Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Insulin Resistance Clinical Presentation

  • Author: Samuel T Olatunbosun, MD, FACP, FACE; Chief Editor: George T Griffing, MD  more...
 
Updated: Jan 30, 2015
 

History

The presentation of insulin resistance depends on the type and stage of the insulin-resistant state. Most patients have 1 or more clinical features of the insulin-resistant state. Many patients do not develop overt diabetes despite extreme insulin resistance. Other patients present with cases of severe hyperglycemia that require large quantities of insulin (>200 units); these people may manifest the classic symptoms of diabetes mellitus, such as polyuria, polydipsia, polyphagia, and weight loss.

Patients may present with the following:

  • Metabolic syndrome (syndrome X) – Note that a patient with the metabolic syndrome may be asymptomatic in spite of the presence of some, or even most, of the components of insulin resistance syndrome.
  • Obesity (most common cause of insulin resistance) or history or excessive body weight
  • Type 2 diabetes mellitus (chronic or acute [during severe decompensation] presentation [ie, the classic symptoms of diabetes])
  • A diagnosis of IGT or of IFG levels
  • History of biochemical abnormalities, such as dyslipidemia, detected during routine screening or workup for a cardiovascular disease
  • History of hypertension
  • Symptoms of coronary artery disease
  • Symptoms related to other macrovascular disease (eg, stroke, peripheral vascular disease)
  • Microvascular angina
  • Combination of hyperglycemia and virilization occurs in several syndromes of insulin resistance.
  • Type A, which affects young women, is characterized by severe hyperinsulinemia, usually present with obesity and features of hyperandrogenism.
  • Polycystic ovary syndrome (PCOS) - Patients usually present with infertility associated with anovulation; menstrual irregularity, typically chronic; and symptoms related to androgen excess, such as acne, frontal baldness, and hirsutism, but rarely features of virilization.
  • Type B syndrome - Some patients present with symptoms of hypoglycemia, such as sweating, tremulousness, irritability, and an altered level of consciousness. Hypoglycemia results from interaction between insulinomimetic antibodies and the insulin receptor. Some patients have insulin-binding antibodies directed against insulin, which, upon dissociation, can cause hypoglycemia. Symptoms related to immunologic disease (eg, arthralgia, swollen salivary glands, hair loss) may occur.

Other indicators of insulin-resistant states that may be elicited in the history include the following:

  • Leprechaunism - Abnormal facial appearance, early life growth retardation
  • Lipodystrophic states - Insulin resistance, usually during childhood, with progression to diabetes over several years
  • Werner syndrome - Features of premature aging
  • Rabson-Mendenhall syndrome - Dental and nail abnormalities, skin lesions
  • Pineal hypertrophic syndrome - Dental and nail abnormalities, sexual precocity
  • Alstrom syndrome - Childhood blindness, impaired hearing
  • Ataxia-telangiectasia - Movement disorder and symptoms related to immune deficiency, such as increased proneness to pulmonary infections
  • Myotonic dystrophy - Muscle weakness and visual symptoms (cataract)
Next

Physical Examination

In addition to elevated blood pressure (hypertension), the physical examination findings may include the features listed below.

Anthropometry

Central obesity, not peripherally distributed fat, is a strong marker of insulin resistance syndrome. Waist or waist-to-hip ratio, height, weight, and body mass index (BMI) may indicate insulin resistance syndrome. This notion was supported by an Argentinian study that found waist circumference and BMI to be the anthropometric indexes that best correlate with the presence of insulin resistance.[35]

The Argentinian investigators examined the association between insulin resistance and the following indexes: waist circumference, BMI, waist circumference/height, weight/(sitting height)(2), and waist circumference/sitting height of 625 children, 91 of whom were overweight and another 96 of whom were classified as obese.

