Medscape is available in 5 Language Editions – Choose your Edition here.


Macular Hole Follow-up

  • Author: Kean Theng Oh, MD; Chief Editor: Hampton Roy, Sr, MD  more...
Updated: Apr 21, 2016

Further Outpatient Care

Because complications, such as cataracts and retinal detachment, can follow treatment for macular holes, regular examinations are necessary.



Surgical complications include retinal detachments, iatrogenic retinal tears, enlargement of the hole, macular light toxicity, postoperative pressure elevation, and cataractogenesis.

Postoperative pressure elevation usually can be treated pharmacologically but may sometimes require an anterior chamber or vitreous tap.

Failure of hole closure/hole reopening

Histopathologic evaluation of specimens from patients with failed initial macular hole surgery demonstrated massive proliferation of cells and newly formed collagen associated with remaining ILM. The residual ILM and the associated collagen fibrils may become the source of persistent traction that prevents macular hole closure.

Retinal detachment/iatrogenic tears

The rate of postoperative retinal detachment is reported from 2-14%. Chung et al identified that the induction of a posterior vitreous detachment during surgery was a key risk factor for the development of iatrogenic retinal breaks. They found an overall incidence of 14.6% (20 of 137 eyes) for retinal breaks. Only one retinal break (3.1%) was identified in a macular hole patient who did not require the induction of a PVD. However, only 32 of 137 eyes undergoing vitrectomy for macular hole surgery did not require this step in the procedure, owing to the underlying pathophysiology of macular holes.[25]

Visual field defects

Visual field defects have been noted following macular hole surgery.

They are related to dehydration of the nerve fiber layer.

The rate is reduced by shorter surgical times, lower air flow, and oblique placement of infusion cannulas caused by beveled incisions of smaller gauge vitrectomies.

Cataract formation

There is a small risk of hole reopening in the immediate postoperative period following cataract surgery.

Consideration of prophylaxis versus cystoid macular edema may reduce the risk of hole reopening after cataract surgery.

A retrospective case series by Bhatnagar et al (2007) suggest that prior or simultaneous cataract extraction may carry a better long-term visual prognosis than cataract extraction following macular hole repair due to the risk of reopening of the hole following cataract surgery.[26]



In 1994, Wendel reported a series of 235 consecutive eyes undergoing repair of macular holes.[27] In this series, 93% of patients were successfully managed with only a single operation; 60% patients experienced 4+ lines of visual improvement; and 84% patients experienced 2+ lines of improvement.[27] Within this group, 58% of patients achieved 20/40 or better final visual acuity.[27]

Multiple other studies cite similar success rates, though vision recovery may be protracted and also further delayed by onset of cataract formation. Use of ILM peeling may further increase the rate of single operation success, though it may potentially slow or affect final vision recovery. See Controversies surrounding the surgical repair of macular holes.

OCT imaging preoperatively and postoperatively has provided additional prognostic data for visual recovery following macular hole surgery. Factors on OCT predictive of good visual acuity macular hole surgical outcome are as follows:

  • Size of macular hole (minimum diameter < 311 µm)
  • Traction on macular hole edges as defined by various parameters (eg, macular hole height)
  • Development of a normal photoreceptor inner segment and outer segment junction, which can occur as early as 1 month postoperatively but typically by 6 months postoperatively as shown in the images below.
    Preoperative fundus photograph of a macular hole. Preoperative fundus photograph of a macular hole.
    Fundus photograph of the same patient as in the im Fundus photograph of the same patient as in the image above at 6 months postoperatively. Note the increased media opacity caused by cataractous changes of the lens.

While surgery for macular holes is considered elective, it is important for the patient to consider prognostically that there is potentially a risk for the fellow eye to develop a macular hole as well (12%).


Patient Education

Older individuals should be educated on the necessity of a yearly eye examination since early symptoms of a macular hole can easily go undetected by the patient.

Contributor Information and Disclosures

Kean Theng Oh, MD Consulting Staff, Associated Retinal Consultants, PC

Kean Theng Oh, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Ophthalmology, American Society of Retina Specialists, Association for Research in Vision and Ophthalmology, Michigan Society of Eye Physicians & Surgeons

Disclosure: Nothing to disclose.


John H Drouilhet, MD, FACS Clinical Professor, Department of Surgery, Section of Ophthalmology, University of Hawaii, John A Burns School of Medicine

John H Drouilhet, MD, FACS is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, American Medical Association

Disclosure: Nothing to disclose.

