Medscape is available in 5 Language Editions – Choose your Edition here.


Foot Drop

  • Author: James W Pritchett, MD; Chief Editor: Vinod K Panchbhavi, MD, FACS  more...
Updated: May 26, 2016


Foot drop is a deceptively simple name for a potentially complex problem. It can be defined as a significant weakness of ankle and toe dorsiflexion. The foot and ankle dorsiflexors include the tibialis anterior, the extensor hallucis longus (EHL), and the extensor digitorum longus (EDL). These muscles help the body clear the foot during swing phase and control plantarflexion of the foot on heel strike.

Weakness in this group of muscles results in an equinovarus deformity. This is sometimes referred to as steppage gait, because the patient tends to walk with an exaggerated flexion of the hip and knee to prevent the toes from catching on the ground during swing phase. During gait, the force of heel strike exceeds body weight, and the direction of the ground reaction vector passes behind the ankle and knee center (see the image below).

Diagram of ground reaction vector during heel stri Diagram of ground reaction vector during heel strike.

This causes the foot to plantarflex and, if uncontrolled, to slap the ground. Ordinarily, eccentric lengthening of the tibialis anterior, which controls plantar flexion, absorbs the shock of heel strike. Foot drop can result if there is injury to the dorsiflexors or to any point along the neural pathways that supply them.

Foot drop can be associated with a variety of conditions, including dorsiflexor injuries, peripheral nerve injuries, stroke, neuropathies, drug toxicities, or diabetes. The causes of foot drop may be divided into three general categories: neurologic, muscular, and anatomic. These causes may overlap. Treatment is variable and is directed at the specific cause (see Treatment).



Fibers from the dorsal branches of the ventral rami of L4-S1 are found in the peroneal nerve, which is paired with the tibial nerve to constitute the sciatic nerve. The sciatic nerve leaves the pelvic cavity at the greater sciatic foramen, just inferior to the piriformis. It bifurcates to form the peroneal and tibial nerves either in the distal third of the thigh or at the midthigh level.

The peroneal nerve crosses laterally to curve over the posterior rim of the fibular neck to the anterior compartment of the lower leg, dividing into superficial and deep branches. The superficial branch travels between the two heads of the peronei and continues down the lower leg to lie between the peroneal tendon and the lateral edge of the gastrocnemius. It then branches to the ankle anterolaterally to supply sensation to the dorsum of the foot (see the image below).

Common and superficial peroneal nerves, branches, Common and superficial peroneal nerves, branches, and cutaneous innervation.

The deep branch divides just after rounding the fibular neck. Its initial branch supplies the tibialis anterior, and the remaining branches supply the EDL, the EHL, and a small sensory patch at the first dorsal web space (see the image below).

Deep peroneal nerve, branches, and cutaneous inner Deep peroneal nerve, branches, and cutaneous innervation.

The peroneal nerve is susceptible to injury all along its course. In that it is part of the sciatic nerve, its funiculi are relatively isolated from those of the tibial nerve. Therefore, trauma to the sciatic nerve may affect only one of its divisions. The funiculi of the peroneal nerve also are larger and have less protective connective tissue than those of the tibial nerve, making the peroneal nerve more susceptible to trauma. In addition, the peroneal nerve has fewer autonomic fibers; thus, in any injury, motor and sensory fibers bear the brunt of the trauma.

The peroneal nerve runs a more superficial course than the tibial nerve does, especially at the fibular neck, and this relatively exposed position makes it vulnerable to direct insult. Its close adherence to the periosteum of the proximal fibula renders it susceptible to injury during surgical procedures in this area.



The pathophysiology of nerve damage that commonly causes foot drop is as follows. The functional integrity of an axon and its target depends on the continued supply of trophic substances synthesized in the neuronal perikaryon and transported down the axon (axoplasmic flow). A laceration interrupts axoplasmic flow; a crush injury may compromise it as well. A double-crush phenomenon occurs when a proximal insult in a nerve root diminishes axoplasmic flow, making it more susceptible to injury.

A distal lesion further compromises axoplasmic flow, and clinical palsy results. This is the phenomenon thought to be responsible for the increased risk of foot drop after hip replacement in a patient with preexisting spinal stenosis. The spinal stenosis causes the proximal compromise, and intraoperative stretch of the sciatic nerve provides the distal insult.



