Medscape is available in 5 Language Editions – Choose your Edition here.


Chest Wall Reconstruction Treatment & Management

  • Author: David Jansen, MD, FACS; Chief Editor: Jorge I de la Torre, MD, FACS  more...
Updated: Feb 22, 2016

Surgical Therapy

Specific surgical strategies are discussed in the sections below.

Closure of Postpneumonectomy Empyema Cavities

Miller and colleagues have devised a protocol for achieving complete flap closure of empyema cavities.[18] They support administration of antibiotics, entry into the chest through the original incision, and wide debridement. They also support the identification of bronchopleural fistulas (see the images below), their closure with an omental flap, and obliteration of the pleural cavity with appropriate muscle flaps starting with the LDM first, SAM second, PMM third, omentum fourth, and the RAM as the last choice.

Right lateral photo of a patient who underwent pne Right lateral photo of a patient who underwent pneumonectomy, which was complicated by a bronchopleural cutaneous fistula. The photograph is of the fistula tract.
Fistulogram. Fistulogram.

Arnold and Pairolero have created a treatment similar to Miller's, using the SAM as their first choice; however, they disagree with the necessity of completely obliterating the pleural cavity.[19] Bronchopleural fistulas were packed with muscle and frequent moist dressing changes were instituted. The chest was closed secondarily.

Failed extrathoracic flaps for bronchopleural fistulas often merit free flap transfers. Hammond et al reconstructed complex intrathoracic defects with several free flaps (ie, LDM, RAM, omentum) anastomosed to the thoracodorsal, common carotid, or transverse cervical artery and vein.[20]

Butler et al have used AlloDerm over lung with flap reconstruction for contaminated wounds of the chest.[21] These wounds cannot be covered with prosthetic mesh; thus, AlloDerm (which is decellularized human cadaveric dermis) was used. It becomes vascularized and remodeled into autologous tissue after implantation.

Closure of postpneumonectomy empyema cavities also can be achieved by thoracoplasty. This procedure involves the resection of multiple ribs to allow the collapse of the chest wall and obliterate the cavity. Thoracoplasty initially was used in the treatment of active tuberculosis in the preantibiotic era and later was applied to nontuberculous postpneumonectomy empyemas. Thoracoplasty has been controversial because of the more appealing nonmutilating techniques, such as pedicled muscle transplants and open-space sterilization.

Thoracoplasty is reserved for instances when pedicled muscle flaps are unavailable (divided or devascularized) or when the empyema is chronic and caused by antibiotic-resistant organisms. Gregoire et al presented data that support thoracoplasty for patients with chronic postpneumonectomy empyemas, resulting in an excellent outcome.[22]

Treatment of Infected Sternums

The type of sternal defect determines stability and physiologic integrity. The physiologic deficit is minimal with loss of the upper sternal body and associated ribs, is moderate with loss of the entire sternal body and associated ribs, and is severe with loss of the manubrium and upper sternal body and associated ribs. In 1957, Julian was the first to describe the median sternectomy for access to the vital midline structures of the chest. Infection rates were as high as 5%; mortality was as high as 70%.

A delay in diagnosis of sternal wound infection poses a threat to underlying anastomoses, valves, and grafts. Early recognition of an infected sternum is critical. This may be accomplished with CT scan, as illustrated below, or exploration. If the diagnosis is delayed, often large sections of bone and cartilage are lost.

CT scan showing large right-sided empyema. CT scan showing large right-sided empyema.

Historically, treatment of sternal wound infections involved debridement and the wound was left open to granulate. This method of treatment had a high incidence of morbidity and mortality and increased hospital stay. Mortality was reduced to 20% when a closed irrigation system followed by debridement and closure was devised.

Debreceni et al have used vacuum-assisted closure systems for the treatment of sternal wounds.[23] This method has been shown to facilitate early cleanup of infected sternotomy wounds and to decrease the recurrence rate significantly. This method helps prepare the wound bed for flap closure.

Additionally, Agarwal et al have also used vacuum-assisted closure therapy on sternal wounds and have demonstrated decreased wound edema, decreased time to definitive closure, and reduced wound bacterial colony counts.[24] They have implemented this therapy as the first-line management of these types of wounds. See the images below.

Infected and open sternal wound after coronary art Infected and open sternal wound after coronary artery bypass graft.
Sternal wound debridement with vacuum-assisted clo Sternal wound debridement with vacuum-assisted closure therapy.

