Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Osteogenesis Imperfecta Clinical Presentation

  • Author: Manoj Ramachandran, MBBS, MRCS, FRCS; Chief Editor: Harris Gellman, MD  more...
 
Updated: Nov 24, 2014
 

History

Patients often have a family history of osteogenesis imperfecta (OI), but most cases are due to new mutations.

Patients most commonly present with fractures after minor trauma. In severe cases, prenatal screening ultrasonography performed during the second trimester may show bowing of long bones, fractures, limb shortening, and decreased skull echogenicity. Lethal OI cannot be diagnosed with certainty in utero.

Patients may bruise easily. They may have repeated fractures after mild trauma. However, these fractures heal readily. Deafness is another feature. About 50% of patients with type I OI (see Physical Examination) have deafness by age 40 years.

Next

Physical Examination

The clinical presentation of OI is dependent on the phenotype. The most widely used classification is that of Sillence,[9, 10] which classifies OI into four types on the basis of clinical and radiologic features (see Table 1 below). In addition, dentinogenesis imperfecta is denoted as subtype B, whereas OI without dentinogenesis imperfecta is denoted as subtype A.

Table 1. Adapted Sillence Classification of Osteogenesis Imperfecta (Open Table in a new window)

Type Genetic Teeth Bone Fragility Bone Deformity Sclera Spine Skull Prognosis
IA AD* Normal Variable but less severe than other types Moderate Blue 20% scoliosis and kyphosis Wormian bones Fair
IB AD Dentinogenesis imperfecta NA NA NA NA NA NA
II AD Unknown Very severe Multiple fractures Blue NA Wormian bones with absence of ossification Perinatal death
III AD Dentinogenesis imperfecta Severe Progressive bowing of long bones and spine Bluish at birth but white in adults Kyphoscoliosis Hypoplastic wormian bones Wheelchair-bound, not ambulatory
IVA AD Normal Moderate Moderate White Kyphoscoliosis Hypoplastic wormian bones Fair
IVB AD Dentinogenesis imperfecta NA NA NA NA NA NA
* AD = autosomal dominant; NA = not applicable.

Three more types of OI (types V, VI, and VII) have been described, though they have not yet been incorporated into the International Classification of the Osteochondrodysplasias (INCO), which uses the Sillence classification. These seven forms are described in more detail below.

Type I

Type I OI is the mildest and most common form. Patients present with blue sclerae (often described as dark blue with a gray tinge), variable degrees of bone fragility, moderate bone deformity, and premature deafness. Height is usually normal. Exercise tolerance and muscle strength are significantly reduced, even with mild OI. Birth weight tends to be normal, though one or more bones may be fractured.

Fractures may occur for the first time at a later age (eg, when the child starts to walk). These fractures tend to heal well, though sometimes a hypertrophic callus response is seen. Fractures tend to decrease in frequency after puberty, but their frequency may increase later in life when age- and sex-related osteoporosis is superimposed. Over a lifetime, numbers of fractures can range from one to 60 or more.

People with OI have a high tolerance for pain. Old fractures can be discovered in infants only after radiographs are obtained for other reasons other than an assessment of OI, and they can occur without any signs of pain.

Involvement of the axial skeleton, in the form of scoliosis and kyphosis, is seen in 20% of cases. Dentinogenesis imperfecta is characteristic of OI type IB.

Type II

Severely affected babies with type II OI are born with dwarfism, blue sclerae, and short, bowed limbs. Patients may have a small nose, micrognathia, or both. The disease is usually fatal at birth, but some babies survive for several months. All patients have in-utero fractures, which may involve the skull, long bones, or vertebrae. The ribs are beaded, and the long bones are severely deformed. Causes of death include extreme fragility of the ribs, pulmonary hypoplasia, and malformations or hemorrhages of the central nervous system (CNS).

Type III

Of all types of OI, type III is the one that orthopedic surgeons see most often. Babies with type III OI are born with severe bone fragility and suffer multiple fractures at birth, though birth weight tends to be normal. The bone fragility may lead to joint hyperlaxity, muscle weakness, chronic unremitting bone pain, and skull deformities (eg, posterior flattening). In utero fractures are common.

The sclerae are bluish at birth but fade over the years, becoming white in adulthood. Dentinogenesis imperfecta is frequently seen. The presence of dentinogenesis imperfecta is independent of the severity of the OI. Patients may have a triangular face with frontal bossing. Malocclusion is common.