Cardiovascular system

Cardiovascular findings associated with insulin resistance may include the following:

  • Signs of heart disease
  • Peripheral vascular disease - Abnormalities in pulses and arterial wall
  • Stigmata of lipid disorders - Suggests the possibility of underlying hyperlipidemia
  • Premature arcus cornealis - Deposits of cholesterol and phospholipid
  • Xanthelasma - Indicates that lipid status should be investigated
  • Lipemia retinalis - Retinal vessels with milky, chylomicron-rich plasma commonly observed in acute, uncontrolled diabetes
  • Skin xanthomata - Eruptive xanthomas found most commonly on the buttocks
  • Tendon xanthomata - Usually over the patellar and Achilles tendon

Type A syndrome

Patients with type A syndrome are usually tall and have features of hirsutism and abnormalities of the female reproductive tract related to hyperandrogenism (eg, polycystic ovary syndrome [PCOS]). The patient may have either a thin or a muscular body build. Acral enlargement, a form of pseudoacromegaly, is not uncommon.

Acanthosis nigricans

Acanthosis nigricans is common in patients with type A syndrome; it causes patchy, velvety brown hyperpigmentation plaques that are usually found in flexural areas, especially in the axillae and the nuchal region. Lesions may be due to the effect of high circulating levels of insulin on insulinlike growth factor (IGF) receptors in the skin. These eruptions have been reported in nearly one tenth of women evaluated for PCOS.

Acanthosis nigricans is found in a wide variety of clinical conditions that are associated with insulin resistance. It is occasionally a marker of malignant neoplasm.

Polycystic ovary syndrome

Patients with PCOS may have masculine habitus, such as coarse or greasy skin and acne, frontal alopecia, breast atrophy, hypertrophy of the clitoris, and obesity; varying degrees of hirsutism or virilization may be present. These manifestations are due to hyperandrogenism.

Type B syndrome (autoantibodies to insulin receptor)

Patients with type B syndrome usually have symptomatic diabetes mellitus, although ketoacidosis is unusual. Patients occasionally present with hypoglycemia. Agonist activity (hypoglycemia) or antagonist effect (insulin resistance) can occur, depending on the site of binding to the insulin receptor.

Other insulin-resistant states

Findings characteristic of other insulin-resistant states include the following:

  • Leprechaunism - Elfin appearance of the face, hirsutism, lack of subcutaneous fat, and thickened skin
  • Lipodystrophic states - Variable phenotypic expression (features include a total or partial lack of adipose tissue, metabolic dysfunction, such as abnormal glucose homeostasis, hypertriglyceridemia, and increased metabolic rate.)
  • Werner syndrome - Cataract, atrophic skin, and early osteopenia
  • Rabson-Mendenhall syndrome - Dystrophic nails, dental dysplasia, and acanthosis nigricans
  • Pineal hypertrophic syndrome - Early dentition with malformed teeth, hirsutism, thick nails, and skin dryness
  • Alstrom syndrome - Nerve deafness, hypogonadism (males), and retinal degeneration that results in blindness
  • Ataxia telangiectasia - Cerebellar ataxia, oculocutaneous telangiectases, immune deficiency, and increased proneness to pulmonary infections
  • Myotonic dystrophy - Weakness of limb and cranial muscles, cataract
Previous
Next

Complications

Potential complications of insulin resistance include the following:

  • Acute metabolic complications, including severe hyperglycemia and hypoglycemia
  • Angina
  • Myocardial infarction
  • Stroke
  • Transient ischemic attack
  • Peripheral vascular disease
  • Renal disease [36]
  • Ocular complications
Previous
 
 
Contributor Information and Disclosures
Author

Samuel T Olatunbosun, MD, FACP, FACE Endocrinology Service, SAMMC/59th Medical Wing and Uniformed Services University of the Health Sciences, F Edward Hebert School of Medicine

Samuel T Olatunbosun, MD, FACP, FACE is a member of the following medical societies: American Association of Clinical Endocrinologists, American Diabetes Association, Endocrine Society, American College of Physicians-American Society of Internal Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Don S Schalch, MD Professor Emeritus, Department of Internal Medicine, Division of Endocrinology, University of Wisconsin Hospitals and Clinics

Don S Schalch, MD is a member of the following medical societies: American Diabetes Association, American Federation for Medical Research, Central Society for Clinical and Translational Research, Endocrine Society

Disclosure: Nothing to disclose.