Foot drop may follow direct injury to the dorsiflexors. A few cases of rupture of the anterior tibial tendon leading to foot drop and suspicion of peroneal nerve palsy have been reported. This subcutaneous tendon rupture usually occurs after a minor trauma with the foot in plantar flexion.

Compartment syndromes also may lead to foot drop. These are surgical emergencies and are not associated only with fracture or acute trauma. March gangrene, a form of anterior compartment syndrome, is thought to be due to edema and small hemorrhages in the muscles of the anterior compartment occurring after strenuous activity in individuals not accustomed to it. Deep posterior compartment syndrome also may result in foot drop as a late sequela due to contracture formation.

Neurologic causes of foot drop include mononeuropathies of the deep peroneal nerve, the common peroneal nerve, or the sciatic nerve. Lumbosacral plexopathy, lumbar radiculopathy, motor neuron disease, or parasagittal cortical or subcortical cerebral lesions also can manifest as foot drop. These lesions can be differentiated by means of clinical and electrodiagnostic examinations.

A common behavioral cause of foot drop is habitual crossing of the legs.[1] These cases typically resolve with discontinuance of the habit.

Foot drop also may be seen as a combination of neurologic, muscular, and anatomic dysfunction. Charcot foot is one example.



Peroneal neuropathy caused by compression at the fibular head is the most common compressive neuropathy in the lower extremity. Foot drop is its most notable symptom. All age groups are affected equally, but the condition is more common in males (male-to-female ratio, 2.8:1). About 90% of peroneal lesions are unilateral, and they can affect the right or the left side with equal frequency.

A foot drop of particular concern to orthopedic surgeons is the peroneal nerve palsy seen after total knee arthroplasty (TKA; 0.3-4% of cases) or proximal tibial osteotomy (3-13% of cases). Ischemia, mechanical irritation, traction, crush injury, and laceration can cause intraoperative injury to the peroneal nerve. It has also been suggested that correction of a severe valgus or flexion deformity can stretch the peroneal nerve and lead to palsy. Postoperative causes of peroneal nerve palsy include hematomas and constrictive dressings.

In a study by Cohen et al, the relative risk of palsy was 2.8 times higher with epidural anesthesia for TKA than with general or spinal anesthesia.[2] Epidural anesthesia probably decreased proprioception and sensation (intraoperatively and, to some extent, postoperatively), allowing the limb to rest in an unprotected state susceptible to local compression. In addition, intraoperative neurologic damage may not have been readily apparent in the immediate postoperative period, because of ongoing effects of epidural anesthesia.

In the same study, the relative risk of palsy was 6.5 times greater in patients who had a prior lumbar laminectomy.[2]

A series of patients who developed foot drop after primary hip arthroplasty were carefully examined and found to have spinal stenosis.[3] As many as 70% of patients undergoing hip arthroplasty have electromyographic (EMG) evidence of nerve injury, but they rarely have clinical symptoms.[4] Patients with preexisting spinal stenosis are believed to be at increased risk for foot drop after hip arthroplasty because of this proximal compromise; this is the double-crush phenomenon.



Prognosis and outcome vary according to the cause of the foot drop. In a peripheral compressive neuropathy, recovery can be expected in up to 3 months, provided that further compression is avoided. A partial peroneal nerve palsy after total knee replacement has a uniformly good prognosis.[5] A variable amount of recovery is seen with a complete postoperative palsy. Follow-up EMG and nerve conduction studies may be useful for assessing recovery.

A partial palsy recovers faster because of local sprouting. With complete axonal loss, reinnervation is achieved solely through proximal-to-distal axonal growth, which usually proceeds at a rate of 1 mm/day. Thus, injuries of a nerve close to its target muscle also have a more favorable outcome. In a nerve root compressive neuropathy, one study concluded that severe motor weakness lasting longer than 6 months, a negative straight leg-raising test, and old age were poor prognostic factors for recovery of dorsiflexion.[6]

When there is direct injury to the peroneal nerve, the outcome is more favorable for penetrating trauma than for blunt trauma; a traction or stretch injury to the nerve has an intermediate outcome. When nerve grafting is performed, functional recovery depends on the severity of injury and thus on the length of the graft used. With grafts longer than 12 cm, good functional recovery is rare.

Wound infection may occur after surgical treatment, as may nerve graft failure. In tendon transfer procedures, recurrent deformity has been reported. In arthrodeses or fusion procedures, pseudoarthrosis, delayed union, or nonunion may be noted.