In 1976, Lee introduced transfer of the omentum to the mediastinum as a vascularized flap,[25] while Jurkiewicz devised muscle flap closure of sternal wounds.[26] These innovations have been paramount in chest wall reconstruction secondary to infected sternal wounds.

Muscle flaps used for sternal defects are the pectoralis turnover flap, rotation-advancement pectoralis flap, segmental pectoralis flap, RAM flap, EOM flap, LDM flap, and the omentum. The omentum usually is reserved for large sternal wounds and/or the prior sacrifice of bilateral internal mammary arteries (IMAs) secondary to debridement or harvest. See the images below.

Omental flap for obliteration of the empyema cavit Omental flap for obliteration of the empyema cavity.
Sternal wound with omental flap. Sternal wound with omental flap.
Healed sternal wound appearance after omental flap Healed sternal wound appearance after omental flap and split-thickness skin graft.

The most common flap uses the pectoralis muscle. The split pectoralis turnover flap entails transecting the muscle from the lateral attachments, dissecting the flap off the anterior chest wall, and turning the muscle over its medial attachment to fit into the sternal defect. The blood supply relies on the IMA and intercostal perforators.

The rotation-advancement pectoralis flap is elevated from medial to lateral, sacrificing the medial blood supply and relying on the thoracoacromial pedicle. The flap is detached from the humerus and advanced medially and rotated superiorly. This flap is ideal for upper sternal defects. When possible, Nahai et al recommend harvesting the superior part of the PMM for turnover in the management of sternal wounds and keeping the inferior part of this muscle intact, thus resulting in much less chest wall deformity.

The segmental pectoralis flap is used if the IMA has been eliminated. This flap is a combination of the split pectoralis turnover flap for the lower half of the muscle and the rotation-advancement pectoralis flap for the upper half of the muscle. The lower half relies on its intercostal blood supply. The rectus abdominis can be harvested and rotated about its superior epigastric pedicle and placed in the sternal defect.

The contralateral side also may be used if the IMA is taken; however, this flap may be used ipsilaterally in light of IMA absence due to intercostal perforators. Other flaps, which are not as popular for sternal wounds, are those using the EOM and the LDM. These are used mainly for chest wall reconstruction or when the flaps mentioned above are unavailable.

Soft Tissue Reconstruction of the Chest Wall

Partial-thickness defects most commonly are treated with skin grafting, preferably split-thickness grafting for larger surface areas. These grafts tend to heal well and provide adequate coverage. However, their limitation necessitates a well-vascularized bed. Full-thickness muscle flaps are chosen based on the skin requirements of the defect, stability of the thoracic wall, the need to protect the thoracic viscera, and donor site considerations. The most common muscle flaps used are the LDM, PMM, and RAM.

Latissimus dorsi muscle

This is a versatile and reliable muscle for chest wall reconstruction. It has a sturdy vascular pedicle and can be elevated and rotated through a generous arc to reach the entire ipsilateral chest as well as the mid line and contralateral axillary fold. This flap is durable and its neurovascular pedicle has been demonstrated to remain intact even after irradiation or ipsilateral axillary lymph node dissection.[27, 28]

McCraw has detailed the transfer technique of this flap.[29] Distal skin islands taken from regions overlying the lumbodorsal fascia have been described by Matsuo to reach the contralateral axillary regions with minimal incidence of flap loss.[30] When no vascular pedicle to the LDM can be demonstrated, May also has proven a double musculocutaneous unit comprising the LDM and underlying teres major and its vascular collateral to be successful.[31]

The serratus artery branch to the LDM also has been proven to be an adequate vascular supply to the LDM when ligation of the thoracodorsal artery has occurred. When the LDM is used, minimal functional impairment is appreciated. Only forceful backward extension and adduction of the arm are noted as mildly-to-moderately compromised.

Pectoralis major muscle

This muscle flap also has been proven to be versatile in anterior chest wall reconstruction, mainly by Arnold and Pairolero.[32] This muscle can be detached from its origin and insertion, leaving its neurovascular pedicle as its only attachment; the muscle then can be rotated into the defect. Small skin islands also can be harvested with the muscle, leaving donor sites for primary or split-thickness skin graft closure. Harvesting the pectoralis from the nondominant chest is preferable, if possible, to minimize functional impairment.