Neal H Atebara, MD Private Practice, Retina Center of Hawaii

Neal H Atebara, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Retina Society, American Medical Association, Hawaii Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Simon K Law, MD, PharmD Clinical Professor of Health Sciences, Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, David Geffen School of Medicine

Simon K Law, MD, PharmD is a member of the following medical societies: American Academy of Ophthalmology, Association for Research in Vision and Ophthalmology, American Glaucoma Society

Disclosure: Nothing to disclose.

Steve Charles, MD Director of Charles Retina Institute; Clinical Professor, Department of Ophthalmology, University of Tennessee College of Medicine

Steve Charles, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Macula Society, Retina Society, Club Jules Gonin

Disclosure: Received royalty and consulting fees for: Alcon Laboratories.

Chief Editor

Hampton Roy, Sr, MD Associate Clinical Professor, Department of Ophthalmology, University of Arkansas for Medical Sciences

Hampton Roy, Sr, MD is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, Pan-American Association of Ophthalmology

Disclosure: Nothing to disclose.

Additional Contributors

Brian A Phillpotts, MD, MD 

Brian A Phillpotts, MD, MD is a member of the following medical societies: American Academy of Ophthalmology, American Diabetes Association, American Medical Association, National Medical Association

Disclosure: Nothing to disclose.


Bradley M Hughes, MD Assistant Professor, Department of Ophthalmology, Retina and Vitreous Service, University of Arkansas for Medical Sciences

Bradley M Hughes, MD is a member of the following medical societies: Alpha Omega Alpha and American Academy of Ophthalmology

Disclosure: Nothing to disclose.

Sherman O Valero, MD Consulting Staff, Department of Ophthalmology, Makati Medical Center, Philippines

Disclosure: Nothing to disclose.

  1. Lister W. Holes in the retina and their clinical significance. Br J Ophthalmol. 1924. 8:1-20.

  2. Johnson RN, Gass JD. Idiopathic macular holes. Observations, stages of formation, and implications for surgical intervention. Ophthalmology. 1988 Jul. 95(7):917-24. [Medline].

  3. Steel DH, Lotery AJ. Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye (Lond). 2013 Oct. 27 Suppl 1:S1-21. [Medline].

  4. Tanaka Y, Shimada N, Moriyama M, Hayashi K, Yoshida T, Tokoro T, et al. Natural history of lamellar macular holes in highly myopic eyes. Am J Ophthalmol. 2011 Jul. 152(1):96-99.e1. [Medline].

  5. Ciardella AP, Lee GC, Langton K, Sparrow J, Chang S. Autofluorescence as a novel approach to diagnosing macular holes. Am J Ophthalmol. 2004 May. 137 (5):956-9. [Medline].

  6. Stalmans P, Benz MS, Gandorfer A, Kampik A, Girach A, Pakola S, et al. Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med. 2012 Aug 16. 367(7):606-15. [Medline].

  7. Gonvers M, Machemer R. A new approach to treating retinal detachment with macular hole. Am J Ophthalmol. 1982 Oct. 94(4):468-72. [Medline].

  8. Kelly NE, Wendel RT. Vitreous surgery for idiopathic macular holes. Results of a pilot study. Arch Ophthalmol. 1991 May. 109(5):654-9. [Medline].

  9. Rahimy E, McCannel CA. IMPACT OF INTERNAL LIMITING MEMBRANE PEELING ON MACULAR HOLE REOPENING: A Systematic Review and Meta-Analysis. Retina. 2016 Apr. 36 (4):679-87. [Medline].

  10. Tafoya ME, Lambert HM, Vu L, et al. Visual outcomes of silicone oil versus gas tamponade for macular hole surgery. Semin Ophthalmol. 2003 Sep. 18(3):127-31. [Medline].

  11. Lai JC, Stinnett SS, McCuen BW. Comparison of silicone oil versus gas tamponade in the treatment of idiopathic full-thickness macular hole. Ophthalmology. 2003 Jun. 110(6):1170-4. [Medline].

  12. Spiteri Cornish K, Lois N, Scott NW, Burr J, Cook J, Boachie C, et al. Vitrectomy with Internal Limiting Membrane Peeling versus No Peeling for Idiopathic Full-Thickness Macular Hole. Ophthalmology. 2014 Mar. 121(3):649-55. [Medline].

  13. Garretson BR, Pollack JS, Ruby AJ, et al. Vitrectomy for a symptomatic lamellar macular hole. Ophthalmology. 2008 May. 115(5):884-886.e1. [Medline].

  14. Rubinstein A, Ang A, Patel CK. Vitrectomy without postoperative posturing for idiopathic macular holes. Clin Experiment Ophthalmol. 2007 Jul. 35(5):458-61. [Medline].

  15. Dhawahir-Scala FE, Maino A, Saha K et al. To posture or not to posture after macular hole surgery. Retina. 2008. 28:60-5.