The chest and rib cage are usually spared, with few or no fractures of the ribs. Bowing of the limbs is common with growth, and multiple fractures may be seen later in life. The result is a short skeleton and a relatively less affected barrel-shaped chest, with a pectus carinatum deformity. Deformities of upper limbs may compromise function and mobility. Affected children tend to become wheelchair-bound and nonambulatory.

The classic radiographic appearance is that of popcorn bones, in which fractures of the physes in several locations result in several islands of endochondral ossification. With age, these ossifications tend to disappear, leaving an enlarged radiolucent epiphysis. The axial skeletal is also involved, with progressive platyspondyly and kyphoscoliosis. Eventually, the wide rib cage overlaps the narrow pelvis.

Basilar invagination is an uncommon but potentially fatal occurrence in OI. Vertigo is common in patients with severe OI. The incidence of congenital malformations of the heart in children with OI is probably similar to that in the healthy population. Hypercalciuria may be present in about 36% of patients with OI but does not appear to affect renal function. Constipation and hernias are also common in people with OI.

Type IV

Children with type IV OI have white sclerae with moderate bone fragility and deformity. Fractures usually begin in infancy, but some may occur in utero. The long bones are usually bowed. The clinical picture may be similar to that of type I disease, except for the presence of white sclerae. Axial skeletal involvement, in the form of kyphoscoliosis, is also common. Dentinogenesis imperfecta is seen in type IVB disease.

Type V

Type V OI is an autosomal dominant condition with a severity similar to that of type IV disease but a predisposition to hyperplastic callus formation. Characteristic features include ossification of the interosseous membrane of the forearms and legs, leading to limited pronation and supination and a radiopaque metaphyseal band in growing patients.

Type VI

OI type VI is clinically similar to types II and IV, but it has distinctive histology, including hyperosteoid bone due to a mineralization defect, and does not have a disturbance of bone mineral metabolism.

Type VII

OI type VII has been described in an isolated First Nations community in northern Quebec.[11, 12] It is clinically similar to OI types II and IV but has rhizomelia as a distinctive feature. The gene mutation has been mapped to region 3p22-24.1.

Other types of osteogenesis imperfecta

Many cases of OI do not fit into the aforementioned categories; such variants include the following:

  • Osteoporosis-pseudoglioma syndrome - This is caused by mutations in the gene encoding for the low-density-lipoprotein receptor-related protein 5 (LRP5), with clinical features including blindness and bone fragility; LRP5 is thought to mediate the proliferation and differentiation of osteoblasts
  • Bruck syndrome - This is an autosomal recessive condition caused by mutations in the bone-specific collagen type 1 telopeptide lysyl hydroxylase enzyme, with clinical features that include congenital joint contractures and bone fragility [13]
  • Cole-Carpenter syndrome - This is a severe progressive form of OI, with associated multisutural craniosynostosis and growth failure
Previous
Next

Complications

Repeated respiratory infections are complications of severe OI. Basilar impression caused by a large head, which causes brainstem compression, is the major neurologic complication in a child with OI. This is most commonly observed in children with very severe OI. Cerebral hemorrhage caused by birth trauma is another possible complication.

Patients with OI should be considered to be at high risk for complications of anesthesia, though they are not particularly prone to malignant hyperthermia. Patients with OI have a high basal metabolism that may cause hyperthermia during anesthesia, but the hyperthermia is almost never malignant. In fact, only one case of malignant hyperthermia in a child with OI has been described in the literature, and that particular patient had a family history of malignant hyperthermia.

Previous
 
 
Contributor Information and Disclosures
Author

Manoj Ramachandran, MBBS, MRCS, FRCS Consultant Trauma and Orthopaedic Surgeon, Barts and the London NHS Trust; Honorary Senior Lecturer, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary's, University of London, UK

Manoj Ramachandran, MBBS, MRCS, FRCS is a member of the following medical societies: British Orthopaedic Association

Disclosure: Nothing to disclose.

Coauthor(s)

Pramond Achan, MBBS, FRCS Senior Registrar, Royal National Orthopaedic Hospital, UK

Disclosure: Nothing to disclose.

David H A Jones, MBChB, FRCS FRCS Ed(Orth), Consultant Orthopedic Surgeon, Great Ormond Street Hospital for Children; Senior Clinical Lecturer, University College London Hospitals, UK

David H A Jones, MBChB, FRCS is a member of the following medical societies: British Orthopaedic Association

Disclosure: Nothing to disclose.

