Medscape is available in 5 Language Editions – Choose your Edition here.


Hallux Rigidus

  • Author: Minoo Hadjari Hollis, MD; Chief Editor: Jason H Calhoun, MD, FACS  more...
Updated: Jul 21, 2015


Hallux rigidus literally means "stiff great toe"; however, limitation of great-toe motion is only one element of the range of symptoms that constitute the diagnosis of hallux rigidus. Hallux rigidus encompasses mild to severe degenerative arthritis of the first metatarsophalangeal (MTP) joint of the foot. Symptoms can range from mild to disabling. The condition, which occurs in adolescents and adults, can be associated with a history of previous trauma, though many patients present without such a history.

This condition was initially described in 1887 by Davies-Colley, who defined hallux flexus as a plantarflexed posture of phalanx relative to the metatarsal (MT) head.[1] About the same time, Cotterill used the term hallux rigidus, which remains the most common term used to describe the condition in the orthopedic literature.[2, 3]

Hallux rigidus is a syndrome with symptoms that are related to degenerative arthritis of the great-toe MTP joint. The symptoms result from cartilage wear, altered joint mechanics, and osteophyte formation, particularly on the dorsal aspect of the first MT head. Hallux rigidus usually causes pain from impingement of dorsal osteophytes, from inflammation, and from shoe-related pressure on prominent osteophytes. It also causes range-of-motion (ROM) pain related to the irregularity of the articular cartilage surface. This condition is seen in two distinct populations: persons who present in adolescence and those who present in adulthood.

Nonsurgical measures can often be successfully used to treat patients with varying degrees of severity of hallux rigidus. In patients in whom the condition is refractory to nonoperative treatment methods, the operative options depend on the severity of the degenerative joint disease (DJD).

Future advances in addressing hallux rigidus will likely include, through improvements of arthroscopic methods, earlier diagnosis and treatment of lesions involving the symptomatic MTP joint. Early debridement, biologic resurfacing, and the establishment of full ROM may improve the longevity of this joint and minimize the need for joint-destructive methods.

The future development of joint arthroplasty implants and methods may allow joint replacement to be considered as a reliable primary procedure for treatment of severe degenerative arthritis of the great-toe MTP joint.

For patient education resources, see Osteoarthritis and Repetitive Motion Injuries.



The pathophysiology of hallux rigidus is similar to that of degenerative arthritis in any joint. Overuse, injury, or abnormal joint mechanics lead to abnormal stresses on the articular cartilage. In an in vitro study, Ahn et al used a magnetic tracking system to monitor the three-dimensional movement of the proximal phalanx while the toe position was changed from a neutral position to full extension.[4] The contact distribution shifted dorsally with increasing degrees of extension. These data are consistent with the observation that chondral erosions associated with hallux rigidus and degenerative arthritis initially affect the dorsal articular surface of the MT.

Articular degenerative changes are associated with dehydration of the cartilage, which, in turn, is more susceptible to injury resulting from shear and compressive forces. The subchondral bone shares these stresses, which subsequently lead to increased subchondral bone density, formation of periarticular osteophytes, and, in severe cases, cystic changes. The osteophytes limit first MTP joint motion and further compromise the normal mechanics of this joint. This effect can accelerate the degenerative process. In severe cases, the articular cartilage is completely denuded.



The true etiology of hallux rigidus is not known. Most commonly, hallux rigidus is thought to be caused by wear and tear on the first MTP joint. Multiple theories have been proposed for the underlying etiology. Some authors have associated hallux rigidus with athletic activities involving running; in this case, the disorder possibly results from repetitive hyperextension of the first MTP joint with chronic gradual attenuation of the plantar plate and subsequent instability. Hallux rigidus has also been seen as a long-term sequela of acute injuries to the great-toe MTP joint, such as turf toe. Several authors have suggested traumatic injury to the articular cartilage — either acute trauma (as in turf toe) or chronic, repetitive, minor injury—as the underlying mechanism.

Clanton et al found hallux valgus and early hallux rigidus to be long-term sequelae. After more than 5 years of follow-up, Clanton and Seifert found that among 20 athletes with previous turf-toe injury, half suffered from persistent symptoms. The long-term effects of turf-toe require further study.

