Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Diabetic Retinopathy Workup

  • Author: Abdhish R Bhavsar, MD; Chief Editor: Romesh Khardori, MD, PhD, FACP  more...
 
Updated: Mar 31, 2015
 

Approach Considerations

Important aspects of workup regarding diabetic retinopathy include fasting glucose and hemoglobin A1c, fluorescein angiography, optical coherence tomography, and B-scan ultrasonography.

Next

Fasting Glucose and Hemoglobin A1c

Fasting glucose and hemoglobin A1c (HbA1c) are important laboratory tests that are performed to help diagnose diabetes. The HbA1c level is also important in the long-term follow-up care of patients with diabetes and diabetic retinopathy.

The Data From an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Study evaluated diabetic retinopathy in 235 individuals with diabetes and 227 individuals with impaired fasting plasma glucose levels.[22] The study found that the risk of developing diabetic retinopathy at 10 years was higher in individuals with a fasting plasma glucose level of more than 108 mg/dL and HbA1c level of more than 6%. Controlling diabetes and maintaining the HbA1c level in the 6-7% range are the goals in the optimal management of diabetes and diabetic retinopathy. If the levels are maintained, then the progression of diabetic retinopathy is reduced substantially, according to The Diabetes Control and Complications Trial.

Previous
Next

Fluorescein Angiography

Fluorescein angiography is an invaluable adjunct in the diagnosis and management of diabetic retinopathy. Microaneurysms appear as pinpoint hyperfluorescent lesions in early phases of the angiogram and typically leak in the later phases of the test.

Blot and dot hemorrhages can be distinguished from microaneurysms as hypofluorescent rather than hyperfluorescent. Areas of nonperfusion appear as homogeneous hypofluorescent or dark patches bordered by occluded blood vessels.

Intraretinal microvascular abnormalities are evidenced by collateral vessels that do not leak, usually found in the borders of the nonperfused retina. Neovascular tufts leak dye because of their high permeability; they start as hyperfluorescent areas that increase in size and intensity in the later phases of the test. (See the images below.)

Fluorescein angiogram demonstrating an area of cap Fluorescein angiogram demonstrating an area of capillary nonperfusion (arrow).
Fluorescein angiogram demonstrating foveal dye lea Fluorescein angiogram demonstrating foveal dye leakage caused by macular edema.
An area of neovascularization that leaks fluoresce An area of neovascularization that leaks fluorescein on angiography.
Previous
Next

Optical Coherence Tomography

Optical coherence tomography (OCT) uses light to generate a cross-sectional image of the retina. This is used to determine the thickness of the retina and the presence of swelling within the retina as well as vitreomacular traction. This test is particularly used for the diagnosis and management of diabetic macular edema or clinically significant macular edema.

Previous
Next

B-scan Ultrasonography

B-scan ultrasonography can be used to evaluate the status of the retina if the media is obstructed by vitreous hemorrhage.

Previous
 
 
Contributor Information and Disclosures
Author

Abdhish R Bhavsar, MD Adjunct Assistant Professor, Department of Ophthalmology, University of Minnesota Medical School; Director of Clinical Research, Retina Center, PA; Past Chair, Consulting Staff, Department of Ophthalmology, Phillips Eye Institute

Abdhish R Bhavsar, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Ophthalmology, American Medical Association, American Society of Retina Specialists, Association for Research in Vision and Ophthalmology, Minnesota Medical Association

Disclosure: Received grant/research funds from Allergan; Received grant/research funds from genentech; Received grant/research funds from regeneron; Received grant/research funds from sirion for none; Received consulting fee from Eyetech for consulting; Received consulting fee from Allergan for consulting; Received consulting fee from regeneron for consulting; Received travel reimbursement from Allergan for consulting.

Coauthor(s)

John H Drouilhet, MD, FACS Clinical Professor, Department of Surgery, Section of Ophthalmology, University of Hawaii, John A Burns School of Medicine

John H Drouilhet, MD, FACS is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, American Medical Association

Disclosure: Nothing to disclose.