Chief Editor

George T Griffing, MD Professor Emeritus of Medicine, St Louis University School of Medicine

George T Griffing, MD is a member of the following medical societies: American Association for the Advancement of Science, International Society for Clinical Densitometry, Southern Society for Clinical Investigation, American College of Medical Practice Executives, American Association for Physician Leadership, American College of Physicians, American Diabetes Association, American Federation for Medical Research, American Heart Association, Central Society for Clinical and Translational Research, Endocrine Society

Disclosure: Nothing to disclose.

Additional Contributors

David S Schade, MD Chief, Division of Endocrinology and Metabolism, Professor, Department of Internal Medicine, University of New Mexico School of Medicine and Health Sciences Center

David S Schade, MD is a member of the following medical societies: American College of Physicians, American Diabetes Association, American Federation for Medical Research, Endocrine Society, New Mexico Medical Society, New York Academy of Sciences, Society for Experimental Biology and Medicine

Disclosure: Nothing to disclose.

Acknowledgements

Samuel Dagogo-Jack, MD, MBBS, MSc, FRCP Professor of Medicine, Program Director, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center

Samuel Dagogo-Jack, MD, MBBS, MSc, FRCP is a member of the following medical societies: American College of Physicians, American Diabetes Association, American Federation for Medical Research, Royal College of Physicians, and The Endocrine Society

Disclosure: Eli Lilly None Speaking and teaching; GlaxoSmithKline None Speaking and teaching; Merck None Speaking and teaching

References
  1. Ahrén B, Pacini G. Islet adaptation to insulin resistance: mechanisms and implications for intervention. Diabetes Obes Metab. 2005 Jan. 7(1):2-8. [Medline].

  2. Mari A, Ahrén B, Pacini G. Assessment of insulin secretion in relation to insulin resistance. Curr Opin Clin Nutr Metab Care. 2005 Sep. 8(5):529-33. [Medline].

  3. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995 Jul. 75(3):473-86. [Medline].

  4. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008 Feb 29. 102(4):401-14. [Medline]. [Full Text].

  5. Lee SH, Park SA, Ko SH, Yim HW, Ahn YB, Yoon KH, et al. Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients. Metabolism. 2010 Feb. 59(2):241-6. [Medline].

  6. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007 Jan. 8(1):21-34. [Medline].

  7. Reaven G, Abbasi F, McLaughlin T. Obesity, insulin resistance, and cardiovascular disease. Recent Prog Horm Res. 2004. 59:207-23. [Medline].

  8. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008 Jan 9. 582(1):97-105. [Medline]. [Full Text].

  9. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance. Mol Med. 2008 Mar-Apr. 14(3-4):222-31. [Medline]. [Full Text].

  10. Grant PJ. Inflammatory, atherothrombotic aspects of type 2 diabetes. Curr Med Res Opin. 2005. 21 Suppl 1:S5-12. [Medline].

  11. Florez H, Castillo-Florez S, Mendez A, Casanova-Romero P, Larreal-Urdaneta C, Lee D, et al. C-reactive protein is elevated in obese patients with the metabolic syndrome. Diabetes Res Clin Pract. 2006 Jan. 71(1):92-100. [Medline].

  12. Laaksonen DE, Niskanen L, Nyyssönen K, Punnonen K, Tuomainen TP, Salonen JT. C-reactive protein in the prediction of cardiovascular and overall mortality in middle-aged men: a population-based cohort study. Eur Heart J. 2005 Sep. 26(17):1783-9. [Medline].

  13. Rifai N. High-sensitivity C-reactive protein: a useful marker for cardiovascular disease risk prediction and the metabolic syndrome. Clin Chem. 2005 Mar. 51(3):504-5. [Medline].