In 1933, Kingreen reported that osteochondritis dissecans led to development of hallux rigidus. Goodfellow proposed that the development of an osteochondrosis in childhood creates a defect and secondary slow-remodeling collapse, leading to abnormal motion in the forefoot.[5] McMaster reported on 7 adolescent patients who had an articular defect of approximately 5 mm located directly beneath the dorsal lip of the proximal phalanx; this defect was associated with symptoms of hallux rigidus.[6]

Lambrinudi proposed the so-called metatarsus primus elevatus, in 1938.[7] Theoretically, an abnormally elevated first MT causes excessive flexion of the great toe during gait and subsequent development of flexion contracture at the first MTP joint. These abnormal mechanics cause hallux rigidus.

Others, such as Jack, in 1940, postulated that with the elevated first MT, increased overload of the second MT occurs, with compensatory contracture of the flexor hallucis brevis (FHB).[8] This contracture pulls the proximal phalanx inferiorly, driving its dorsal rim into the MT head and leading to localized degenerative changes in the articular cartilage. Hypermobility of the first ray leading to flexor spasm and impingement of the proximal phalanx on the MT head is another proposed theory.[9]

Yet other researchers, such as Jansed, in 1920, have implicated flatfoot. All of these theories are without true scientific data.

In 1986, Mann first theorized that a flat first MT head restricts, to a relative extent, the medial and lateral motion of the first MTP joint, creating increased stress in the sagittal plane. This restriction of motion, he said, accelerates the degenerative process. Others have proposed that flattening of the head is a secondary result.[10]

Some authors propose that the disease may develop somewhat differently in adolescents than in adults. The observation that the first MTP joint returns to normal under anesthesia in adolescents suggests that anatomic anomalies and spasm may be contributing factors.

Bingold and Collins suggested that the disease proceeds in stages from adolescence through adulthood.[9] Vilaseca and Ribes found that a distal physis of the first MT head is present in 75% of children's feet and is visible in children aged 2-11 years.[11] They also found that the first MT is longer than the second in children who have had a longer persistence of this distal physis. Therefore, individual anatomic variations may play a role in causing functional changes in the MTP motion and position during gait.[12]

An abnormally long first MT (index-plus foot) increases the first MTP joint stress during toe-off, as proposed by Nilsonne in 1930.[13] This predisposes an individual to hallux rigidus. Nilsonne et al[14] suggested that the excessively long toe requires a longer shoe, which in turn requires constant contraction of the great-toe flexors to grip the shoe while the person is walking. This gripping can lead to inflammation and secondary spasm, therefore limiting motion at the MTP joint at the great toe.

In a study involving 110 patients with hallux rigidus, Coughlin and Shurnas examined possible associations between the disorder and various physical, health, and lifestyle factors.[15] The authors saw no association between hallux rigidus and pes planus, first MT length, metatarsus primus elevatus, first-ray hypermobility, hallux valgus, footwear, occupation, obesity, or metatarsus adductus. However, they did see an association between hallux rigidus and hallux valgus interphalangeus (mean 18°), family history (in bilateral cases of hallux rigidus), and trauma (in unilateral cases of the condition). No specific distinction was made between adolescent and adult patients.



Hallux rigidus is the second most common disorder of the first MTP joint (with the most common being hallux valgus).

Coughlin and Shurnas reported findings in 110 patients who had undergone surgery for hallux rigidus.[15] The authors noted that on final evaluation, about 80% of the patients showed bilateral involvement. In the bilateral cases, 98% of the patients had a positive family history. Although 62% of the patients in Coughlin and Shurnas's report were women, other investigators have reported a slight male predominance.



Nonsurgical measures can often be used to successfully treat patients with varying degrees of severity of hallux rigidus. In patients in whom the condition is refractory to nonoperative treatment methods, the operative options depend on the severity of the DJD.

Waizy et al analyzed long-term clinical outcome and patient satisfaction in 60 patients (20 grade I, 35 grade II, and 5 grade III) with symptomatic hallux rigidus who received joint-preserving operative care.[16]  At follow-up, mean dorsiflexion (DF) increased to about 21.7º in grade I patients, about 23.7º in grade II, and about 26.3º in grade III. At first follow-up, 100% of grade I patients, 63.3% of grade II patients, and 75% of grade III patients had only occasional pain or no pain at all. At second follow-up, 77.8% of grade I and 73.9% of grade II patients had no pain. Four of the study patients had persistent hypoesthesia of the medial side of the great toe, and three patients had delayed wound healing. No revisions or further surgical procedures were necessary in any of the patients.

