Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Distal Humerus Fractures Treatment & Management

  • Author: Edward Yian, MD; Chief Editor: Harris Gellman, MD  more...
 
Updated: Oct 02, 2015
 

Approach Considerations

The decision to offer operative intervention for distal humerus fractures is based on many factors, including fracture type, intra-articular involvement, fragment displacement, bone quality, joint stability, and soft-tissue quality and coverage. In addition, individual factors, such as patient age, overall health condition, functional extremity demands, and patient compliance, are all considered. Preoperatively, patients must understand outcome expectations and the importance of rehabilitation.

Conditions in which operative intervention is supported include the following:

  • Intra-articular fragment displacement
  • Physeal displacement
  • Supracondylar comminution and displacement
  • Open fractures
  • Floating elbow patterns
  • Neurovascular injury
  • Compartment syndrome
  • Multiple traumatic injuries

Primary goals for operative intervention are to restore articular congruity and elbow stability. Another goal is to decrease the possibility of posttraumatic arthritis and elbow stiffness.

Contraindications to operative intervention for distal humerus fractures are patient-specific. Patient factors that should be considered include the following:

  • Age
  • Overall health condition
  • Functional demands and expectations
  • Overlying soft-tissue quality and bone quality

Finally, the surgeon must be able to make an honest evaluation of his or her ability to successfully perform open reduction and internal fixation (ORIF) of the fracture pattern.

Although distal humerus fractures remain a challenging reconstructive problem for orthopedic surgeons, future technology may hold many solutions. With the advent of newer, stronger biocompatible materials, diverse hardware options allow improved reduction and fixation of distal humerus fractures. Lower-profile plates and smaller screws allow the surgeon to maintain the original articular congruity needed to prevent posttraumatic arthrosis, which allows for faster and progressive postoperative rehabilitation.

In addition, for the unreconstructable elbow, primary total elbow arthroplasty (TEA) is gaining acceptance.[22, 23] Significant improvements in its design and surgical technique have produced reliable pain relief and functional restoration. Although rigid patient selection criteria should be adhered to with this surgical option, it appears that TEA may help elderly patients with severe bone loss and comminution. Elbow hemiarthroplasty (EHA) has also been described as a possible alternative to TEA in older patients.[24]

Next

Medical Therapy

Nonoperative treatment depends on the fracture type. Casting and immobilization can be used for nondisplaced fractures, particularly with medial, lateral, and supracondylar process fractures (extra-articular and extracapsular).

Medial epicondylar fractures can be immobilized for 7 days, with the elbow flexed at 90º, the forearm pronated, and the wrist flexed at 30º to relax the common flexor-pronator muscle group. If more than 3 mm of displacement is present or the fragment is trapped in the medial joint, attempts at closed reduction often fail, and ORIF is necessary.

Lateral epicondylar fractures can be immobilized with the elbow in 90º of flexion, the forearm in supination, and the wrist extended slightly to relax the extensor muscles.

Stable, nondisplaced, extra-articular distal humerus fractures can be treated with a short period of splinting or casting in a long arm cast (usually for approximately 2 weeks), followed by use of a hinged functional brace with early elbow motion. Often, gentle closed reduction consisting of axial traction in neutral rotation with correction of the deformity can be attempted for maximal anatomic reduction. An olecranon Kirschner wire (K-wire) traction apparatus with later brace conversion has been described, with use depending on the patient's medical status (ability to tolerate an operative procedure) and soft-tissue condition.

Although the outcome after nonoperative treatment may include reduction imperfections with prominent callus formation and slight varus angulation, good elbow function is generally obtained if early range-of-motion (ROM) exercises can be instituted. Articular involvement or fractures with significant comminution, displacement, or both are poorly tolerated and require open reduction and internal fixation.

In the pediatric population, only nondisplaced supracondylar humerus fractures are treated in a closed manner. The patient's arm can initially be placed in a posterior splint, with transition to a long arm cast when soft-tissue swelling has diminished. For extension-type fractures, the elbow is placed at 90º of flexion, with the forearm in neutral rotation. Type II and III extension-type fractures often require stabilization with percutaneous pins in order to maintain reduction.

If closed treatment for a stable type II fracture is desired, then reduction is maintained by keeping the elbow in at least 120º of flexion and full pronation. However, if any concern exists about circulatory impairment or swelling, then percutaneous pinning is recommended. Stable, nondisplaced, flexion-type supracondylar humerus fractures should be immobilized in a long arm cast with the elbow in extension.

Lateral condylar fractures often require treatment with operative stabilization because of their unstable fracture pattern. Minimally displaced, stable type I fractures can be treated with immobilization and close monitoring to prevent late displacement. Pirker et al studied 51 pediatric lateral condylar fractures that had minimal displacement and found that 9.8% of these later became displaced.[25]

Fracture separations of the distal humeral epiphysis must be recognized early, and closed reduction should be attempted. The reduction maneuver involves flexion and pronation of the forearm to prevent medial translocation of the distal fragment.

Previous
Next

Surgical Therapy

Studies have supported the notion that distal humerus fractures in adults are optimally treated with open anatomic reduction and stable fixation to allow early anatomic restoration and upper-extremity ROM. Although operative intervention is not without complications, the risk can be reduced by paying detailed attention to anatomic reduction, soft-tissue handling and preservation, stable fixation, and early mobilization. For articular fractures and unstable nonarticular fractures, operative treatment with direct visualization of the joint surface and anatomic reduction and stabilization can prevent accelerated arthritis associated with articular incongruity.

If the injury involves significant contamination from external sources or bone devitalization, then osteosynthesis is delayed following serial irrigations and debridements. Temporary fixation with a bridging external fixator, however, can be performed. Olecranon skin traction is an option for persons who have fractures with excessive soft-tissue swelling and in patients with multiple traumatic injuries who require rapid, temporary skeletal stabilization.

Other reconstruction options include autograft or allograft support and fascial arthroplasty. In relatively inactive elderly patients with poor bone quality, TEA is indicated for comminuted distal humerus fractures when ORIF is not feasible.[26, 27] Elbow arthrodesis is a severely limiting alternative and is very rarely performed.

Distal humerus fracture repair is illustrated in the images below.