  14. Semple RK, Cochran EK, Soos MA, Burling KA, Savage DB, Gorden P, et al. Plasma adiponectin as a marker of insulin receptor dysfunction: clinical utility in severe insulin resistance. Diabetes Care. 2008 May. 31(5):977-9. [Medline].

  15. Brabant G, Müller G, Horn R, Anderwald C, Roden M, Nave H. Hepatic leptin signaling in obesity. FASEB J. 2005 Jun. 19(8):1048-50. [Medline].

  16. Fuke Y, Fujita T, Satomura A, Wada Y, Matsumoto K. Alterations of insulin resistance and the serum adiponectin level in patients with type 2 diabetes mellitus under the usual antihypertensive dosage of telmisartan treatment. Diabetes Technol Ther. 2010 May. 12(5):393-8. [Medline].

  17. Meilleur KG, Doumatey A, Huang H, Charles B, Chen G, Zhou J, et al. Circulating adiponectin is associated with obesity and serum lipids in West Africans. J Clin Endocrinol Metab. 2010 Jul. 95(7):3517-21. [Medline]. [Full Text].

  18. de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007 Jun. 56(6):1655-61. [Medline].

  19. Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H, et al. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008 Apr. 57(4):801-8. [Medline].

  20. Moreno-Navarrete JM, Catalán V, Ortega F, Gómez-Ambrosi J, Ricart W, Frühbeck G, et al. Circulating omentin concentration increases after weight loss. Nutr Metab (Lond). 2010 Apr 9. 7:27. [Medline]. [Full Text].

  21. Hug C, Lodish HF. The role of the adipocyte hormone adiponectin in cardiovascular disease. Curr Opin Pharmacol. 2005 Apr. 5(2):129-34. [Medline].

  22. Diamant M, Tushuizen ME. The metabolic syndrome and endothelial dysfunction: common highway to type 2 diabetes and CVD. Curr Diab Rep. 2006 Aug. 6(4):279-86. [Medline].

  23. Dushay J, Abrahamson MJ. Insulin resistance and type 2 diabetes: a comprehensive review. Medscape Today [serial online]. Apr 8 2005. [Full Text].

  24. Uruska A, Araszkiewicz A, Zozulinska-Ziolkiewicz D, Uruski P, Wierusz-Wysocka B. Insulin resistance is associated with microangiopathy in type 1 diabetic patients treated with intensive insulin therapy from the onset of disease. Exp Clin Endocrinol Diabetes. 2010 Aug. 118(8):478-84. [Medline].

  25. Lutsey PL, Steffen LM, Stevens J. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation. 2008 Feb 12. 117(6):754-61. [Medline].

  26. van Raalte DH, Brands M, van der Zijl NJ, et al. Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial. Diabetologia. 2011 Aug. 54(8):2103-12. [Medline].

  27. Baudrand R, Campino C, Carvajal CA, Olivieri O, Guidi G, Faccini G, et al. High sodium intake is associated with increased glucocorticoid production, insulin resistance and metabolic syndrome. Clin Endocrinol (Oxf). 2014 May. 80(5):677-84. [Medline].

  28. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care. 2008 Jun. 31(6):1224-9. [Medline]. [Full Text].

  29. Wierzbicki AS, Purdon SD, Hardman TC, Kulasegaram R, Peters BS. HIV lipodystrophy and its metabolic consequences: implications for clinical practice. Curr Med Res Opin. 2008 Mar. 24(3):609-24. [Medline].

  30. Yu IC, Lin HY, Sparks JD, Yeh S, Chang C. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes. 2014 Oct. 63(10):3180-8. [Medline]. [Full Text].

  31. Moadab MH, Kelishadi R, Hashemipour M, Amini M, Poursafa P. The prevalence of impaired fasting glucose and type 2 diabetes in a population-based sample of overweight/obese children in the Middle East. Pediatr Diabetes. 2010 Mar. 11(2):101-6. [Medline].