Tagoe et al followed 33 patients who had undergone total sesamoidectomy for hallux rigidus/limitus (36 procedures) for 2-4 years.[17] According to the authors, there were high levels of clinical improvement and patient satisfaction following the procedure, with no significant functional impairment or malalignment. There were no instances of pain on metatarsal compression or of transfer metatarsalgia. The authors concluded that for symptomatic patients in whom a joint replacement/fusion is not indicated, total sesamoidectomy may be beneficial as an interim procedure for joints with a moderate degree of arthrosis (grade II to II).

Contributor Information and Disclosures

Minoo Hadjari Hollis, MD Orthopedic Surgeon, Sound Orthopedics and Foot and Ankle Center

Minoo Hadjari Hollis, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Orthopaedic Foot and Ankle Society

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Chief Editor

Jason H Calhoun, MD, FACS Department Chief, Musculoskeletal Sciences, Spectrum Health Medical Group

Jason H Calhoun, MD, FACS is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American College of Surgeons, American Diabetes Association, American Medical Association, American Orthopaedic Association, American Orthopaedic Foot and Ankle Society, Michigan State Medical Society, Missouri State Medical Association, Southern Medical Association, Southern Orthopaedic Association, Texas Medical Association, Texas Orthopaedic Association, Musculoskeletal Infection Society

Disclosure: Nothing to disclose.

Additional Contributors

John S Early, MD Foot/Ankle Specialist, Texas Orthopaedic Associates, LLP; Co-Director, North Texas Foot and Ankle Fellowship, Baylor University Medical Center

John S Early, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Medical Association, American Orthopaedic Foot and Ankle Society, Orthopaedic Trauma Association, Texas Medical Association

Disclosure: Received honoraria from AO North America for speaking and teaching; Received consulting fee from Stryker for consulting; Received consulting fee from Biomet for consulting; Received grant/research funds from AO North America for fellowship funding; Received honoraria from MMI inc for speaking and teaching; Received consulting fee from Osteomed for consulting; Received ownership interest from MedHab Inc for management position.

  1. Davies-Colley. Contraction of the metatarso-phalangeal joint of the great toe. BMJ. 1887. 1:728.

  2. Cotterill J. Condition of stiff great toe in adolescents. Edinb Med J. 1887. 33:459-62.

  3. Cotterill JM. Stiffness of the great toe in adolescents. BMJ. 1988. 1:158.

  4. Ahn TK, Kitaoka HB, Luo ZP, et al. Kinematics and contact characteristics of the first metatarsophalangeal joint. Foot Ankle Int. 1997 Mar. 18(3):170-4. [Medline].

  5. Goodfellow J. Aetiology of hallux rigidus. Proc R Soc Med. 1966 Sep. 59(9):821-4. [Medline]. [Full Text].

  6. McMaster MJ. The pathogenesis of hallux rigidus. J Bone Joint Surg Br. 1978 Feb. 60(1):82-7. [Medline]. [Full Text].

  7. Lambrinudi C. Metatarsus primus elevatus. Proc R Soc Med. 1938. 31:1273.

  8. Jack EA. The aetiology of hallux rigidus. Br J Surg. 1940. 27:492-7.

  9. Bingold AC, Collins DH. Hallux rigidus. J Bone Joint Surg Br. 1950 May. 32-B(2):214-22. [Medline]. [Full Text].

  10. Mann RA, Clanton TO. Hallux rigidus: treatment by cheilectomy. J Bone Joint Surg Am. 1988 Mar. 70(3):400-6. [Medline].

  11. Vilaseca RR, Ribes ER. The growth of the first metatarsal bone. Foot Ankle. 1980 Sep. 1(2):117-22. [Medline].

  12. Brodsky JW, Baum BS, Pollo FE, et al. Prospective gait analysis in patients with first metatarsophalangeal joint arthrodesis for hallux rigidus. Foot Ankle Int. 2007 Feb. 28(2):162-5. [Medline].

  13. Nilsonne H. Hallux rigidus and its treatment. Acta Orthop Scand. 1930. 1:295-302.

  14. Bonney G, Macnab I. Hallux valgus and hallux rigidus; a critical survey of operative results. J Bone Joint Surg Br. 1952 Aug. 34-B(3):366-85. [Medline]. [Full Text].