Radiograph of a supracondylar-intracondylar distal Radiograph of a supracondylar-intracondylar distal humerus fracture. Note the posteromedial and posterolateral column plate placement used for reconstruction with the chevron osteotomy.
Lateral radiograph of a supracondylar-intracondyla Lateral radiograph of a supracondylar-intracondylar distal humerus fracture. Note the distal extent of the contoured plate placed extra-articularly.
Radiograph of a supracondylar-intracondylar humeru Radiograph of a supracondylar-intracondylar humerus fracture. Note the ipsilateral radial head fracture fixed through a posterior incision.
Lateral radiograph of a supracondylar-intracondyla Lateral radiograph of a supracondylar-intracondylar distal humerus fracture with an ipsilateral radial head fracture.
Anteroposterior radiograph of a pediatric type III Anteroposterior radiograph of a pediatric type III supracondylar humerus fracture. Note the lateral pinning.
Lateral and medial pinning of a type III extension Lateral and medial pinning of a type III extension-type supracondylar humerus fracture.
Lateral radiograph after open reduction and pinnin Lateral radiograph after open reduction and pinning of a type III supracondylar humerus fracture.

Preparation for operation

Preoperative planning

Preoperative planning is essential before surgical treatment of a distal humerus fracture. Proper imaging studies and physical examination findings help determine the appropriate surgical approach and techniques necessary for a functional outcome. Contralateral distal humerus radiographs may be required to create a template of the restored anatomy of the injured extremity. Soft-tissue involvement may dictate the location of the incision. Tracing paper can be used to mark the fracture fragments and lines, as well as the anatomic reduction. The steps of the procedure, including patient positioning, surgical approach, provisional fixation, and definitive treatment, should be discussed and documented.

Discussion has begun regarding the timing of operative treatment for closed pediatric supracondylar humerus fractures. Typically, if the patient is neurovascularly stable, the arm is splinted, and the patient is taken to the operating room as soon as possible. Mehlman et al provided strong evidence that no difference exists in perioperative complication rates for displaced supracondylar humerus fractures treated before or after an 8-hour period.[28]

Positioning

The patient should be positioned to allow adequate exposure and visualization of the entire involved area. Previous authors have supported a wide range of positions, from supine to prone to the lateral decubitus position.

For single-column or shear fractures, the supine position is helpful in order to use the lateral approach to the elbow. An arm board or hand table can be placed at the side of the operating table for support of the medial portion of the arm. The authors prefer to use the lateral decubitus position with a beanbag for support and a padded, sterile arm holder under the proximal humerus. The hip-holder attachment to the Jackson table also can be used as an arm holder. This allows adequate access to the posterior portion of the elbow joint and also permits the arm to be freely rotated proximally for more accurate positioning.

The hand and forearm are draped with a sterile stockinette. The shoulder is placed at 90° of abduction, and the elbow is flexed over the arm holder at 90°. The lateral position also allows access to either the anterior or posterior iliac crest in case a bone graft is needed. The prone position is rarely used.

Other considerations for positioning should include associated injuries, simultaneous procedures that will be performed during the same anesthetic administration, and the patient's overall systemic demands (such as those resulting from closed head injuries).

A tourniquet should be applied as far proximally on the brachium as possible. With supracondylar or high column fractures, a sterile tourniquet is needed. The entire arm should be prepared and draped.

Procedure

Surgical approaches

Several different surgical approaches, with variations, have been described. For isolated single column or epicondylar injuries, a lateral or straight medial approach is recommended. ORIF using a combined medial and lateral approach has been employed for intra-articular fractures of the distal humerus.[29]

The lateral (Kaplan) approach involves an incision proximal to the lateral epicondyle that is extended distally across the radiohumeral interval. Dissection is carried down between the extensor carpi radialis brevis–extensor digitorum communis (EDC) interval or between the EDC–extensor carpi radialis longus interval until the supinator is visualized. Detachment of the heads of the supinator reveals the annular ligament and the lateral column of the distal humerus. If the incision is to be extended distally, the posterior interosseous nerve must be protected.

The posterolateral (Kocher) approach may be safer for exposure of the lateral column because it uses the anconeus–extensor carpi ulnaris (ECU) interval, better protecting the posterior interosseous nerve. An incision is started just proximal to the lateral epicondyle and ends obliquely across the proximal ulna. The arm is kept pronated during the dissection to keep the posterior interosseous nerve away from the dissection field. Blunt dissection through the ECU fascia and through the anconeus-ECU interval leads to the elbow joint capsule. Exposure distal to the annular ligament leads to the posterior interosseous nerve. The lateral collateral ligament (LCL) is visualized by retracting the ECU and EDC anteriorly.

The capsular incision should be made anterior to the radiohumeral ligamentous complex to avoid injury to the posterior fibers of the LCL complex and to prevent resulting instability. If truly necessary for exposure, the LCL may be detached from the lateral epicondyle and then reattached with nonabsorbable suture or suture anchors.

The medial approach involves the interval between the brachialis and medial collateral ligament. Proximal extension is made through the brachialis-triceps interval. A similar posteromedial approach has been described as well for fracture fixation and medial placement of a single plate. This allows dissection of the radial nerve to be avoided but may not be appropriate in settings with preoperative radial nerve injuries.[30]

The posterior (Campbell) incision is most often used for nonarticular supracondylar fractures or intra-articular fractures. The incision can be curved gently, either medially or laterally, at the olecranon to avoid impingement directly over the apex. The ulnar nerve should be isolated carefully and at least 6 cm mobilized both proximally and distally to the cubital tunnel to allow the nerve to lie within the subcutaneous tissues anteromedially to the cubital tunnel (transposition).[10, 7, 31] Careful attention should be paid to the release of the medial intermuscular septum and distal dissection of the nerve within the flexor carpi ulnaris (FCU).

A triceps-splitting approach is most commonly used for exposure of the distal humerus. This technique involves deep dissection down the middle of the arm over the olecranon, along with fascial and periosteal flap elevation along the sides of the bone. Medial triceps insertion avulsion has been reported and must be carefully avoided.

The anconeus fibers and the FCU fibers are elevated off the bone laterally and medially for improved distal exposure. Proximally, the radial nerve crosses within the deep muscle fiber origin of the medial triceps head 13-15 cm above the joint line. The triceps insertion should be preserved as much as possible and should be reattached through drill holes if released. This approach has been reported to lead to devascularization-induced triceps rupture and may increase adhesion formation.

The triceps-sparing approach described by Bryan and Morrey is particularly advocated for use in intra-articular fractures of the distal end of the humerus when conversion to an elbow arthroplasty or to a TEA is necessary as the primary treatment.[32]

The ulnar nerve is isolated and is transposed anteriorly. The triceps is dissected subperiosteally and is elevated from medial to lateral for exposure of the distal humerus. It is kept in continuity with the forearm fascia and periosteum, and the triceps insertion is directly from the ulna. Variants of this technique have described a lateral-to-medial reflection of the triceps mechanism. The ulnar collateral ligament may be released from the distal humerus to improve exposure. Reattachment is necessary after fracture repair, but reattachment is not necessary following TEA.