Vinod K Panchbhavi, MD, FACS Professor of Orthopedic Surgery, Chief, Division of Foot and Ankle Surgery, Director, Foot and Ankle Fellowship Program, Department of Orthopedics, University of Texas Medical Branch School of Medicine

Vinod K Panchbhavi, MD, FACS is a member of the following medical societies: American Academy of Orthopaedic Surgeons, American College of Surgeons, American Orthopaedic Association, American Orthopaedic Foot and Ankle Society, Orthopaedic Trauma Association, Texas Orthopaedic Association

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Styker.

Chief Editor

Harris Gellman, MD Consulting Surgeon, Broward Hand Center; Voluntary Clinical Professor of Orthopedic Surgery and Plastic Surgery, Departments of Orthopedic Surgery and Surgery, University of Miami, Leonard M Miller School of Medicine, Clinical Professor, Surgery, Nova Southeastern School of Medicine

Harris Gellman, MD is a member of the following medical societies: American Academy of Medical Acupuncture, American Academy of Orthopaedic Surgeons, American Orthopaedic Association, American Society for Surgery of the Hand, Arkansas Medical Society

Disclosure: Nothing to disclose.

Acknowledgements

Peter R Calder, MBBS, FRCS(Eng), FRCS (Tr&Orth) Consulting Surgeon, Department of Pediatric Orthopedic Surgery, The Royal National Orthopaedic Hospital, UK

Peter R Calder, MBBS, FRCS(Eng), FRCS (Tr&Orth) is a member of the following medical societies: British Medical Association

Disclosure: Nothing to disclose.

Ian D Dickey, MD, FRCSC Adjunct Professor, Department of Chemical and Biological Engineering, University of Maine; Consulting Staff, Adult Reconstruction, Orthopedic Oncology, Department of Orthopedics, Eastern Maine Medical Center

Ian D Dickey, MD, FRCSC is a member of the following medical societies: American Academy of Orthopaedic Surgeons, British Columbia Medical Association, Canadian Medical Association, and Royal College of Physicians and Surgeons of Canada

Disclosure: Stryker Orthopaedics Consulting fee Consulting; Cadence Honoraria Speaking and teaching

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Smith R, Francis MJ, Houghton GR. The brittle bone syndrome. In: Osteogenesis Imperfecta. London: Butterworth. 1983.

  2. Brusin JH. Osteogenesis imperfecta. Radiol Technol. 2008 Jul-Aug. 79(6):535-48. [Medline].

  3. Cole WG. The Nicholas Andry Award-1996. The molecular pathology of osteogenesis imperfecta. Clin Orthop. 1997 Oct. 235-48. [Medline].

  4. Cole WG. Advances in osteogenesis imperfecta. Clin Orthop. 2002 Aug. 6-16. [Medline].

  5. Cole WG. Bone, cartilage and fibrous tissue disorders. In: Benson MKD, Fixsen JA, MacNicol MF, Parch K, eds. Children's Orthopaedics. 2002: 67-92.

  6. Baujat G, Lebre AS, Cormier-Daire V, Le Merrer M. [Osteogenesis imperfecta, diagnosis information (clinical and genetic classification)]. Arch Pediatr. 2008 Jun. 15(5):789-91. [Medline].

  7. Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010 Apr 9. 86(4):551-9. [Medline]. [Full Text].

  8. Wallace DJ, Chau FY, Santiago-Turla C, Hauser M, Challa P, Lee PP, et al. Osteogenesis imperfecta and primary open angle glaucoma: genotypic analysis of a new phenotypic association. Mol Vis. 2014. 20:1174-81. [Medline]. [Full Text].

  9. Sillence D. Osteogenesis imperfecta: an expanding panorama of variants. Clin Orthop. 1981 Sep. 11-25. [Medline].

  10. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr. 16(2):101-16. [Medline].

  11. Labuda M, Morissette J, Ward LM. Osteogenesis imperfecta type VII maps to the short arm of chromosome 3. Bone. 2002 Jul. 31(1):19-25. [Medline].

  12. Ward LM, Rauch F, Travers R. Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone. 2002 Jul. 31(1):12-8. [Medline].

  13. Duro Friedl EA, Ferrari Mayans L, Desalvo Portal LN, Ferrari Ruiz P, Bidondo Horno MP, Astraldi Tellechea MM. [Bruck syndrome: Osteogenesis imperfecta with congenital joint contractures.]. An Pediatr (Barc). 2008 Jul. 69(1):90-1. [Medline].

  14. [Guideline] Kellogg ND. Evaluation of suspected child physical abuse. Pediatrics. 2007 Jun. 119(6):1232-41. [Medline]. [Full Text].