Neal H Atebara, MD Private Practice, Retina Center of Hawaii

Neal H Atebara, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Retina Society, American Medical Association, Hawaii Medical Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Simon K Law, MD, PharmD Clinical Professor of Health Sciences, Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, David Geffen School of Medicine

Simon K Law, MD, PharmD is a member of the following medical societies: American Academy of Ophthalmology, Association for Research in Vision and Ophthalmology, American Glaucoma Society

Disclosure: Nothing to disclose.

Steve Charles, MD Director of Charles Retina Institute; Clinical Professor, Department of Ophthalmology, University of Tennessee College of Medicine

Steve Charles, MD is a member of the following medical societies: American Academy of Ophthalmology, American Society of Retina Specialists, Macula Society, Retina Society, Club Jules Gonin

Disclosure: Received royalty and consulting fees for: Alcon Laboratories.

Chief Editor

Romesh Khardori, MD, PhD, FACP Professor of Endocrinology, Director of Training Program, Division of Endocrinology, Diabetes and Metabolism, Strelitz Diabetes and Endocrine Disorders Institute, Department of Internal Medicine, Eastern Virginia Medical School

Romesh Khardori, MD, PhD, FACP is a member of the following medical societies: American Association of Clinical Endocrinologists, American College of Physicians, American Diabetes Association, Endocrine Society

Disclosure: Nothing to disclose.

Additional Contributors

V Al Pakalnis, MD, PhD Professor of Ophthalmology, University of South Carolina School of Medicine; Chief of Ophthalmology, Dorn Veterans Affairs Medical Center

V Al Pakalnis, MD, PhD is a member of the following medical societies: American Academy of Ophthalmology, American College of Surgeons, South Carolina Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author, Sherman O Valero, MD, to the development and writing of this article.

References
  1. Frank RN. Etiologic mechanisms in diabetic retinopathy. Ryan SJ, ed. Retina. 1994. Vol 2: 1243-76.

  2. Crawford TN, Alfaro DV 3rd, Kerrison JB, Jablon EP. Diabetic retinopathy and angiogenesis. Curr Diabetes Rev. 2009 Feb. 5(1):8-13. [Medline].

  3. Klein R. The Diabetes Control and Complications Trial. Kertes C, ed. Clinical Trials in Ophthalmology: A Summary and Practice Guide. 1998. 49-70.

  4. Rodriguez-Fontal M, Kerrison JB, Alfaro DV, Jablon EP. Metabolic control and diabetic retinopathy. Curr Diabetes Rev. 2009 Feb. 5(1):3-7. [Medline].

  5. Liew G, Mitchell P, Wong TY. Systemic management of diabetic retinopathy. BMJ. 2009 Feb 12. 338:b441. [Medline].

  6. Bhavsar AR. Diabetic retinopathy: the latest in current management. Retina. 2006 Jul-Aug. 26(6 Suppl):S71-9. [Medline].

  7. Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2008 Sep. 115(9):1447-9, 1449.e1-10. [Medline]. [Full Text].

  8. Federman JL, Gouras P, Schubert H, et al. Systemic diseases. Podos SM, Yanoff M, eds. Retina and Vitreous: Textbook of Ophthalmology. 1994. Vol 9: 7-24.

  9. Bhavsar AR, Emerson GG, Emerson MV, Browning DJ. Diabetic Retinopathy. Browning DJ. Epidemiology of Diabetic Retinopathy. Springer, New York.: 2010.

  10. Williams R, Airey M, Baxter H, Forrester J, Kennedy-Martin T, Girach A. Epidemiology of diabetic retinopathy and macular oedema: a systematic review. Eye (Lond). 2004 Oct. 18(10):963-83. [Medline].

  11. Gupta R, Kumar P. Global diabetes landscape-type 2 diabetes mellitus in South Asia: epidemiology, risk factors, and control. Insulin; 2008. 3:78-94.

  12. Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 2010 Aug 11. 304(6):649-56. [Medline]. [Full Text].

  13. Aiello LM, Cavallerano JD, Aiello LP, Bursell SE. Diabetic retinopathy. Guyer DR, Yannuzzi LA, Chang S, et al, eds. Retina Vitreous Macula. 1999. Vol 2: 316-44.

  14. Benson WE, Tasman W, Duane TD. Diabetes mellitus and the eye. Duane's Clinical Ophthalmology. 1994. Vol 3:

  15. Barchetta I, Riccieri V, Vasile M, et al. High prevalence of capillary abnormalities in patients with diabetes and association with retinopathy. Diabet Med. 2011 Sep. 28(9):1039-44. [Medline].