Some authors prefer a nonarticular olecranon osteotomy, with proximal retraction of the triceps with its insertion for visualization of the distal humerus. This involves an osteotomy performed distal to the articular olecranon. The osteotomy can be directed transversely (modified MacAusland technique) or obliquely (Mueller technique).

Because of the inherent risk of fracture nonunion, many authors prefer a triceps-sparing approach or an intra-articular olecranon osteotomy. For improved exposure for intra-articular fractures, the posterior approach is often combined with an intra-articular osteotomy. Direct visualization allows accurate reduction of the joint surfaces. Both transverse and chevron osteotomies have been described. The authors prefer a chevron osteotomy with direct fixation using a tension band wire technique and K-wires.

The osteotomy can also be fixed with an intramedullary 6.5-mm cancellous screw, which can be predrilled and tapped before the osteotomy for easier placement of the screw. The curvature of the proximal ulna may make accurate placement of the screw down the intramedullary canal difficult.

The olecranon is sharply dissected along the medial and lateral portions to better view the semilunar notch. Typically, an oscillating thin-blade saw is used, with the osteotomy cuts converging obliquely and distally, just distal to the midportion of the semilunar notch. The amount of articular cartilage is least here.

The osteotomy is completed with an osteotome. Use of the osteotome allows improved engagement of the fragments after reduction. The remaining capsular attachments and the soft tissue bordering the triceps are cut to allow proximal retraction of the olecranon tip with the triceps insertion. The olecranon tip is elevated off the posterior aspect of the humerus. The ulnar nerve is isolated and transposed with this approach.

After distal humerus fracture fixation, the proximal ulna can be reattached using standard Arbeitsgemeinschaft für Osteosynthesefragen (AO)-Association for the Study of Internal Fixation (ASIF) tension band wire technique and either two parallel 0.0625-mm K-wires or a 6.5-mm partially threaded cancellous screw, as described previously. The tension band wire should be placed underneath the triceps, against the bone periosteal surface, and secured with either the K-wires or the cancellous screw. The transverse distal wire hole should be placed well distal to the osteotomy site.

Reduction and stable fixation

A methodical approach should be taken to reduction and fixation of the fracture fragments. All of the fracture fragments should be identified initially. Hematoma should be removed, and the fracture planes should be identified and restored.

If one column remains intact, the reduction can be simplified by assembling the fragments against the intact column. For bicolumnar involvement, some physicians prefer to first stabilize one column and then to reduce the second column to the first column. A more common approach is to start with the articular surface and to anatomically reduce the joint surface. The metaphyseal fragments are then separately reduced and fixed. This effectively converts the fracture into a two-part fracture. Others prefer a "best-fit" method of anatomic restoration. By starting with the portion that can be best anatomically aligned and is least comminuted, errors in reduction can be minimized.

Provisional reduction can be accomplished with K-wires or bone-holding forceps. Most surgeons begin with reconstitution of the trochlea and work proximally. The trochlea can be stabilized back to the shaft and the least-fractured column. With articular comminution, it is important to restore the normal articular surface depth and width. Central comminution or missing articular fragments should be replaced with bone graft obtained from the iliac crest. Fixation should be obtained with interfragmentary 4.0 cancellous lag screws crossing both the medial and lateral column to maintain reduction.

For more extensive comminution, a fully threaded, nonlagged 4.0 cancellous screw should be placed across the trochlea to prevent narrowing across the gap. Retrograde drilling through one of the fracture fragments is recommended to maintain a central position of the screw. The screw can then be placed from the capitellar fragment across the fracture site and into the trochlear fragment.

Low columnar fragments may also be fixed with small, cannulated differential pitch screws buried beneath the articular surface or small, threaded K-wires buried under the articular surface. Once the articular fragments have been reduced, the stabilized distal fragment is reduced to the shaft. Precontoured plates can be placed onto the shaft over K-wires that stabilize the construct. A metaphyseally placed screw can hold the plate initially for stability.

Various implants are available today for the diverse fracture patterns observed in the distal humerus. Some plates are contoured specifically for the anatomy of the distal humerus. Several companies have developed anatomically based precontoured condylar plate systems that can assist with fracture reduction. Screws ranging from cannulated to noncannulated and ranging in size from 2.7 mm (mini-fragment screws) to 3.5 mm and 4.5 mm (small- and large-fragment screws) may be needed. Most small-fragment implant sets have 3.5-mm and partially threaded 4.0-mm screws up to 50 mm in length. If longer screws are needed, 3.5-mm screws up to 110 mm in length are available.

Newer, minimally invasive, percutaneously inserted bridge plates also have been described and have been used to avoid extensive dissection and potential nerve injury. Some have shown good results in their utilization, even with prior radial nerve palsy anticipating eventual nerve recovery.[33]

Plate placement is the keystone of fracture reduction. Once articular reconstruction is completed, the lateral column is fixed with a molded 3.5-mm dynamic compression plate, or a reconstruction plate is placed posterolaterally. The posterior aspect of the lateral condyle has a bare surface immediately proximal to the articular surface, making it safe for plate placement. However, the posterior capitellar articular surface limits distal placement of the plate. Screws can be directed anterosuperiorly, above the capitellum, or directed anteriorly, gaining fixation distally only by the near cortex (in order to avoid joint penetration) and gaining bicortical fixation proximally.

The medial column is stabilized with a one-third tubular plate or a 3.5-mm reconstruction plate placed in an orthogonal fashion with respect to the lateral plate. The medial column of the distal humerus is nonarticular, and a plate can be contoured into a semicircle along its distal end to cradle the medial epicondyle. The most distal screw can be oriented superiorly at a 90° angle to the more proximal screws, enhancing stability, or obliquely, to engage the lateral column.[34]

Orthogonal plate placement has been demonstrated to provide the greatest stability for avoiding a variety of failure loads.[35] However, Schemitsch et al demonstrated that with cortical contact, plates placed medially and laterally were as rigid as those placed orthogonally.[36] Care must be taken to prevent olecranon hardware impingement in elbow extension. Jupiter has described placing a third plate laterally along the lateral column for added fixation.[9, 10]

Basic principles for internal fixation of these fractures include the following:

  • All distal screws from one column should pass through a plate
  • All distal screws should pass into a major fragment on the opposite column
  • All screws should be as long as possible to engage the opposite cortex
  • All screws should engage as many fragments as possible
  • Screws approaching the articular surfaces and fossae should be avoided

O'Driscoll has described the use of "contact with compression" in order to obtain increased stability across the fracture site. Fixation of the articular fragments onto the proximal supporting columns creates the weakest link. By obtaining compression across the fracture sight, the limb is shortened slightly. This leads to overlap of fragments, which improves overall stability and the ability to institute early range of motion to prevent elbow stiffness.