  32. Sarti C, Gallagher J. The metabolic syndrome: prevalence, CHD risk, and treatment. J Diabetes Complications. 2006 Mar-Apr. 20(2):121-32. [Medline].

  33. Levy-Marchal C, Arslanian S, Cutfield W, Sinaiko A, Druet C, Marcovecchio ML, et al. Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab. 2010 Dec. 95(12):5189-98. [Medline].

  34. Beck-Nielsen H. General characteristics of the insulin resistance syndrome: prevalence and heritability. European Group for the study of Insulin Resistance (EGIR). Drugs. 1999. 58 Suppl 1:7-10; discussion 75-82. [Medline].

  35. Hirschler V, Ruiz A, Romero T, Dalamon R, Molinari C. Comparison of different anthropometric indices for identifying insulin resistance in schoolchildren. Diabetes Technol Ther. 2009 Sep. 11(9):615-21. [Medline].

  36. Savino A, Pelliccia P, Chiarelli F, Mohn A. Obesity-related renal injury in childhood. Horm Res Paediatr. 2010. 73(5):303-11. [Medline].

  37. Einhorn D, Reaven GM, Cobin RH, Ford E, Ganda OP, Handelsman Y, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003 May-Jun. 9(3):237-52. [Medline].

  38. American Association of Clinical Endocrinologists Position Statement on Metabolic and Cardiovascular Consequences of Polycystic Ovary Syndrome. Endocr Pract. 2005 Mar-Apr. 11(2):126-34. [Medline].

  39. Essah PA, Nestler JE. The metabolic syndrome in polycystic ovary syndrome. J Endocrinol Invest. 2006 Mar. 29(3):270-80. [Medline].

  40. Pasquali R, Patton L, Pagotto U, Gambineri A. Metabolic alterations and cardiovascular risk factors in the polycystic ovary syndrome. Minerva Ginecol. 2005 Feb. 57(1):79-85. [Medline].

  41. Cheng AY, Leiter LA. Metabolic syndrome under fire: weighing in on the truth. Can J Cardiol. 2006 Apr. 22(5):379-82. [Medline]. [Full Text].

  42. Daskalopoulou SS, Athyros VG, Kolovou GD, Anagnostopoulou KK, Mikhailidis DP. Definitions of metabolic syndrome: Where are we now?. Curr Vasc Pharmacol. 2006 Jul. 4(3):185-97. [Medline].

  43. Reaven GM. The metabolic syndrome: is this diagnosis necessary?. Am J Clin Nutr. 2006 Jun. 83(6):1237-47. [Medline].

  44. Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2005 Sep. 28(9):2289-304. [Medline].

  45. De Taeye B, Smith LH, Vaughan DE. Plasminogen activator inhibitor-1: a common denominator in obesity, diabetes and cardiovascular disease. Curr Opin Pharmacol. 2005 Apr. 5(2):149-54. [Medline].

  46. Sjöholm A, Nyström T. Endothelial inflammation in insulin resistance. Lancet. 2005 Feb 12-18. 365(9459):610-2. [Medline].

  47. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul. 28(7):412-9. [Medline].

  48. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000 Jul. 85(7):2402-10. [Medline].

  49. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008 Jan. 294(1):E15-26. [Medline].

  50. Antuna-Puente B, Faraj M, Karelis AD, et al. HOMA or QUICKI: is it useful to test the reproducibility of formulas?. Diabetes Metab. 2008 Jun. 34(3):294-6. [Medline].

  51. Vaccaro O, Masulli M, Cuomo V, et al. Comparative evaluation of simple indices of insulin resistance. Metabolism. 2004 Dec. 53(12):1522-6. [Medline].

  52. Rossner SM, Neovius M, Mattsson A, Marcus C, Norgren S. HOMA-IR and QUICKI: decide on a general standard instead of making further comparisons. Acta Paediatr. 2010 Nov. 99(11):1735-40. [Medline].