  16. Shiba T, Takahashi M, Hori Y, Saishin Y, Sato Y, Maeno T. Relationship between sleep-disordered breathing and iris and/or angle neovascularization in proliferative diabetic retinopathy cases. Am J Ophthalmol. 2011 Apr. 151(4):604-9. [Medline].

  17. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009 Mar. 116(3):497-503. [Medline].

  18. Akduman L, Olk RJ. The early treatment for diabetic retinopathy study. Kertes C, ed. Clinical Trials in Ophthalmology: A Summary and Practice Guide. 1998. 15-36.

  19. Quillen DA, Gardner TW, Blankenship GW. Clinical Trials in Ophthalmology: A Summary and Practice Guide. Kertes C, ed. diabetic retinopathy study. 1998. 1-14.

  20. Bragge P, Gruen RL, Chau M, Forbes A, Taylor HR. Screening for Presence or Absence of Diabetic Retinopathy: A Meta-analysis. Arch Ophthalmol. 2011 Apr. 129(4):435-44. [Medline].

  21. Genuth S. The UKPDS and its global impact. Diabet Med. 2008 Aug. 25 Suppl 2:57-62. [Medline].

  22. Massin P, Lange C, Tichet J, Vol S, Erginay A, Cailleau M, et al. Hemoglobin A1c and fasting plasma glucose levels as predictors of retinopathy at 10 years: the French DESIR study. Arch Ophthalmol. 2011 Feb. 129(2):188-95. [Medline].

  23. Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010 Jun. 117(6):1064-1077.e35. [Medline]. [Full Text].

  24. Bhavsar AR, Grillone LR, McNamara TR, Gow JA, Hochberg AM, Pearson RK. Predicting response of vitreous hemorrhage after intravitreous injection of highly purified ovine hyaluronidase (Vitrase) in patients with diabetes. Invest Ophthalmol Vis Sci. 2008 Oct. 49(10):4219-25. [Medline].

  25. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015 Mar 26. 372(13):1193-203. [Medline].

  26. Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013 Oct. 120(10):2013-22. [Medline]. [Full Text].

  27. Korobelnik JF, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology. 2014 Nov. 121(11):2247-54. [Medline].

  28. Arevalo JF, Garcia-Amaris RA. Intravitreal bevacizumab for diabetic retinopathy. Curr Diabetes Rev. 2009 Feb. 5(1):39-46. [Medline].

  29. Rodriguez-Fontal M, Alfaro V, Kerrison JB, Jablon EP. Ranibizumab for diabetic retinopathy. Curr Diabetes Rev. 2009 Feb. 5(1):47-51. [Medline].

  30. FDA Drug and Safety Alerts. FDA Alerts Health Care Professionals of Infection Risk from Repackaged Avastin Intravitreal Injections. August 30, 2011. Available at http://www.fda.gov/drugs/drugsafety/ucm270296.htm.

  31. Meredith TA. Clinical Trials in Ophthalmology-A Summary and Practice Guide. Kertes C, ed. The diabetic vitrectomy study. 1998. 37-48.

  32. Harrison P. Monthly Ranibizumab Improves Diabetic Retinopathy. Medscape Medical News. Sep 5 2013. Available at http://www.medscape.com/viewarticle/810491. Accessed: September 17, 2013.

 
Previous
Next
 
Fundus photograph of early background diabetic retinopathy showing multiple microaneurysms.
Retinal findings in background diabetic retinopathy, including blot hemorrhages (long arrow), microaneurysms (short arrow), and hard exudates (arrowhead).
Fluorescein angiogram demonstrating an area of capillary nonperfusion (arrow).
Fluorescein angiogram demonstrating foveal dye leakage caused by macular edema.
Fundus photograph of clinically significant macular edema demonstrating retinal exudates within the fovea.
New vessel formation on the surface of the retina (neovascularization elsewhere)
An area of neovascularization that leaks fluorescein on angiography.
Boat-shaped preretinal hemorrhage associated with neovascularization elsewhere.
Fibrovascular proliferations within the vitreous cavity
Extensive fibrovascular proliferations within and around the optic disc
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.