Fixation of distal humerus fractures often is determined by the fracture pattern. With divergent single-column injury patterns, two to five lag screws placed percutaneously from side to side may be employed for adequate fixation. For coronal shear fractures, small cannulated screws placed anterior to posterior through the articular surface anteriorly may be used. Partially threaded 4.0-mm cancellous bone screws also can be placed from posterior to anterior through the fracture line, gaining unicortical fixation.

After fixation is achieved, it is important to carefully assess the entire range of motion of the elbow to evaluate stability. If olecranon impingement limits extension, hardware may have to be modified, or the tip of the olecranon may be excised. Other options to improve stability include bone autograft or allograft, bicortical interpositional grafting for bone loss (often for malunions), and polymethylmethacrylate with screw augmentation. If this fails, then a hinged external fixator may be considered as a salvage procedure. TEA is an option for comminuted distal humerus fractures in the elderly.

A drain is placed, and the soft tissue and skin should be closed in layers. The elbow joint is immobilized in a well-padded, well-molded splint that is in full extension to limit swelling.

Pediatric fractures

For pediatric supracondylar humerus fractures, extension-type fractures are initially manipulated with the patient completely relaxed in order to achieve stable anatomic reduction. Traction is established, and then the limb is hyperextended with varus or valgus correction and hyperflexed to stabilize the fracture. Finally, forearm pronation is recommended to stabilize the distal fragment in the coronal plane. Similarly, with flexion-type fractures, the elbow is reduced in extension and the previously mentioned reduction technique is performed. Careful attention should be paid to applying pressure posteriorly onto the distal fragment through the forearm when flexing the elbow to maintain reduction of the distal fragment.

Type III flexion-type injuries are notorious for necessitating open reduction. Several authors have described various closed methods of reduction for this type of fracture. If open reduction is needed, an anteromedial approach is often used due to the anterolaterally displaced fragment. The proximal fragment is usually impaled within the triceps mechanism.

Controversy has persisted concerning the benefits of crossed percutaneous pinning versus those of lateral pinning for stable fixation of supracondylar humerus fractures. Lee et al, among others, have provided biomechanical evidence that cross pinning provides a stronger construct.[37] Skaggs et al have shown in retrospective studies that the configuration of the pins does not affect final fracture reduction of type II or III supracondylar humerus fractures.[20]

The lateral pins are placed first with the elbow in hyperflexion and pronation. The pin or pins should be placed in the center of the lateral condyle and directed at 30° to the humeral axis. The medial pin or pins should be started at the medial epicondyle and directed anterolaterally. Before pin insertion, the ulnar nerve should be palpated, or soft tissue should be dissected and the epicondyle visualized. Studies have shown a high incidence of ulnar nerve subluxation with flexion of the elbow during the reduction maneuver.

Attention should be paid to preventing pins from crossing at the fracture site. The pins are cut outside of the skin and bent back. The arm should be placed in a long arm splint postoperatively, with transition to a long arm cast (worn for at least 3 weeks).

Open reduction with pinning is the treatment of choice for displaced pediatric lateral and medial condylar fractures. Rotational displacement is very difficult to evaluate with closed reduction maneuvers. A direct lateral approach to the elbow is recommended for lateral fragments through the brachioradialis-triceps interval. Posterolateral dissection should be avoided in order to preserve the vascularity from the posteriorly located vessels.

A posteromedial incision is used for medial fragments. The fracture site should be carefully debrided, and 2 smooth K-wires are inserted through the condyle or metaphyseal fragment and into the medial humeral metaphysis. The pins can be kept under or external to the skin but require removal after 3 weeks. The arm is protected in a long arm splint, with transition to a long arm cast (worn for 3 weeks).

Fracture separation of the epiphysis can be treated with open reduction and pinning if recognized early. Separations are often missed, and if they are discovered after 5-7 days, they should be splinted and allowed to heal with remodeling.

Postoperative care

The entire extremity should be elevated above the level of the heart to reduce swelling. The drain can be removed after 24-48 hours, when drainage diminishes. Once the swelling abates, the elbow can be placed in a supportive brace or sling, and gentle, active ROM exercises can be initiated. Passive ROM exercises are delayed 6 weeks to allow for early fracture healing. In patients who have undergone a triceps-sparing approach, active extension is prevented for the first 6 weeks. Instead, elbow extension is achieved through gravity. Six weeks after surgery, passive ROM, including dynamic flexion and extension splints as needed, is instituted. Strengthening is begun 10 weeks after surgery.

Most pediatric elbow fractures can initially be treated in a long arm posterior splint for comfort after surgery, with transition to a long arm cast. The pins are removed after 3 weeks, and the cast is removed after 3-4 weeks. Protected ROM can be initiated at this time.

Previous
Next

Complications

The most commonly observed complication after operative treatment is loss of elbow motion. Physical therapy, including active and passive ROM, as well as static progressive splinting, is useful treatment. Nonoperative treatment is usually successful only for an extrinsic elbow contracture that has been present for less than 6 months.

If nonoperative treatment fails, operative release is recommended. Most often, an open approach is used. Mansat and Morrey described a limited lateral approach to both the anterior and posterior capsule called the column procedure.[38] This involves elevating muscles from the lateral supracondylar osseous ridge. Mansat and Morrey had an 11% complication rate; hematoma formation and ulnar nerve paresthesia were the most common complications. Other authors have described arthroscopic approaches to capsular release.

Anatomic reduction with stable fixation of fracture fragments, careful handling of the ulnar nerve, and adequate fixation of an olecranon osteotomy can improve results of surgical treatment. Failure of fixation is most often the result of poor preoperative planning and poor operative technique, though bone quality may limit stable fixation. Careful rehabilitation progression can optimize the opposing forces of motion maintenance and fracture healing.