Rectus abdominis muscle

This muscle flap has been an issue of controversy. It poses a greater risk than the LDM or PMM. The morbidity associated with this flap includes abdominal wall herniation, especially below the arcuate line. Nevertheless, Moon and Taylor describe the techniques associated with RAM transfer and delineate a few important principles.[33]

These include evaluation of the skin paddle harvested with the muscle (vertical and upper transverse flaps have the best blood supply), communication of the deep inferior and superior epigastric arteries in the paraumbilical region by means of choke vessels, inclusion of a strip of anterior rectus fascia, and risks of splitting the muscle.[34] When raising a musculocutaneous flap, the skin paddle should incorporate the paraumbilical region for optimal blood supply and survival of the skin paddle.

The transverse rectus abdominis myocutaneous flap (TRAM), when based superiorly, has an arc of rotation that reaches bilateral nipples. The question remains: After bilateral IMA harvest, can the rectus still be used? Fernando and Nahai et al have successfully described the use of the rectus in this scenario specifically and have confirmed the importance of collateral circulation from the intercostal vessels near the rib margin.[35] Furthermore, the costomarginal artery is a critical blood supply to the rectus, especially when the epigastric system is compromised.


Fix et al places emphasis on the omentum flap for chest wall reconstruction, especially for most radiation injuries. Its use may be for protection of visceral injuries or anastomoses as well as protection of vascular conduits. The omentum is a dependable and versatile flap that allows coverage of virtually all chest wall defects and is associated with low morbidity and minimal deformity. Its pitfall primarily focuses on performing a celiotomy, yet the harvest of the omentum is routinely done laparoscopically.

The left and right gastroepiploic vessels and the collateral circulation via the gastroepiploic arch and Barkow marginal artery are important vessels to recognize. The omental attachments to the transverse colon and greater curvature need to be taken down, rendering a bipedicle flap (both sets of gastroepiploic vessels). A single pedicle flap increases the arc of transposition and more so reliance on Barkow marginal artery solely for flap viability.

Ghazi et al have shown that the omental flap, though reliable and well indicated, appears to be a marker for increased mortality.[36] This association exists especially in salvage procedures and is related to the complexity of the clinical situation rather than the type of flap.

Other flaps

The external oblique muscle may be used, yet is reserved for defects below the fourth costal interspace due to its limited superior rotation. The serratus anterior muscle also has been described for small defects in the chest wall and for bronchopleural fistulas. The triceps brachii, namely the long head, has been a muscle used especially in conjunction with partial TRAM failure. The skin island overlying the triceps is usually adequate. Subjectively, the functional impairment is minimal.

Fasciocutaneous flaps

The advantages of fasciocutaneous flaps include (1) no need exists for repositioning the patient, (2) the abdominal donor site can be closed primarily, and (3) a low incidence exists of abdominal wall herniation since the rectus muscle remains intact. Harvesting the anterior rectus fascia provides better vascularity to the skin. Flaps with a base-to-length ratio greater than 1:3 have been reported to survive.

Teich-Alasia demonstrated flaps more than 40 cm long spanning subscapula to pubis when closure of donor sites involved extensive abdominal wall undermining.[37] When harvesting these fasciocutaneous flaps, perforators from the superficial epigastric system must be preserved proximally to ensure viability of the flap.

Osteocutaneous flaps

The intercostal flap with an underlying rib based on its neurovascular pedicle may be used to close small defects and retain sensory properties. Cases have been reported in which osteomusculocutaneous flaps such as the LDM, 11th and 12th ribs, and the posterior parietal pleura have been used with success.

Free flaps

The indications to use free flaps in the face of several local and/or regional flaps are unavailability of the local flap (used, divided), the large surface area of the defect, or its distant reach. Free flaps used by Hidalgo have been primarily the RAM and the LDM.[38]

In addition to free muscle flaps, free perforator flaps have also been used to reconstruct large chest wall defects. Sullivan et al have found the free deep inferior epigastric perforator (DIEP) flap to be durable and reliable with minimal donor site morbidity.[39]

Autogenous and Alloplastic Material - Reconstructive Technique of the Skeletal Structure

As stated by Pairolero and Arnold, on reviewing 205 patients with chest wall defects, reconstruction of the defect depends on the presence of infection, radiation injury, size of the defect, and location.[11] The size threshold for which a defect needs to be repaired remains unclear. The current suggestion is to reconstruct defects that produce a physiologic flail and/or a compromise in breathing mechanics. This threshold is often a defect larger than 5 cm in diameter. Defects smaller than 5 cm may be closed using soft tissue alone and rigid replacement is not necessary.