  16. Tranos PG, Peter NM, Nath R, et al. Macular hole surgery without prone positioning. Eye. 2007 Jun. 21(6):802-6. [Medline].

  17. Iezzi R, Kapoor KG. No face-down positioning and broad internal limiting membrane peeling in the surgical repair of idiopathic macular holes. Ophthalmology. 2013 Oct. 120(10):1998-2003. [Medline].

  18. Alberti M, la Cour M. NONSUPINE POSITIONING IN MACULAR HOLE SURGERY: A Noninferiority Randomized Clinical Trial. Retina. 2016 Apr 4. [Medline].

  19. Alberti M, la Cour M. Face-down positioning versus non-supine positioning in macular hole surgery. Br J Ophthalmol. 2015 Feb. 99 (2):236-9. [Medline].

  20. Essex RW, Kingston ZS, Moreno-Betancur M, Shadbolt B, Hunyor AP, Campbell WG, et al. The Effect of Postoperative Face-Down Positioning and of Long- versus Short-Acting Gas in Macular Hole Surgery: Results of a Registry-Based Study. Ophthalmology. 2016 Feb 23. [Medline].

  21. Morizane Y, Shiraga F, Kimura S, Hosokawa M, Shiode Y, Kawata T. Autologous transplantation of the internal limiting membrane for refractory macular holes. Am J Ophthalmol. 2014 Apr. 157(4):861-869.e1. [Medline].

  22. Singh RP, Li A, Bedi R, Srivastava S, Sears JE, Ehlers JP. Anatomical and visual outcomes following ocriplasmin treatment for symptomatic vitreomacular traction syndrome. Br J Ophthalmol. 2014 Mar. 98(3):356-60. [Medline].

  23. Tibbetts MD, Reichel E, Witkin AJ. Vision Loss After Intravitreal Ocriplasmin: Correlation of Spectral-Domain Optical Coherence Tomography and Electroretinography. JAMA Ophthalmol. 2014 Feb 27. [Medline].

  24. Fahim AT, Khan NW, Johnson MW. Acute Panretinal Structural and Functional Abnormalities After Intravitreous Ocriplasmin Injection. JAMA Ophthalmol. 2014 Feb 27. [Medline].

  25. Chung SE, Kim KH, Kang SW. Retinal breaks associated with the induction of posterior vitreous detachment. Am J Ophthalmol. 2009 Jun. 147(6):1012-6. [Medline].

  26. Bhatnagar P, Kaiser PK, Smith SD, et al. Reopening of previously closed macular holes after cataract extraction. Am J Ophthalmol. 2007 Aug. 144(2):252-9. [Medline].

  27. Wendel RT, Patel AC, Kelly NE. Chapter 120: Macular Hole Surgery. Guyer DR, Yannuzzi LA, Chang S, Shields JA, Green WR, eds. Retina-Vitreous-Macula. Philadelphia: WB Saunders Co; 1999. Vol 2: 1432-1448.

  28. Al-Abdulla NA, Thompson JT, Sjaarda RN. Results of macular hole surgery with and without epiretinal dissection or internal limiting membrane removal. Ophthalmology. 2004 Jan. 111(1):142-9. [Medline].

  29. Baba T, Yamamoto S, Arai M, et al. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008 Mar. 28(3):453-8. [Medline].

  30. Benzerroug M, Genevois O, Siahmed K, et al. Results of surgery on macular holes that develop after rhegmatogenous retinal detachment. Br J Ophthalmol. 2008 Feb. 92(2):217-9. [Medline].

  31. Boldt HC, Munden PM, Folk JC, et al. Visual field defects after macular hole surgery. Am J Ophthalmol. 1996 Sep. 122(3):371-81. [Medline].

  32. Chan A, Duker JS, Schuman JS, et al. Stage 0 macular holes: observations by optical coherence tomography. Ophthalmology. 2004 Nov. 111(11):2027-32. [Medline].

  33. Cox MS, Schepens CL, Freeman HM. Retinal detachment due to ocular contusion. Arch Ophthalmol. 1966 Nov. 76(5):678-85. [Medline].

  34. Da Mata AP, Burk SE, Foster RE, et al. Long-term follow-up of indocyanine green-assisted peeling of the retinal internal limiting membrane during vitrectomy surgery for idiopathic macular hole repair. Ophthalmology. 2004 Dec. 111(12):2246-53. [Medline].

  35. de Bustros S. Vitrectomy for prevention of macular holes. Results of a randomized multicenter clinical trial. Vitrectomy for Prevention of Macular Hole Study Group. Ophthalmology. 1994 Jun. 101(6):1055-9; discussion 1060. [Medline].

