nampoory MR, Johny KV, Gupta RK, Constandi JN, Nair MP, al-Muzeiri I. Treatable intracranial hypertension in patients with lupus nephritis. Lupus. 1997. 6(7):597-602. [Medline].

  54. Leker RR, Steiner I. Anticardiolipin antibodies are frequently present in patients with idiopathic intracranial hypertension. Arch Neurol. 1998 Jun. 55(6):817-20. [Medline].

  55. Sussman J, Leach M, Greaves M, Malia R, Davies-Jones GA. Potentially prothrombotic abnormalities of coagulation in benign intracranial hypertension. J Neurol Neurosurg Psychiatry. 1997 Mar. 62(3):229-33. [Medline]. [Full Text].

  56. Bachman DT, Srivastava G. Emergency department presentations of Lyme disease in children. Pediatr Emerg Care. 1998 Oct. 14(5):356-61. [Medline].

  57. Agid R, Farb RI, Willinsky RA, Mikulis DJ, Tomlinson G. Idiopathic intracranial hypertension: the validity of cross-sectional neuroimaging signs. Neuroradiology. 2006 Aug. 48(8):521-7. [Medline].

  58. Maralani PJ, Hassanlou M, Torres C, Chakraborty S, Kingstone M, Patel V, et al. Accuracy of brain imaging in the diagnosis of idiopathic intracranial hypertension. Clin Radiol. 2012 Jul. 67(7):656-63. [Medline].

  59. Stone MB. Ultrasound diagnosis of papilledema and increased intracranial pressure in pseudotumor cerebri. Am J Emerg Med. 2009 Mar. 27(3):376.e1-376.e2. [Medline].

  60. Szewka AJ, Bruce BB, Newman NJ, Biousse V. Idiopathic Intracranial Hypertension: Relation Between Obesity and Visual Outcomes. J Neuroophthalmol. 2012 Jan 3. [Medline]. [Full Text].

  61. Digre KB, Varner MW, Corbett JJ. Pseudotumor cerebri and pregnancy. Neurology. 1984 Jun. 34(6):721-9. [Medline].

  62. Giuseffi V, Wall M, Siegel PZ, Rojas PB. Symptoms and disease associations in idiopathic intracranial hypertension (pseudotumor cerebri): a case-control study. Neurology. 1991 Feb. 41(2 ( Pt 1)):239-44. [Medline].

  63. Hughes S. Drug Improves Vision in Idiopathic Intracranial Hypertension. Medscape Medical News. Available at http://www.medscape.com/viewarticle/824073. Accessed: April 29, 2014.

  64. Wall M, McDermott MP, Kieburtz KD, Corbett JJ, Feldon SE, Friedman DI, et al. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA. 2014 Apr 23-30. 311(16):1641-51. [Medline].

  65. Goh KY, Schatz NJ, Glaser JS. Optic nerve sheath fenestration for pseudotumor cerebri. J Neuroophthalmol. 1997 Jun. 17(2):86-91. [Medline].

  66. Brazis PW. Clinical review: the surgical treatment of idiopathic pseudotumour cerebri (idiopathic intracranial hypertension). Cephalalgia. 2008 Dec. 28(12):1361-73. [Medline].

  67. Chandrasekaran S, McCluskey P, Minassian D, Assaad N. Visual outcomes for optic nerve sheath fenestration in pseudotumour cerebri and related conditions. Clin Experiment Ophthalmol. 2006 Sep-Oct. 34(7):661-5. [Medline].

  68. Spoor TC, McHenry JG. Long-term effectiveness of optic nerve sheath decompression for pseudotumor cerebri. Arch Ophthalmol. 1993 May. 111(5):632-5. [Medline].

  69. Nithyanandam S, Manayath GJ, Battu RR. Optic nerve sheath decompression for visual loss in intracranial hypertension: report from a tertiary care center in South India. Indian J Ophthalmol. 2008 Mar-Apr. 56(2):115-20. [Medline]. [Full Text].

  70. Yadav YR, Parihar V, Agarwal M, Bhatele PR, Saxena N. Lumbar peritoneal shunt in idiopathic intracranial hypertension. Turk Neurosurg. 2012. 22(1):21-6. [Medline].

  71. Burgett RA, Purvin VA, Kawasaki A. Lumboperitoneal shunting for pseudotumor cerebri. Neurology. 1997 Sep. 49(3):734-9. [Medline].

  72. Woodworth GF, McGirt MJ, Elfert P, Sciubba DM, Rigamonti D. Frameless stereotactic ventricular shunt placement for idiopathic intracranial hypertension. Stereotact Funct Neurosurg. 2005. 83(1):12-6. [Medline].

  73. Sinclair AJ, Kuruvath S, Sen D, Nightingale PG, Burdon MA, Flint G. Is cerebrospinal fluid shunting in idiopathic intracranial hypertension worthwhile? A 10-year review. Cephalalgia. 2011 Dec. 31(16):1627-33. [Medline].

  74. Bussière M, Falero R, Nicolle D, Proulx A, Patel V, Pelz D. Unilateral transverse sinus stenting of patients with idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2010 Apr. 31(4):645-50. [Medline].

  75. Arac A, Lee M, Steinberg GK, Marcellus M, Marks MP. Efficacy of endovascular stenting in dural venous sinus stenosis for the treatment of idiopathic intracranial hypertension. Neurosurg Focus. 2009 Nov. 27(5):E14. [Medline].

  76. Fridley J, Foroozan R, Sherman V, Brandt ML, Yoshor D. Bariatric surgery for the treatment of idiopathic intracranial hypertension. J Neurosurg. 2011 Jan. 114(1):34-9. [Medline].

  77. Johnson LN, Krohel GB, Madsen RW, March GA Jr. The role of weight loss and acetazolamide in the treatment of idiopathic intracranial hypertension (pseudotumor cerebri). Ophthalmology. 1998 Dec. 105(12):2313-7. [Medline].

  78. Pollak L, Zohar E, Glovinsky Y, Huna-Baron R. Reevaluation of presentation and course of idiopathic intracranial hypertension - a large cohort comprehensive study. Acta Neurol Scand. 2012 Dec 31. [Medline].

 
Previous
Next
 
Left optic disc with moderate chronic papilledema in a patient with idiopathic intracranial hypertension (pseudotumor cerebri). Paton lines (arc-shaped retinal wrinkles concentric with the disc margin) are seen along the temporal side of the optic nerve head.
Right optic disc with postpapilledema optic atrophy in a patient with idiopathic intracranial hypertension (pseudotumor cerebri). Diffuse pallor of disc and absence of small arterial vessels on surface are noted, with very little disc elevation. Disc margin at upper and lower poles and nasally is obscured by some residual edema in nerve fiber layer and gliosis that often persists even after all edema has resolved.
Most common early visual field defect in papilledema as optic nerve develops optic atrophy is inferior nasal defect, as shown in left eye field chart (left side of figure). Shaded area indicates defective portion of field. Note sharp line of demarcation between defective lower nasal quadrant and normal upper nasal quadrant along horizontal midline. This is characteristic of early papilledema optic atrophy and is referred to as nasal step or inferonasal step.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.