Several choices of materials are available, each with advantages and disadvantages. Consideration of which material to use involves availability of the prosthesis, ease of use, durability, adaptability, nonreactivity, resistance to infection, and translucency to x-rays. If the defect is clean, prosthetic material is indicated for the repair of skeletal defects. The list includes alloplastic material such as stainless steel, titanium, Lucite, and fiberglass; synthetic materials include Prolene mesh, Vicryl mesh, Gore-Tex, polypropylene, nylon, silicone, Teflon, acrylic, and silastic. Composite synthetic materials comprise Marlex mesh and methyl methacrylate.

The use of ribs as bone grafts has proven success and durability. Grafts should be placed so that they overlap as much surrounding trabecular bone as possible to prevent resorption and fibrous capsular replacement. New osteocytes replace the bone graft with new bone. Remembering to widely débride necrotic tissue and cartilage is critical. Ribs can be harvested whole or split longitudinally. The latter option poses no defects at the donor site.

The disadvantages of using ribs are pain and/or instability at the donor site. Other sites for bone harvest are the iliac crest, fibula, and tibia. Phased-out options for skeletal patching are the fascia lata (prone to infection, predictable instability secondary to inherent flaccidity, and pain at the donor site), fascia lata with bone chips (minimal stability attained with complete bone absorption), Lyodura (dura mater), and ox fascia (becomes flaccid with time and cannot be molded).

Marlex often is used. Sutured tightly, it provides semirigid support that usually can be removed, leaving the fibrous capsule as an adequate and reliable chest wall layer. Since Marlex mesh has a tendency to fragment, combining it with methyl methacrylate solves this problem. McCormack reviewed methyl methacrylate composite.[16] The alloplast is allowed to remain in the chest for 6-8 weeks. This is enough time to allow a fibrous capsule to form. The composite is removed at this time. Infection is the most common complication. Seromas that develop around the Marlex mesh are better left untapped to prevent seeding and infection. Antibiotics must be started if an infection ensues, which may require prosthesis removal.

Although the use of Marlex for skeletal stabilization has been demonstrated to decrease respirator time and hospital stay, the incidence of infection was higher in the group that received Marlex versus the group that did not. Gore-Tex often is preferred to Marlex because of its malleability, flexibility, durability, conformability, and impermeability. In the event of infection, the patch often can be removed, and a fibrous capsule remains as adequate support. Absorbable polydioxanone (PDS) prosthesis also has been used with excellent results.

Poland Syndrome

Treatment of Poland syndrome is primarily for aesthetic reasons since the functional impairment is minimal. Assess the ipsilateral LDM because it most likely is the donor muscle for transpositional repair. Also, exclude Möbius syndrome by inspecting cranial nerves VI and VII.

The mainstay of Poland syndrome chest wall reconstruction involves harvesting the ipsilateral LDM, detaching it from the lumbodorsal region, and reflecting the muscle about its thoracodorsal pedicle to cover the anterior superior chest wall. In females, since development of the silicone shell saline-filled breast prosthesis, the ability to create a near-normal breast depends on a few factors. Many advocate skeletal reconstruction prior to muscle transposition and soft tissue contouring. This topic is controversial and some studies suggest that mild-to-moderate deformities can be managed satisfactorily by latissimus dorsi transposition alone.

If an implant is incorporated into the LDM transposition without prior stabilization of the skeletal structure, a high incidence exists of prosthetic dislodgment and unsatisfactory breast projection and symmetry. The initial step should be reinforcement of the anterior chest wall with a synthetic overlay of Marlex or Prolene mesh prior to muscle flap transposition.

At a second operation, the flap and implant are constructed. Most rib cages in patients with Poland syndrome are normal but in those with extreme skeletal deformities, the sternum is rotated considerably toward the deformed side, and the contralateral anterior chest involves a carinate deformity. This correction entails a contralateral subperichondrial split-rib cartilage resection and grafting and sternal osteotomy to allow anterior displacement and orthorotation of the sternum.

Two schools of thought exist regarding timing of the operation. Anderl and Kerschbaumer are among the authors that advocate early repair of Poland syndrome.[40] They theorize that muscle transposition at a young age facilitates a patient's learning to use the muscle in its new position and stimulates adjacent skeletal and soft-tissue structures to develop and function normally. Psychological reasons also favor early repair to avoid social and personal image conflicts.