  15. Coughlin MJ, Shurnas PS. Hallux rigidus: demographics, etiology, and radiographic assessment. Foot Ankle Int. 2003 Oct. 24(10):731-43. [Medline].

  16. Waizy H, Czardybon MA, Stukenborg-Colsman C, Wingenfeld C, Wellmann M, Windhagen H, et al. Mid- and long-term results of the joint preserving therapy of hallux rigidus. Arch Orthop Trauma Surg. 2010 Feb. 130(2):165-70. [Medline].

  17. Tagoe M, Brown HA, Rees SM. Total sesamoidectomy for painful hallux rigidus: a medium-term outcome study. Foot Ankle Int. 2009 Jul. 30(7):640-6. [Medline].

  18. Lin J, Murphy GA. Treatment of hallux rigidus with cheilectomy using a dorsolateral approach. Foot Ankle Int. 2009 Feb. 30(2):115-9. [Medline].

  19. Can Akgun R, Sahin O, Demirors H, Cengiz Tuncay I. Analysis of modified oblique Keller procedure for severe hallux rigidus. Foot Ankle Int. 2008 Dec. 29(12):1203-8. [Medline].

  20. Konkel KF, Menger AG, Retzlaff SA. Results of metallic Hemi-Great Toe Implant for Grade III and early Grade IV hallux rigidus. Foot Ankle Int. 2009 Jul. 30(7):653-60. [Medline].

  21. Solan MC, Calder JD, Bendall SP. Manipulation and injection for hallux rigidus. Is it worthwhile?. J Bone Joint Surg Br. 2001 Jul. 83(5):706-8. [Medline].

  22. Zammit GV, Menz HB, Munteanu SE. Structural factors associated with hallux limitus/rigidus: a systematic review of case control studies. J Orthop Sports Phys Ther. 2009 Oct. 39(10):733-42. [Medline].

  23. Erdil M, Elmadag NM, Polat G, Tunçer N, Bilsel K, Uçan V, et al. Comparison of Arthrodesis, Resurfacing Hemiarthroplasty, and Total Joint Replacement in the Treatment of Advanced Hallux Rigidus. J Foot Ankle Surg. 2013 May 6. [Medline].

  24. Mann RA, Coughlin MJ, DuVries HL. Hallux rigidus: a review of the literature and a method of treatment. Clin Orthop. 1979 Jul-Aug. (142):57-63. [Medline].

  25. Easley ME, Davis WH, Anderson RB. Intermediate to long-term follow-up of medial-approach dorsal cheilectomy for hallux rigidus. Foot Ankle Int. 1999 Mar. 20(3):147-52. [Medline].

  26. Mulier T, Steenwerckx A, Thienpont E, et al. Results after cheilectomy in athletes with hallux rigidus. Foot Ankle Int. 1999 Apr. 20(4):232-7. [Medline].

  27. Mackay DC, Blyth M, Rymaszewski LA. The role of cheilectomy in the treatment of hallux rigidus. J Foot Ankle Surg. 1997 Sep-Oct. 36(5):337-40. [Medline].

  28. Nicolosi N, Hehemann C, Connors J, Boike A. Long-Term Follow-Up of the Cheilectomy for Degenerative Joint Disease of the First Metatarsophalangeal Joint. J Foot Ankle Surg. 2015 May 14. [Medline].

  29. Kessel L, Bonney G. Hallux rigidus in the adolescent. J Bone Joint Surg Br. 1958 Nov. 40-B(4):669-73. [Medline].

  30. Moberg E. A simple operation for hallux rigidus. Clin Orthop. 1979 Jul-Aug. (142):55-6. [Medline].

  31. Thomas PJ, Smith RW. Proximal phalanx osteotomy for the surgical treatment of hallux rigidus. Foot Ankle Int. 1999 Jan. 20(1):3-12. [Medline].

  32. Citron N, Neil M. Dorsal wedge osteotomy of the proximal phalanx for hallux rigidus. Long-term results. J Bone Joint Surg Br. 1987 Nov. 69(5):835-7. [Medline]. [Full Text].