Contributor Information and Disclosures

James W Pritchett, MD Chief of Orthopedic Surgery, Swedish Orthopedic Institute; Active Staff, Swedish Medical Center

James W Pritchett, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American College of Surgeons, Washington State Medical Association, Association of Bone and Joint Surgeons

Disclosure: Nothing to disclose.


Margaret A Porembski, MD Attending Physician, Oklahoma Hand Fellowship

Margaret A Porembski, MD is a member of the following medical societies: American College of Surgeons, American Medical Association, American Society for Surgery of the Hand

Disclosure: Nothing to disclose.

Chief Editor

Vinod K Panchbhavi, MD, FACS Professor of Orthopedic Surgery, Chief, Division of Foot and Ankle Surgery, Director, Foot and Ankle Fellowship Program, Department of Orthopedics, University of Texas Medical Branch School of Medicine

Vinod K Panchbhavi, MD, FACS is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American College of Surgeons, American Orthopaedic Association, American Orthopaedic Foot and Ankle Society, Orthopaedic Trauma Association, Texas Orthopaedic Association

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Styker.


John S Early, MD Foot/Ankle Specialist, Texas Orthopaedic Associates, LLP; Co-Director, North Texas Foot and Ankle Fellowship, Baylor University Medical Center

John S Early, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Medical Association, American Orthopaedic Foot and Ankle Society, Orthopaedic Trauma Association, and Texas Medical Association

Disclosure: AO North America Honoraria Speaking and teaching; Stryker Consulting fee Consulting; Biomet Consulting fee Consulting; AO North America Grant/research funds fellowship funding; MMI inc Honoraria Speaking and teaching; Osteomed Consulting fee Consulting; MedHab Inc Management position

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

  1. Stewart JD. Foot drop: where, why and what to do?. Pract Neurol. 2008 Jun. 8(3):158-69. [Medline].

  2. Cohen DE, Van Duker B, Siegel S. Common peroneal nerve palsy associated with epidural analgesia. Anesth Analg. 1993 Feb. 76(2):429-31. [Medline].

  3. Pritchett JW. Lumbar decompression to treat foot drop after hip arthroplasty. Clin Orthop. 1994 Jun. (303):173-7. [Medline].

  4. Weber ER, Daube JR, Coventry MB. Peripheral neuropathies associated with total hip arthroplasty. J Bone Joint Surg [Am]. 1976 Jan. 58(1):66-9. [Medline].

  5. Asp JP, Rand JA. Peroneal nerve palsy after total knee arthroplasty. Clin Orthop. 1990 Dec. (261):233-7. [Medline].

  6. Matsui H, Kanamori M, Kawaguchi Y. Clinical and electrophysiologic characteristics of compressed lumbar nerve roots. Spine. 1997 Sep 15. 22(18):2100-5. [Medline].

  7. Blandy JP, Fuller R. March gangrene; ischaemic myositis of the leg muscle from exercise. J Bone Joint Surg Br. 1957 Nov. 39-B (4):679-93. [Medline]. [Full Text].

  8. Weyns FJ, Beckers F, Vanormelingen L, Vandersteen M, Niville E. Foot drop as a complication of weight loss after bariatric surgery: is it preventable?. Obes Surg. 2007 Sep. 17(9):1209-12. [Medline].

  9. Koffman BM, Greenfield LJ, Ali II, Pirzada NA. Neurologic complications after surgery for obesity. Muscle Nerve. 2006 Feb. 33(2):166-76. [Medline].

  10. Kuntz C 4th, Blake L, Britz G. Magnetic resonance neurography of peripheral nerve lesions in the lower extremity. Neurosurgery. 1996 Oct. 39(4):750-6; discussion 756-7. [Medline].

  11. Elfar JC, Jacobson JA, Puzas JE, Rosier RN, Zuscik MJ. Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 2008 Aug. 90(8):1644-53. [Medline].

  12. Menotti F, Laudani L, Damiani A, Orlando P, Macaluso A. Comparison of walking energy cost between an anterior and a posterior Ankle-Foot Orthosis (AFOs) in patients with foot drop. J Rehabil Med. 2014 Jun 19. [Medline].

  13. Ring H, Treger I, Gruendlinger L, Hausdorff JM. Neuroprosthesis for footdrop compared with an ankle-foot orthosis: effects on postural control during walking. J Stroke Cerebrovasc Dis. 2009 Jan. 18(1):41-7. [Medline].