Nonunion rates for surgically treated distal humerus fractures are in the range of 2-7%. Infection, bone osteoporosis, age, open fractures, multiple injuries, and inadequate fixation are among the factors leading to nonunion. Symptoms include persistent pain, weakness, and instability, though most patients maintain up to an 80º arc of motion. If surgical treatment is chosen, options include revision ORIF, allograft reconstruction, and resection or distraction arthroplasty.[39] TEA may be considered in elderly, less active patients.[40] With pediatric elbow fractures, nonunions of the lateral condyle are the most common. Compression fixation and bone grafting are recommended as treatment.

Heterotopic ossification can occur in up to 50% of cases after acute treatment of distal humerus fractures. It typically occurs in the posterolateral aspect of the elbow, from the lateral humeral condyle to the posterolateral olecranon. Hastings and Graham described a functional classification system for elbow ectopic ossification that assists in clinical evaluation, treatment, and operative planning, as follows[41] :

  • Class I - These fractures are associated with no functional limitations
  • Class IIA - These fractures are associated with functional limitation of flexion and extension; they result in anterior or posterior ossification or ossification involving both sides of the elbow joint
  • Class IIB - These fractures involve functional limitation of supination and pronation and also may involve ossification of the interosseous membrane or distal radioulnar joint
  • Class III - These fractures are associated with ankylosis that eliminates elbow ROM

Some studies have found a lower incidence of heterotopic ossification formation when open reduction and internal fixation are performed within 24-48 hours of injury. Heterotopic ossification incidence is increased with associated injuries, such as burns, head injuries, high-energy injuries, and open injuries. In these patients, prophylactic treatment should be considered. Forced passive manipulation also may increase the development of heterotopic bone formation.

Preventive measures include the use of nonsteroidal anti-inflammatory drugs (NSAIDs), low-dose radiation therapy, and continuous passive ROM exercises. Most studies have looked at heterotopic ossification treatment around the hip. Regardless, the treatment of heterotopic ossification continues to be controversial.

NSAIDs have been used with success against heterotopic ossification. Indomethacin is the most commonly used drug for heterotopic ossification prevention and has been shown to decrease heterotopic ossification incidence and severity. The recommended dose is 75 mg orally 2 times per day for 3 weeks. Sucralfate, at a dose of 1 g orally four times per day, has been recommended to prevent gastrointestinal disturbances in patients taking indomethacin.

Low-dose radiation therapy with single doses of 6-7 Gy to the elbow has been successful at preventing further progression. The timing of the irradiation (preoperative vs postoperative) does not seem to affect operative outcomes. Some authors have recommended irradiation within 72 hours of elbow trauma. The concerns of neoplasm development after radiation treatment are evident.

Operative excision of heterotopic ossification is recommended 12 months after the injury, though studies have shown good results with treatment 3-6 months after the injury. Declining levels of serum alkaline phosphatase and the radiographic confirmation of mature heterotopic bone can be used to help predict timing for heterotopic bone excision. However, studies have shown no difference in serum alkaline phosphatase levels in matched populations with or without ectopic ossification. As a result, they are not routinely indicated.

Combined medial and lateral approaches are recommended for removal of heterotopic bone. Cut bone surfaces should be cauterized and covered with bone wax, and extensive capsular release should be performed.

Patient complaints related to ulnar nerve dysfunction are among the most frequent findings after surgical treatment of distal humerus fractures, affecting as many as 15% of patients. Revision operative procedures have revealed extensive fibrosis and fracture healing that causes the ulnar nerve to adhere to the medial epicondylar area. Mobilization and anterior transposition at the time of index surgery decreases the incidence of this complication. Further, a 2011 study suggested that performing intramedullary antegrade nailing, rather than crossed K-wire fixation, as the index surgery for supracondylar humeral fractures reduces the risk of ulnar nerve injury.[42]

Instability after distal humerus fracture fixation is rare. It is most often observed with untreated type II single-column injuries or radial head or coronoid fractures. With comminuted intra-articular fractures, it may not be possible to reconstruct associated ligamentous injuries. Hall et al described the use of a hinged external fixator to treat associated posterolateral instability of a severely comminuted distal humerus fracture after having been unable to stabilize the joint after ORIF.[43] Although the distal humeral condyles may be fractured, the medial and lateral ligamentous attachments typically remain preserved, lending stability to the elbow after operative stabilization.

Avascular necrosis is extremely rare after distal humerus fractures. Isolated studies have reported an increased risk of avascular necrosis of the free-floating fragment after H-type intra-articular distal humerus fractures.

The most common nerve injuries that are associated with ORIF of distal humerus fractures are ulnar nerve injuries. Ulnar neuropathy has been reported to occur in 7-15% of cases. The ulnar nerve, because of its proximity to the dissection, should be exposed and identified with eventual anterior transposition. Postoperative ulnar nerve dysesthesia symptoms with intact motor examination findings are common and can be closely monitored.

With more proximally involved fractures, the radial nerve should be identified upon exposure. It can be damaged by retraction, plate impingement, or tissue dissection during the operation. If a change in baseline motor nerve function on postoperative examination occurs, reexploration is recommended. Brachial artery injuries have been described and are more common with extension-type elbow injuries. The brachial artery can be damaged by the sharp ends of the proximal fragment penetrating its wall.

Dormans et al, along with Cramer et al, studied the high incidence of anterior interosseous nerve injuries associated with closed pediatric supracondylar fractures.[44, 45] Return of function occurred within 10 months without surgical intervention. Overall, the authors found a 9.5% incidence of nerve injury. Radial nerve injuries have been found to be more common with posteromedial displaced fractures, whereas median nerve injuries have been associated with posterolateral angulated fractures.

Avascular necrosis of the trochlea is associated with more distally based pediatric humerus fractures. Injury to the physeal vasculature of the medial trochlea can lead to avascular necrosis, resulting in a fishtail deformity. Malreduction of a lateral condylar fracture can lead to development of a bony bar within the physis and to development of a fishtail deformity.

Angular deformities, such as cubitus varus and cubitus valgus, are rare complications after pediatric supracondylar humerus fractures. Often, anatomic reduction prevents development of these deformities. Cubitus valgus is very rare and often occurs with posterolateral fracture patterns. It often leads to more functional loss (typically of extension) than does cubitus varus. Lateral condylar fractures can lead to cubitus varus angulation. A combination of nonanatomic reduction and physeal growth stimulation leads to this deformity. Most of the time, the degree of deformity is of little consequence.