  33. van Dijk CN, Veenstra KM, Nuesch BC. Arthroscopic surgery of the metatarsophalangeal first joint. Arthroscopy. 1998 Nov-Dec. 14(8):851-5. [Medline].

  34. Iqbal MJ, Chana GS. Arthroscopic cheilectomy for hallux rigidus. Arthroscopy. 1998 Apr. 14(3):307-10. [Medline].

  35. Roukis TS. Clinical outcomes after isolated periarticular osteotomies of the first metatarsal for hallux rigidus: a systematic review. J Foot Ankle Surg. 2010 Nov-Dec. 49(6):553-60. [Medline].

  36. Hunt KJ, Anderson RB. Biplanar proximal phalanx closing wedge osteotomy for hallux rigidus. Foot Ankle Int. 2012 Dec. 33(12):1043-50. [Medline].

  37. Conti SF, Dhawan S. Arthrodesis of the first metatarsophalangeal and interphalangeal joints of the foot. Foot Ankle Clin. 1996. 1:33-53.

  38. Harper MC. Positioning of the hallux for first metatarsophalangeal joint arthrodesis. Foot Ankle Int. 1997 Dec. 18(12):827. [Medline].

  39. Coughlin MJ, Abdo RV. Arthrodesis of the first metatarsophalangeal joint with Vitallium plate fixation. Foot Ankle Int. 1994 Jan. 15(1):18-28. [Medline].

  40. Curtis MJ, Myerson M, Jinnah RH. Arthrodesis of the first metatarsophalangeal joint: a biomechanical study of internal fixation techniques. Foot Ankle. 1993 Sep. 14(7):395-9. [Medline].

  41. Coughlin MJ, Mann RA. Arthrodesis of the first metatarsophalangeal joint as salvage for the failed Keller procedure. J Bone Joint Surg Am. 1987 Jan. 69(1):68-75. [Medline].

  42. Smith RW, Joanis TL, Maxwell PD. Great toe metatarsophalangeal joint arthrodesis: a user-friendly technique. Foot Ankle. 1992 Sep. 13(7):367-77. [Medline].

  43. Hamilton WG, O'Malley MJ, Thompson FM, et al. Roger Mann Award 1995. Capsular interposition arthroplasty for severe hallux rigidus. Foot Ankle Int. 1997 Feb. 18(2):68-70. [Medline].

  44. Kennedy MP, Coughlin MJ. Peg-in-socket arthrodesis of the first metatarsophalangeal joint. Foot Ankle Int. 2002 Apr. 23(4):352-4. [Medline].

  45. DeFrino PF, Brodsky JW, Pollo FE, et al. First metatarsophalangeal arthrodesis: a clinical, pedobarographic and gait analysis study. Foot Ankle Int. 2002 Jun. 23(6):496-502. [Medline].

  46. Hahn MP, Gerhardt N, Thordarson DB. Medial capsular interpositional arthroplasty for severe hallux rigidus. Foot Ankle Int. 2009 Jun. 30(6):494-9. [Medline].

  47. Lau JT, Daniels TR. Outcomes following cheilectomy and interpositional arthroplasty in hallux rigidus. Foot Ankle Int. 2001 Jun. 22(6):462-70. [Medline].

  48. Cracchiolo A 3rd, Weltmer JB Jr, Lian G. Arthroplasty of the first metatarsophalangeal joint with a double-stem silicone implant. Results in patients who have degenerative joint disease failure of previous operations, or rheumatoid arthritis. J Bone Joint Surg Am. 1992 Apr. 74(4):552-63. [Medline].

  49. Shereff MJ, Jahss MH. Complications of silastic implant arthroplasty in the hallux. Foot Ankle. 1980 Sep. 1(2):95-101. [Medline].

  50. Shiel WC Jr, Jason M. Granulomatous inguinal lymphadenopathy after bilateral metatarsophalangeal joint silicone arthroplasty. Foot Ankle. 1986 Apr. 6(5):216-8. [Medline].

  51. Verhaar J, Vermeulen A, Bulstra S. Bone reaction to silicone metatarsophalangeal joint-1 hemiprosthesis. Clin Orthop. 1989 Aug. (245):228-32. [Medline].

  52. Rahman H, Fagg PS. Silicone granulomatous reactions after first metatarsophalangeal hemiarthroplasty. J Bone Joint Surg Br. 1993 Jul. 75(4):637-9. [Medline]. [Full Text].