  36. Federman JL, Gouras P, Schubert H, et al. Macular disorders. Podos SM, Yanoff M, eds. Retina and Vitreous: Textbook of Ophthalmology. 1994. Vol 9.: 15-17.

  37. Gass JD. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol. 1988 May. 106(5):629-39. [Medline].

  38. Gaucher D, Haouchine B, Tadayoni R, et al. Long-term follow-up of high myopic foveoschisis: natural course and surgical outcome. Am J Ophthalmol. 2007 Mar. 143(3):455-62. [Medline].

  39. Guyer DR, Gragoudas ES. Idiopathic macular holes. Albert DN, Jakobiec FA, eds. Principles and Practice of Ophthalmology. 1994. 883-888.

  40. Ho AC. Macular hole. Retina Vitreous Macula. 1999. Vol 2: 217-229.

  41. Ho AC, Guyer DR, Fine SL. Macular hole. Surv Ophthalmol. 1998 Mar-Apr. 42(5):393-416. [Medline].

  42. Judson PH, Yannuzzi LA. Macular hole. Ryan SJ, ed. Retina. 1994. Vol 2.: 1169-1185.

  43. Kusuhara S, Teraoka Escano MF, Fujii S, et al. Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes. Am J Ophthalmol. 2004 Nov. 138(5):709-16. [Medline].

  44. Madreperla SA, McCuen BW II. Macular Hole: Pathogenesis, Diagnosis and Treatment. 1999.

  45. Nomoto H, Shiraga F, Yamaji H, et al. Macular hole surgery with triamcinolone acetonide-assisted internal limiting membrane peeling: one-year results. Retina. 2008 Mar. 28(3):427-32. [Medline].

  46. Park SS, Marcus DM, Duker JS, et al. Posterior segment complications after vitrectomy for macular hole. Ophthalmology. 1995 May. 102(5):775-81. [Medline].

  47. Ruiz-Moreno JM, Staicu C, Pinero DP, et al. Optical coherence tomography predictive factors for macular hole surgery outcome. Br J Ophthalmol. 2008 May. 92(5):640-4. [Medline].

  48. Sakuma T, Tanaka M, Inoue M, et al. Efficacy of autologous plasmin for idiopathic macular hole surgery. Eur J Ophthalmol. 2005 Nov-Dec. 15(6):787-94. [Medline].

  49. Schumann RG, Rohleder M, Schaumberger MM, et al. Idiopathic macular holes: ultrastructural aspects of surgical failure. Retina. 2008 Feb. 28(2):340-9. [Medline].

  50. Sen P, Bhargava A, Vijaya L, et al. Prevalence of idiopathic macular hole in adult rural and urban south Indian population. Clin Experiment Ophthalmol. 2008 Apr. 36(3):257-60. [Medline].

  51. Sjaarda RN, Glaser BM, Thompson JT, et al. Distribution of iatrogenic retinal breaks in macular hole surgery. Ophthalmology. 1995 Sep. 102(9):1387-92. [Medline].

  52. Thompson JT. The effect of internal limiting membrane removal and indocyanine green on the success of macular hole surgery. Trans Am Ophthalmol Soc. 2007. 105:198-205; discussion 205-6. [Medline].

  53. Tournambe PE, Poliner LS, Grote K. Macular hole surgery without face-down positioning. A pilot study. Retina. 1997. 17:179-85.

  54. Wang S, Xu L, Jonas JB. Prevalence of full-thickness macular holes in urban and rural adult Chinese: the Beijing Eye Study. Am J Ophthalmol. 2006 Mar. 141(3):589-91. [Medline].

  55. Welch JC. Dehydration injury as a possible cause of visual field defect after pars plana vitrectomy for macular hole. Am J Ophthalmol. 1997 Nov. 124(5):698-9. [Medline].

  56. Wu PC, Chen YJ, Chen YH, et al. Factors associated with foveoschisis and foveal detachment without macular hole in high myopia. Eye. 2007 Dec 7. [Medline].

  57. Wu WC, Drenser KA, Trese MT, et al. Pediatric traumatic macular hole: results of autologous plasmin enzyme-assisted vitrectomy. Am J Ophthalmol. 2007 Nov. 144(5):668-672. [Medline].

Full-thickness macular hole showing a surrounding cuff of subretinal fluid.
Full-thickness macular hole with typical yellowish granular deposits on the retinal pigment epithelium.
Fluorescein angiogram showing a central window defect.
Preoperative fundus photograph of a macular hole.
Fundus photograph of the same patient as in the image above at 6 months postoperatively. Note the increased media opacity caused by cataractous changes of the lens.
Fundus photograph of a stage 1a macular hole with characteristic yellow spot at the center of the fovea.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.