  14. Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top Stroke Rehabil. 2008 Sep-Oct. 15(5):412-26. [Medline].

  15. Kluding PM, Dunning K, O'Dell MW, Wu SS, Ginosian J, Feld J, et al. Foot Drop Stimulation Versus Ankle Foot Orthosis After Stroke: 30-Week Outcomes. Stroke. 2013 May 2. [Medline].

  16. van Swigchem R, van Duijnhoven HJ, den Boer J, Geurts AC, Weerdesteyn V. Effect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop. Phys Ther. 2012 Mar. 92(3):398-406. [Medline].

  17. Chou CH, Hwang YS, Chen CC, Chen SC, Lai CH, Chen YL. FES for abnormal movement of upper limb during walking in post-stroke subjects. Technol Health Care. 2014 Jul 2. [Medline].

  18. Bethoux F, Rogers HL, Nolan KJ, et al. Long-Term Follow-up to a Randomized Controlled Trial Comparing Peroneal Nerve Functional Electrical Stimulation to an Ankle Foot Orthosis for Patients With Chronic Stroke. Neurorehabil Neural Repair. 2015 Nov-Dec. 29 (10):911-22. [Medline].

  19. Miller L, Rafferty D, Paul L, Mattison P. A comparison of the orthotic effect of the Odstock Dropped Foot Stimulator and the Walkaide functional electrical stimulation systems on energy cost and speed of walking in Multiple Sclerosis. Disabil Rehabil Assist Technol. 2014 Mar 17. [Medline].

  20. Aono H, Iwasaki M, Ohwada T, Okuda S, Hosono N, Fuji T, et al. Surgical outcome of drop foot caused by degenerative lumbar diseases. Spine. 2007 Apr 15. 32(8):E262-6. [Medline].

  21. Pritchett JW. Nerve injury following hip replacement; treatment by shortening. Clin Orthop Relat Research. 2004. (418):168-71.

  22. Kim DH, Kline DG. Management and results of peroneal nerve lesions. Neurosurgery. 1996 Aug. 39(2):312-9; discussion 319-20. [Medline].

  23. Nath RK, Lyons AB, Paizi M. Successful management of foot drop by nerve transfers to the deep peroneal nerve. J Reconstr Microsurg. 2008 Aug. 24(6):419-27. [Medline].

  24. Soares D. Tibialis posterior transfer for the correction of foot drop in leprosy. Long-term outcome. J Bone Joint Surg Br. 1996 Jan. 78(1):61-2. [Medline]. [Full Text].

  25. Shah RK. Tibialis posterior transfer by interosseous route for the correction of foot drop in leprosy. Int Orthop. 2009 Jan 10. [Medline].

  26. Rodriguez RP. The Bridle procedure in the treatment of paralysis of the foot. Foot Ankle. 1992 Feb. 13(2):63-9. [Medline].

  27. Johnson JE, Paxton ES, Lippe J, Bohnert KL, Sinacore DR, Hastings MK, et al. Outcomes of the Bridle Procedure for the Treatment of Foot Drop. Foot Ankle Int. 2015 Nov. 36 (11):1287-96. [Medline].

  28. Werner BC, Norte GE, Hadeed MM, Park JS, Miller MD, Hart JM. Peroneal Nerve Dysfunction due to Multiligament Knee Injury: Patient Characteristics and Comparative Outcomes After Posterior Tibial Tendon Transfer. Clin J Sport Med. 2016 Jan 19. [Medline].

  29. Movahedi Yeganeh M. Triple Tendon Transfer for Correction of Foot Deformity in Common Peroneal Nerve Palsy. Foot Ankle Int. 2016 Feb 9. [Medline].

Diagram of ground reaction vector during heel strike.
Common and superficial peroneal nerves, branches, and cutaneous innervation.
Deep peroneal nerve, branches, and cutaneous innervation.
Incisions for Bridle procedure.
Posterior leg with retrieved posterior tibial tendon above ankle. Window in interosseous membrane is labeled with X.
Posterior tibial tendon (C) is pulled through slit in anterior tibial tendon (A) and inserted into second cuneiform. Posterior tibial tendon is anastomosed to anterior tibial tendon and distal stump of peroneus longus (B) that has been rerouted anterior to lateral malleolus.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.