In the ideal situation, surgery in young adolescent girls should be postponed until full breast maturity at aged 18 or 19 years, thus minimizing postoperative breast asymmetry. One solution to early operation that maintains breast symmetry, suggested by Argenta et al and Versaci et al, involves using a tissue expander inserted during early childhood that is gradually expanded as the child progresses through puberty.[41, 42] Finally, the expander is replaced by an implant and LDM transposition. Capsular contracture remains the leading cause of asymmetry in these patients.

Pectus Excavatum

Silicone implants are best used in patients who are beyond their growth spurt and are asymptomatic. This aesthetic elective procedure falls under the category "camouflaging procedures" first described by Murray.[43] Reconstructive procedures involve infants with severe compromising cardiopulmonary abnormalities. When the transverse chest to narrowest anteroposterior diameter exceeds 3.25:1, this is believed to indicate surgical repair.

According to Haller et al, reconstruction is encouraged prior to the completion of puberty, ideally when the patient is aged 4-6 years, to "relieve structural compression of the chest and allow normal growth of the thorax, to prevent pulmonary and cardiac dysfunction in teenagers and adults, and to obviate the cosmetic impact that may cause a child to avoid sports and gymnastics."[44]

The various techniques involved in repairing pectus excavatum range from internal braces to external braces, metal struts to absorbable struts, and minimal dissection to complete resection. Ravitch describes his technique, which demonstrates resecting the involved costal cartilages, performing a transverse osteotomy of the anterior and posterior table of the sternum, and implanting a wedge bone graft to correct the angulation.[45]

Haller has modified this technique to create a "tripod fixation" involving removal of 3-4 overgrown costal cartilages, anterior repositioning of the sternum after osteotomy, and placement of a posterior internal sternal support created by the child's lowest normal ribs.[44] A temporary bar is inserted below the sternum to facilitate anterior sternal displacement. This final step was modified by Hayashi et al to include a vascularized rib graft to replace the temporary metal bar.[46]

Poly-L-lactide (PLLA) was instituted by Matsui and has demonstrated good results when used as an absorbable strut to aid in anterior displacement of the sternal plate.[47] PLLA retains 90% of its mechanical strength for more than 3 months after implantation. Controversy over the procedure described by Wada,[48] involving complete resection of the sternum including transection of bilateral IMAs and complete turnover of the entire complex, led Doty and Hawkins and Ishikawa to preserve one or both mammary arteries during this maneuver.[49, 50]

The sacrifice of the arteries increases the potential for avascular necrosis and secondary infection of the sternum. Similar to the implanted metal strut described previously, Wolf devised an external modified Jewett brace that would support the sternum after cartilage resection and sternal osteotomy by transcutaneous wires.[51]

The advantages to this technique are comparable results, no need for a second major operation to remove the supportive strut, and reduced operative time. The major disadvantage is the cumbersome brace that is worn for 6 weeks postoperatively.

A study by Udholm et al found that pectus excavatum correction did not lead to improvement of cardiopulmonary function in adults. Neither cardiac output nor maximum oxygen uptake were significantly changed in the study’s 15 patients at 1-year follow-up.[52]



The primary complication encountered with chest wall reconstruction is associated with infection, whether from initial wound contamination and inadequate debridement or secondary infection. Poor planning when harvesting the pedicle flap and careless sacrificing of essential arterial perforators may result in muscle flap necrosis and skin paddle epidermolysis. Closed system drains also are essential for both donor and recipient sites. Infection is controlled with wide debridement and irrigation and coverage with well-perfused viable tissue. Consequently, the incidence of infection associated with allografts and artificial material is higher. Osteomyelitis is also a difficult infection to treat and often requires debridement that may render the defect worse than the initial presentation.

Removal of skeletal elements may cause an alteration in pulmonary physiology, thus resulting in respiratory compromise. Extrusion of allografts, primarily the struts and bars made of surgical steels, often is observed with time, especially when the ends of the support are placed beneath a pressure point. Perform shortening, pedicle flap padding, or removal of the prosthesis in these instances.

Muscle flap harvest rarely leaves the patient with debilitating functional impairment, yet extensive resection, usually with multiple operations, results in poor cosmetic outcome. Keloid scars and contractures also are observed in a small group of patients, but these minor complications are usually subtle compared to the causative insult. Harvest of the serratus anterior muscle for procedures such as thoracoplasty may result in scapular flare. Harvesting muscles closely associated to the thoracic cage presents a slight risk of pneumothorax. Inadequate closure and reinforcement of the abdominal wall fascia after harvest of the RAM has been demonstrated to increase the incidence of abdominal wall hernias.