Oh et al described 7 of 12 young children in whom fracture separation of the distal humeral epiphysis led to cubitus varus deformity, with development of avascular necrosis of the medial humeral condyle occurring in 6 of the 7 patients.[46]

Previous
Next

Long-Term Monitoring

Inpatient care is recommended for 2-3 days, with the wound carefully examined 48-72 hours after surgery. In addition, excessive swelling and signs of compartment syndrome should be monitored. The wound should be examined again by 14 days after surgery, and the sutures should be removed. Fracture healing should be assessed with serial radiographs to examine callus formation, alignment, and hardware integrity. Bony union is anticipated by 3 months after surgery. With pediatric fractures, bony union is expected sooner and ROM can be initiated earlier.

Previous
 
Contributor Information and Disclosures
Author

Edward Yian, MD Consulting Staff, Department of Orthopedic Surgery, Southern California Permanente Group Orange County

Edward Yian, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Thomas R Hunt III, MD Professor and Chairman, Joseph Barnhart Department of Orthopedic Surgery, Baylor College of Medicine

Thomas R Hunt III, MD is a member of the following medical societies: American Orthopaedic Association, American Orthopaedic Society for Sports Medicine, Southern Orthopaedic Association, AO Foundation, American Academy of Orthopaedic Surgeons, American Association for Hand Surgery, American Society for Surgery of the Hand, Mid-America Orthopaedic Association

Disclosure: Received royalty from Tornier for independent contractor; Received ownership interest from Tornier for none; Received royalty from Lippincott for independent contractor.

Chief Editor

Harris Gellman, MD Consulting Surgeon, Broward Hand Center; Voluntary Clinical Professor of Orthopedic Surgery and Plastic Surgery, Departments of Orthopedic Surgery and Surgery, University of Miami, Leonard M Miller School of Medicine, Clinical Professor, Surgery, Nova Southeastern School of Medicine

Harris Gellman, MD is a member of the following medical societies: American Academy of Medical Acupuncture, American Academy of Orthopaedic Surgeons, American Orthopaedic Association, American Society for Surgery of the Hand, Arkansas Medical Society

Disclosure: Nothing to disclose.

Additional Contributors

Peter M Murray, MD Professor and Chair, Department of Orthopedic Surgery, Mayo Clinic College of Medicine; Director of Education, Mayo Foundation for Medical Education and Research, Jacksonville; Consultant, Department of Orthopedic Surgery, Mayo Clinic, Jacksonville; Consulting Staff, Nemours Children's Clinic and Wolfson's Children's Hospital

Peter M Murray, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American Orthopaedic Association, American Society for Reconstructive Microsurgery, Orthopaedic Research Society, Society of Military Orthopaedic Surgeons, American Association for Hand Surgery, American Society for Surgery of the Hand, Florida Medical Association

Disclosure: Nothing to disclose.

Acknowledgements

Madhav Karunakar, MD Consulting Surgeon, Section of Orthopedic Surgery, Department of Surgery, University of Michigan Medical Center

Madhav Karunakar, MD is a member of the following medical societies: American Academy of Orthopaedic Surgeons and AO Foundation

Disclosure: Nothing to disclose.

References
  1. Caravaggi P, Laratta JL, Yoon RS, Biasio JD, Ingargiola M, Frank MA, et al. Internal Fixation of the Distal Humerus: A Comprehensive Biomechanical Study Evaluating Current Fixation Techniques. J Orthop Trauma. 2013 Jul 29. [Medline].

  2. Eastwood WJ. The T-shaped fracture of the lower end of the humerus. J Bone Joint Surg. 1937. 19:364-9.

  3. Evans EM. Supracondylar-Y fractures of the humerus. J Bone Joint Surg Br. 1953 Aug. 35-B(3):371-5. [Medline].

  4. Riseborough EJ, Radin EL. Intercondylar T fractures of the humerus in the adult. A comparison of operative and non-operative treatment in twenty-nine cases. J Bone Joint Surg Am. 1969 Jan. 51(1):130-41. [Medline].

  5. Lambotte A. Chirurgie operatoire des fractures. Paris: Masson et Cie; 1913.

  6. Henley MB. Intra-articular distal humeral fractures in adults. Orthop Clin North Am. 1987 Jan. 18(1):11-23. [Medline].

  7. Wang KC, Shih HN, Hsu KY, et al. Intercondylar fractures of the distal humerus: routine anterior subcutaneous transposition of the ulnar nerve in a posterior operative approach. J Trauma. 1994 Jun. 36(6):770-3. [Medline].

  8. McKee MD, Wilson TL, Winston L. Functional outcome following surgical treatment of intra-articular distal humeral fractures through a posterior approach. J Bone Joint Surg Am. 2000 Dec. 82-A(12):1701-7. [Medline].

  9. Jupiter JB, Mehne DK. Fractures of the distal humerus. Orthopedics. 1992 Jul. 15(7):825-33. [Medline].

  10. Jupiter JB, Goodman LJ. The management of complex distal humerus nonunion in the elderly by elbow capsulectomy, triple plating, and ulnar nerve neurolysis. J Shoulder Elbow Surg. 1992. 1:37-42.

  11. Bashyal RK, Chu JY, Schoenecker PL, Dobbs MB, Luhmann SJ, Gordon JE. Complications after pinning of supracondylar distal humerus fractures. J Pediatr Orthop. 2009 Oct-Nov. 29(7):704-8. [Medline].

  12. Mighell M, Virani NA, Shannon R, Echols EL Jr, Badman BL, Keating CJ. Large coronal shear fractures of the capitellum and trochlea treated with headless compression screws. J Shoulder Elbow Surg. 2010 Jan-Feb. 19(1):38-45. [Medline].

  13. Doornberg J, Lindenhovius A, Kloen P, et al. Two and three-dimensional computed tomography for the classification and management of distal humeral fractures. Evaluation of reliability and diagnostic accuracy. J Bone Joint Surg Am. Aug 2006. 88(8):1795-801. [Medline].

  14. Skaggs DL, Mirzayan R. The posterior fat pad sign in association with occult fracture of the elbow in children. J Bone Joint Surg Am. 1999 Oct. 81(10):1429-33. [Medline].

  15. Nolan BM, Sweet SJ, Ferkel E, Udofia AA, Itamura J. The Role of Computed Tomography in Evaluating Intra-Articular Distal Humerus Fractures. Am J Orthop (Belle Mead NJ). 2015 Sep. 44 (9):E326-30. [Medline].

  16. Vocke-Hell AK, von Laer L, Slongo T, et al. Secondary radial head dislocation and dysplasia of the lateral condyle after elbow trauma in children. J Pediatr Orthop. 2001 May-Jun. 21(3):319-23. [Medline].