  53. Sobngwi E, Kengne AP, Echouffo-Tcheugui JB, Choukem S, Sobngwi-Tambekou J, Balti EV, et al. Fasting insulin sensitivity indices are not better than routine clinical variables at predicting insulin sensitivity among Black Africans: a clamp study in sub-Saharan Africans. BMC Endocr Disord. 2014 Aug 9. 14:65. [Medline]. [Full Text].

  54. Jensterle M, Janez A, Mlinar B, Marc J, Prezelj J, Pfeifer M. Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol. 2008 Jun. 158(6):793-801. [Medline].

  55. Salpeter SR, Buckley NS, Kahn JA, Salpeter EE. Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am J Med. 2008 Feb. 121(2):149-157.e2. [Medline].

  56. Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE. Thiazolidinediones: effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 2008 Feb. 153(4):636-45. [Medline]. [Full Text].

  57. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007 Jun 14. 356(24):2457-71. [Medline].

  58. Rasouli N, Raue U, Miles LM, Lu T, Di Gregorio GB, Elbein SC, et al. Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. Am J Physiol Endocrinol Metab. 2005 May. 288(5):E930-4. [Medline].

  59. Lee WJ, Lee YC, Ser KH, Chen JC, Chen SC. Improvement of insulin resistance after obesity surgery: a comparison of gastric banding and bypass procedures. Obes Surg. 2008 Sep. 18(9):1119-25. [Medline].

  60. Herman WH, Hoerger TJ, Brandle M, Hicks K, Sorensen S, Zhang P, et al. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann Intern Med. 2005 Mar 1. 142(5):323-32. [Medline]. [Full Text].

  61. Pritchett AM, Foreyt JP, Mann DL. Treatment of the metabolic syndrome: the impact of lifestyle modification. Curr Atheroscler Rep. 2005 Mar. 7(2):95-102. [Medline].

  62. Hawley JA. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab Res Rev. 2004 Sep-Oct. 20(5):383-93. [Medline].

  63. Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf). 2008 Jan. 192(1):127-35. [Medline].

  64. Shih KC, Janckila AJ, Kwok CF, Ho LT, Chou YC, Chao TY. Effects of exercise on insulin sensitivity, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese male adolescents. Metabolism. 2010 Jan. 59(1):144-51. [Medline].

  65. Ioannides-Demos LL, Proietto J, McNeil JJ. Pharmacotherapy for obesity. Drugs. 2005. 65(10):1391-418. [Medline].

  66. Jayagopal V, Kilpatrick ES, Holding S, Jennings PE, Atkin SL. Orlistat is as beneficial as metformin in the treatment of polycystic ovarian syndrome. J Clin Endocrinol Metab. 2005 Feb. 90(2):729-33. [Medline].

  67. Kiortsis DN, Filippatos TD, Elisaf MS. The effects of orlistat on metabolic parameters and other cardiovascular risk factors. Diabetes Metab. 2005 Feb. 31(1):15-22. [Medline].

  68. Sjöström L. Analysis of the XENDOS study (Xenical in the Prevention of Diabetes in Obese Subjects). Endocr Pract. 2006 Jan-Feb. 12 Suppl 1:31-3. [Medline].

  69. Swinburn BA, Carey D, Hills AP, Hooper M, Marks S, Proietto J, et al. Effect of orlistat on cardiovascular disease risk in obese adults. Diabetes Obes Metab. 2005 May. 7(3):254-62. [Medline].

  70. Fauci AS, Braunwald E, Kasper DL, et al. Harrison’s Principles of Internal Medicine. 17th ed. New York, NY: New York, NY; 2008.

  71. Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab. 2003 Jul. 88(7):3082-9. [Medline].

  72. Sarkar G, Alattar M, Brown RJ, Quon MJ, Harlan DM, Rother KI. Exenatide treatment for 6 months improves insulin sensitivity in adults with type 1 diabetes. Diabetes Care. 2014 Mar. 37(3):666-70. [Medline]. [Full Text].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.