  53. Shankar NS. Silastic single-stem implants in the treatment of hallux rigidus. Foot Ankle Int. 1995 Aug. 16(8):487-91. [Medline].

  54. Townley CO, Taranow WS. A metallic hemiarthroplasty resurfacing prosthesis for the hallux metatarsophalangeal joint. Foot Ankle Int. 1994 Nov. 15(11):575-80. [Medline].

  55. Johnson KA, Buck PG. Total replacement arthroplasty of the first metatarsophalangeal joint. Foot Ankle. 1981 May. 1(6):307-14. [Medline].

  56. Lu HS, Kou BL, Yuan YL. [Follow-up result of 14 cases of the first metatarsophalangeal joint arthroplasty with titanium total joint prostheses]. Zhonghua Wai Ke Za Zhi. 1994 Sep. 32(9):542-4. [Medline].

  57. Gheorghiu D, Coles C, Ballester J. Hemiarthroplasty for Hallux Rigidus: Mid-Term Results. J Foot Ankle Surg. 2015 Jul-Aug. 54 (4):591-3. [Medline].

  58. Barca F. Tendon arthroplasty of the first metatarsophalangeal joint in hallux rigidus: preliminary communication. Foot Ankle Int. 1997 Apr. 18(4):222-8. [Medline].

  59. Cavolo DJ, Cavallaro DC, Arrington LE. The Watermann osteotomy for hallux limitus. J Am Podiatry Assoc. 1979 Jan. 69(1):52-7. [Medline].

  60. Coughlin M. Arthritides. Coughlin M, Mann R, eds. Surgery of the Foot & Ankle. 7th ed. St Louis, Mo: Mosby; 1999. 605-50.

  61. Deheer PA. The case against first metatarsal phalangeal joint implant arthroplasty. Clin Podiatr Med Surg. 2006 Oct. 23(4):709-23, vi. [Medline].

  62. Feltham GT, Hanks SE, Marcus RE. Age-based outcomes of cheilectomy for the treatment of hallux rigidus. Foot Ankle Int. 2001 Mar. 22(3):192-7. [Medline].

  63. Ghalambor N, Cho DR, Goldring SR, et al. Microscopic metallic wear and tissue response in failed titanium hallux metatarsophalangeal implants: two cases. Foot Ankle Int. 2002 Feb. 23(2):158-62. [Medline].

  64. Hamilton WG, Hubbard CE. Hallux rigidus. Excisional arthroplasty. Foot Ankle Clin. 2000 Sep. 5(3):663-71. [Medline].

  65. Horton GA, Park YW, Myerson MS. Role of metatarsus primus elevatus in the pathogenesis of hallux rigidus. Foot Ankle Int. 1999 Dec. 20(12):777-80. [Medline].

  66. Sammarco GJ, Tabatowski K. Silicone lymphadenopathy associated with failed prosthesis of the hallux: a case report and literature review. Foot Ankle. 1992 Jun. 13(5):273-6. [Medline].

  67. Sebold EJ, Cracchiolo A 3rd. Use of titanium grommets in silicone implant arthroplasty of the hallux metatarsophalangeal joint. Foot Ankle Int. 1996 Mar. 17(3):145-51. [Medline].

  68. Trnka HJ. Arthrodesis procedures for salvage of the hallux metatarsophalangeal joint. Foot Ankle Clin. 2000 Sep. 5(3):673-86, ix. [Medline].

A patient who presented with a tender, palpable dorsal osteophyte at the first metatarsophalangeal joint on physical exam.
A patient who presented with a tender, palpable dorsal osteophyte at the first metatarsophalangeal joint on physical exam.
Dorsal exostoses base of proximal phalanx and first metatarsal head blocking dorsiflexion and causing impingement.
Joint-space narrowing, marginal osteophytes, and irregularity of the first metatarsal phalangeal joint.
Status post cheilectomy, first metatarsal phalangeal joint with excision of the dorsal aspect of the first metatarsal head.
Arthrodesis of first metatarsal phalangeal joint using 2 crossed screws.
Severe arthrosis first metatarsal phalangeal joint and bony changes of the metatarsal head and the proximal phalanx seen during arthrodiastasis first metatarsal phalangeal joint.
Arthrodiastasis first metatarsal phalangeal joint using a mini external fixator.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.