  17. Mehne DK, Jupiter JB. Fractures of the distal humerus. Browner BD, Jupiter JB, Levine AM, et al, eds. Skeletal Trauma. Philadelphia, Pa: WB Saunders Co; 1992. vol 2: 1146.

  18. Mehne DK, Matta J. Bicolumn fractures of the adult humerus. Paper presented at: 53rd Annual Meeting of the AAOS; 1986; New Orleans, LA.

  19. Kuhn JE, Louis DS, Loder RT. Divergent single-column fractures of the distal part of the humerus. J Bone Joint Surg Am. 1995 Apr. 77(4):538-42. [Medline].

  20. Skaggs DL, Hale JM, Bassett J. Operative treatment of supracondylar fractures of the humerus in children. The consequences of pin placement. J Bone Joint Surg Am. 2001 May. 83-A(5):735-40. [Medline].

  21. DeLee JC, Wilkins KE, Rogers LF, et al. Fracture-separation of the distal humeral epiphysis. J Bone Joint Surg Am. 1980 Jan. 62(1):46-51. [Medline].

  22. Pooley J, Salvador Carreno J. Total elbow joint replacement for fractures in the elderly-Functional and radiological outcomes. Injury. 2015 Sep 8. [Medline].

  23. Tian W, He C, Jia J. Total elbow joint replacement for the treatment of distal humerus fracture of type c in eight elderly patients. Int J Clin Exp Med. 2015. 8 (6):10066-73. [Medline].

  24. Phadnis J, Banerjee S, Watts AC, Little N, Hearnden A, Patel VR. Elbow hemiarthroplasty using a "triceps-on" approach for the management of acute distal humeral fractures. J Shoulder Elbow Surg. 2015 Aug. 24 (8):1178-86. [Medline].

  25. Pirker ME, Weinberg AM, Höllwarth ME, et al. Subsequent displacement of initially nondisplaced and minimally displaced fractures of the lateral humeral condyle in children. J Trauma. June 2005. 58(6):1202-7. [Medline].

  26. Cobb TK, Morrey BF. Total elbow arthroplasty as primary treatment for distal humeral fractures in elderly patients. J Bone Joint Surg Am. 1997 Jun. 79(6):826-32. [Medline].

  27. Chalidis B, Dimitriou C, Papadopoulos P, Petsatodis G, Giannoudis PV. Total elbow arthroplasty for the treatment of insufficient distal humeral fractures. A retrospective clinical study and review of the literature. Injury. 2009 Jun. 40(6):582-90. [Medline].

  28. Mehlman CT, Strub WM, Roy DR. The effect of surgical timing on the perioperative complications of treatment of supracondylar humeral fractures in children. J Bone Joint Surg Am. 2001 Mar. 83-A(3):323-7. [Medline].

  29. Xie X, Qin H, Shen L, Zeng B, An Z. Open reduction and bi-columnar internal fixation of intra-articular distal humerus fractures through a combined medial and lateral approach. Eur J Orthop Surg Traumatol. 2013 Aug 28. [Medline].

  30. Laporte C, Thiongo M, Jegou D. Posteromedial approach to the distal humerus for fracture fixation. Acta Orthop Belg. 2006 Aug. 72(4):395-9. [Medline].

  31. Ruan HJ, Liu JJ, Fan CY, Jiang J, Zeng BF. Incidence, management, and prognosis of early ulnar nerve dysfunction in type C fractures of distal humerus. J Trauma. 2009 Sep 30. [Medline].

  32. Bryan RS, Morrey BF. Extensive posterior exposure of the elbow. A triceps-sparing approach. Clin Orthop. 1982 Jun. (166):188-92. [Medline].

  33. Livani B, Belangero WD, Castro de Medeiros R. Fractures of the distal third of the humerus with palsy of the radial nerve: management using minimally-invasive percutaneous plate osteosynthesis. J Bone Joint Surg Br. 2006 Dec. 88(12):1625-8. [Medline].

  34. Brouwer KM, Guitton TG, Doornberg JN, Kloen P, Jupiter JB, Ring D. Fractures of the medial column of the distal humerus in adults. J Hand Surg Am. 2009 Mar. 34(3):439-45. [Medline].

  35. Lee SK, Kim KJ, Park KH, Choy WS. A comparison between orthogonal and parallel plating methods for distal humerus fractures: a prospective randomized trial. Eur J Orthop Surg Traumatol. 2013 Aug 7. [Medline].

  36. Schemitsch EH, Tencer AF, Henley MB. Biomechanical evaluation of methods of internal fixation of the distal humerus. J Orthop Trauma. 1994 Dec. 8(6):468-75. [Medline].

  37. Lee SS, Mahar AT, Miesen D, et al. Displaced pediatric supracondylar humerus fractures: biomechanical analysis of percutaneous pinning techniques. J Pediatr Orthop. 2002 Jul-Aug. 22(4):440-3. [Medline].

  38. Mansat P, Morrey BF. The column procedure: a limited lateral approach for extrinsic contracture of the elbow. J Bone Joint Surg Am. 1998 Nov. 80(11):1603-15. [Medline].

  39. Jupiter JB. The management of nonunion and malunion of the distal humerus--a 30-year experience. J Orthop Trauma. 2008 Nov-Dec. 22(10):742-50. [Medline].

  40. LaPorte DM, Murphy MS, Moore JR. Distal humerus nonunion after failed internal fixation: reconstruction with total elbow arthroplasty. Am J Orthop. 2008 Oct. 37(10):531-4. [Medline].

  41. Hastings H 2nd, Graham TJ. The classification and treatment of heterotopic ossification about the elbow and forearm. Hand Clin. 1994 Aug. 10(3):417-37. [Medline].

  42. Eberl R, Eder C, Smolle E, Weinberg AM, Hoellwarth ME, Singer G. Iatrogenic ulnar nerve injury after pin fixation and after antegrade nailing of supracondylar humeral fractures in children. Acta Orthop. 2011 Oct. 82(5):606-9. [Medline].

  43. Hall J, Schemitsch EH, McKee MD. Use of a hinged external fixator for elbow instability after severe distal humeral fracture. J Orthop Trauma. 2000 Aug. 14(6):442-5. [Medline].

  44. Dormans JP, Squillante R, Sharf H. Acute neurovascular complications with supracondylar humerus fractures in children. J Hand Surg [Am]. 1995 Jan. 20(1):1-4. [Medline].

  45. Cramer KE, Green NE, Devito DP. Incidence of anterior interosseous nerve palsy in supracondylar humerus fractures in children. J Pediatr Orthop. 1993 Jul-Aug. 13(4):502-5. [Medline].