  15. Trehan SK, Morakis E, Raggio CL, Twomey KD, Green DW. Acetabular Protrusio and Proximal Femur Fractures in Patients With Osteogenesis Imperfecta. J Pediatr Orthop. 2014 Nov 6. [Medline].

  16. Francis MJ, Smith R, Bauze RJ. Instability of polymeric skin collagen in osteogenesis imperfecta. Br Med J. 1974 Mar 9. 1(905):421-4. [Medline].

  17. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000 Jun. 26(6):581-9. [Medline].

  18. Jones D, Hosalkar H, Jones S. The orthopaedic management of osteogenesis imperfecta. Clin Orthop. 2002. 16:374-88.

  19. Zeitlin L, Fassier F, Glorieux FH. Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop B. 2003 Mar. 12(2):77-87. [Medline].

  20. Forin V. [Paediatric osteogenesis imperfecta: medical and physical treatment]. Arch Pediatr. 2008 Jun. 15(5):792-3. [Medline].

  21. Esposito P, Plotkin H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr Opin Pediatr. 2008 Feb. 20(1):52-7. [Medline].

  22. Sofield HA, Page MA, Mead NC. Multiple osteotomies and metal-rod fixation for osteogenesis imperfecta. J Bone Joint Surg. 1952. 34A:500-2.

  23. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998 Oct 1. 339(14):947-52. [Medline].

  24. Salehpour S, Tavakkoli S. Cyclic pamidronate therapy in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2010 Jan-Feb. 23(1-2):73-80. [Medline].

  25. Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab. 2006 Apr. 91(4):1268-74. [Medline].

  26. Shapiro JR, Thompson CB, Wu Y, Nunes M, Gillen C. Bone Mineral Density and Fracture Rate in Response to Intravenous and Oral Bisphosphonates in Adult Osteogenesis Imperfecta. Calcif Tissue Int. 2010 Jun 11. [Medline].

  27. Gallego L, Junquera L, Pelaz A, Costilla S. Pathological mandibular fracture after simple molar extraction in a patient with osteogenesis imperfecta treated with alendronate. Med Oral Patol Oral Cir Bucal. 2010 Jun 1. [Medline].

  28. Castillo H, Samson-Fang L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009 Jan. 51(1):17-29. [Medline].

  29. Kusumi K, Ayoob R, Bowden SA, Ingraham S, Mahan JD. Beneficial effects of intravenous pamidronate treatment in children with osteogenesis imperfecta under 24 months of age. J Bone Miner Metab. 2014 Oct 16. [Medline].

  30. Hald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the Prevention of Fractures in Osteogenesis Imperfecta: Meta-Analysis of Placebo-Controlled Trials. J Bone Miner Res. 2014 Nov 18. [Medline].

  31. Bargman R, Huang A, Boskey AL, Raggio C, Pleshko N. RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res. 2010 Apr. 51(2):123-31. [Medline]. [Full Text].

  32. Wekre LL, Frøslie KF, Haugen L, Falch JA. A population-based study of demographical variables and ability to perform activities of daily living in adults with osteogenesis imperfecta. Disabil Rehabil. 2010. 32(7):579-87. [Medline].

 
Previous
Next
 
Acute fractures are observed in radius and ulna. Multiple fractures can be seen in ribs. Old healing humeral fracture with callus formation is observed.
Beaded ribs. Multiple fractures are seen in long bones of upper extremities.
Wormian bones are present in skull.
Newborn has bilateral femoral fractures.
Table 1. Adapted Sillence Classification of Osteogenesis Imperfecta
Type Genetic Teeth Bone Fragility Bone Deformity Sclera Spine Skull Prognosis
IA AD* Normal Variable but less severe than other types Moderate Blue 20% scoliosis and kyphosis Wormian bones Fair
IB AD Dentinogenesis imperfecta NA NA NA NA NA NA
II AD Unknown Very severe Multiple fractures Blue NA Wormian bones with absence of ossification Perinatal death
III AD Dentinogenesis imperfecta Severe Progressive bowing of long bones and spine Bluish at birth but white in adults Kyphoscoliosis Hypoplastic wormian bones Wheelchair-bound, not ambulatory
IVA AD Normal Moderate Moderate White Kyphoscoliosis Hypoplastic wormian bones Fair
IVB AD Dentinogenesis imperfecta NA NA NA NA NA NA
* AD = autosomal dominant; NA = not applicable.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.