  46. Oh CW, Park BC, Ihn JC, et al. Fracture separation of the distal humeral epiphysis in children younger than three years old. J Pediatr Orthop. 2000 Mar-Apr. 20(2):173-6. [Medline].

  47. Aitken GK, Rorabeck CH. Distal humeral fractures in the adult. Clin Orthop. 1986 Jun. (207):191-7. [Medline].

  48. Breen T, Gelberman RH, Leffert R, et al. Massive allograft replacement of hemiarticular traumatic defects of the elbow. J Hand Surg [Am]. 1988 Nov. 13(6):900-7. [Medline].

  49. Brown RF, Morgan RG. Intercondylar T-shaped fractures of the humerus. Results in ten cases treated by early mobilisation. J Bone Joint Surg Br. 1971 Aug. 53(3):425-8. [Medline]. [Full Text].

  50. Cohen MS, Hastings H 2nd. Post-traumatic contracture of the elbow. Operative release using a lateral collateral ligament sparing approach. J Bone Joint Surg Br. 1998 Sep. 80(5):805-12. [Medline].

  51. Greenspan A, Norman A, Rosen H. Radial head-capitellum view in elbow trauma: clinical application and radiographic-anatomic correlation. AJR Am J Roentgenol. 1984 Aug. 143(2):355-9. [Medline].

  52. Hastings H 2nd, Engles DR. Fixation of complex elbow fractures, part I. General overview and distal humerus fractures. Hand Clin. 1997 Nov. 13(4):703-19. [Medline].

  53. Heim D, Regazzoni P, Perren SM. Current use of external fixation in open fractures: external fixator - what next?. Injury. 1993. 23:S1-S35.

  54. Helfet DL, Hotchkiss RN. Internal fixation of the distal humerus: a biomechanical comparison of methods. J Orthop Trauma. 1990. 4(3):260-4. [Medline].

  55. Helfet DL, Schmeling GJ. Bicondylar intraarticular fractures of the distal humerus in adults. Clin Orthop. 1993 Jul. (292):26-36. [Medline].

  56. Heyd R, Strassmann G, Schopohl B, et al. Radiation therapy for the prevention of heterotopic ossification at the elbow. J Bone Joint Surg Br. 2001 Apr. 83(3):332-4. [Medline].

  57. Ilahi OA, Strausser DW, Gabel GT. Post-traumatic heterotopic ossification about the elbow. Orthopedics. 1998 Mar. 21(3):265-8. [Medline].

  58. Kirk P, Goulet JA, Freiberg A. A biomechanical evaluation of fixation methods for fractures of the distal humerus. Orthop Trans. 1990. 14:674.

  59. Kuntz DG Jr, Baratz ME. Fractures of the elbow. Orthop Clin North Am. 1999 Jan. 30(1):37-61. [Medline].

  60. Mast J, Jakob R, Ganz R. Planning and Reduction Technique in Fracture Surgery. Berlin: Springer-Verlag; 1-10.

  61. McKee M, Jupiter J, Toh CL, et al. Reconstruction after malunion and nonunion of intra-articular fractures of the distal humerus. Methods and results in 13 adults. J Bone Joint Surg Br. 1994 Jul. 76(4):614-21. [Medline]. [Full Text].

  62. McKee MD, Jupiter JB, Bamberger HB. Coronal shear fractures of the distal end of the humerus. J Bone Joint Surg Am. 1996 Jan. 78(1):49-54. [Medline].

  63. Milch H. Fractures and fracture dislocations of the humeral condyles. J Trauma. Sep 1964. 15:592-607. [Medline].

  64. Morrey BF, Adams RA. Semiconstrained elbow replacement for distal humeral nonunion. J Bone Joint Surg Br. 1995 Jan. 77(1):67-72. [Medline]. [Full Text].

  65. Muller ME, Allgower M, Schneider R, et al. 3rd ed. Manual of Internal Fixation: Techniques Recommended by the AO-ASIF Group. Berlin: Springer-Verlag; 1991. 411-52.

  66. O'Driscoll SW. The triceps-reflecting anconeus pedicle (TRAP) approach for distal humeral fractures and nonunions. Orthop Clin North Am. 2000 Jan. 31(1):91-101. [Medline].

  67. Ring D, Jupiter JB. Complex fractures of the distal humerus and their complications. J Shoulder Elbow Surg. 1999 Jan-Feb. 8(1):85-97. [Medline].

  68. Stover MD, Wilber JH. Nonunions of the distal humerus: open reduction and internal fixation. Semin Arthroplasty. 2001. 12:127-34.

  69. Van Gorder GW. Surgical approach in supracondylar fractures of the humerus requiring open reduction. J Bone Joint Surg. 1940. 22:278.

  70. Viola B, Hastings H. Ectopic ossification about the elbow. Clin Orthop Rel Res. 2000. 370:62-85.

  71. Watson-Jones R. Fractures and Joint Injuries. 4th ed. Baltimore, Md: Williams & Wilkins; 1955. 534.

  72. Webb LX. Distal humeral fractures in adults. J Am Acad Orthop Surg. 1996 Nov. 4(6):336-44. [Medline].

  73. Wilkins KE, Beaty JH, Chambers HG. Fractures and dislocations of the elbow region. Rockwood CA Jr, Wilkins KE, Beaty JH, eds. Fractures in Children. 4th ed. Philadelphia, Pa: Lippincott-Raven; 1996. 759.

 
Previous
Next
 
Radiograph of a supracondylar-intracondylar distal humerus fracture. Note the posteromedial and posterolateral column plate placement used for reconstruction with the chevron osteotomy.
Lateral radiograph of a supracondylar-intracondylar distal humerus fracture. Note the distal extent of the contoured plate placed extra-articularly.
Radiograph of a supracondylar-intracondylar humerus fracture. Note the ipsilateral radial head fracture fixed through a posterior incision.
Lateral radiograph of a supracondylar-intracondylar distal humerus fracture with an ipsilateral radial head fracture.
Anteroposterior radiograph of a pediatric type III supracondylar humerus fracture. Note the lateral pinning.
Lateral and medial pinning of a type III extension-type supracondylar humerus fracture.
Lateral radiograph after open reduction and pinning of a type III supracondylar humerus fracture.
Lateral radiograph of a distal humerus fracture of the left elbow. Only the intra-articular portion of the lateral condyle is involved.
Anteroposterior radiograph following a distal humerus fracture of the right elbow.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.