A study by Kozlow et al indicated that an increased visceral fat area and other abdominal factors lead to a greater risk of complications from sternal reconstruction with vascularized flaps. Using computed tomography (CT) scans of the abdomen from 34 patients who underwent sternal reconstruction, the investigators found that the incidence of complications was increased in patients with relatively greater visceral and subcutaneous fat areas, as well as a greater total body area and circumference and an increased fascia area and circumference.[53]


Outcome and Prognosis

Chest wall defects frequently are encountered in all regions of the chest. Reconstruction may be required after resection of malignant tumors, radiation injuries, trauma, or infection. The ideal reconstruction should provide enough stability in the chest wall to allow adequate and spontaneous ventilation, protect intrathoracic organs, and be aesthetically appropriate. Chest wall resection and reconstruction continue to provide a formidable challenge; however, recent surgical techniques have provided ways to repair defects of almost any size with minimal functional impairment. The initial assessment in chest wall reconstruction includes evaluation of the location, extent, and etiology of the defect.

Options for soft tissue reconstruction include pedicle flap transposition and microvascular free flap transfer. Defects limited to partial thickness readily are covered with split-thickness grafts provided the recipient bed is vascular. Local muscle or musculocutaneous flaps are reserved for full-thickness transthoracic wall defects, often related to extensive debridement from osteomyelitis or osteoradionecrosis. Extensive full-thickness defects requiring skeletal support often are treated with whole or split grafts, which are preferred for elective sterile defects. Allografts such as Marlex, Gore-Tex, and Prolene mesh can provide stability and support for complex defects. Free flap tissue transfer usually is left as a last option when local or musculocutaneous flaps are unavailable.

With a given chest wall defect, the surgeon must properly devise a plan that balances function, durability, and aesthetics in the reconstructive effort.


Future and Controversies

Today, infected wound beds of the chest are debrided, and vacuum-assisted closure is used. This has decreased wound size, edema, and bacterial counts, which facilitates wound closure with various flaps.

AlloDerm (devascularized cadaveric dermis) has been used in chest wall reconstruction in an infected field with success. Prosthetic mesh cannot be used in this setting.

In addition to using muscle flaps, plastic surgeons are using fasciocutaneous and perforator flaps in the reconstruction of the chest wall. The deep inferior epigastric perforator (DIEP) flap, the anterolateral thigh flap, and the superior gluteal artery flap have been used in recent years.

Advances in research and microvascular techniques will continuously add to the armamentarium of the plastic surgeon in the reconstruction of the chest.

Contributor Information and Disclosures

David Jansen, MD, FACS Chief and Program Director, Section of Plastic and Reconstructive Surgery, Tulane University School of Medicine; Consulting Staff, Surgical Associates LLC

David Jansen, MD, FACS is a member of the following medical societies: American Cleft Palate-Craniofacial Association, Texas Medical Association, American College of Surgeons, American Society of Plastic Surgeons, American Society for Reconstructive Microsurgery, Association for Academic Surgery, Louisiana State Medical Society

Disclosure: Nothing to disclose.


Ernest S Chiu, MD Associate Professor of Surgery, Director of Plastic Surgery Research, Division of Plastic and Reconstructive Surgery, Tulane Health Sciences Center; Co-director of Vascular Anomalies Center, Children's Hospital of New Orleans

Ernest S Chiu, MD is a member of the following medical societies: American Society of Plastic Surgeons, Plastic Surgery Research Council, American Council of Academic Plastic Surgeons

Disclosure: Nothing to disclose.

Azul S Jaffer, MD Fellow in Plastic Surgery, Tulane University School of Medicine

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Jaime R Garza, MD, DDS, FACS Consulting Staff, Private Practice

Jaime R Garza, MD, DDS, FACS is a member of the following medical societies: Alpha Omega Alpha, American Academy of Otolaryngology-Head and Neck Surgery, American College of Surgeons, American Society for Aesthetic Plastic Surgery, American Society of Maxillofacial Surgeons, Texas Medical Association, Texas Society of Plastic Surgeons

Disclosure: Received none from Allergan for speaking and teaching; Received none from LifeCell for consulting; Received grant/research funds from GID, Inc. for other.

Chief Editor

Jorge I de la Torre, MD, FACS Professor of Surgery and Physical Medicine and Rehabilitation, Chief, Division of Plastic Surgery, Residency Program Director, University of Alabama at Birmingham School of Medicine; Director, Center for Advanced Surgical Aesthetics

Jorge I de la Torre, MD, FACS is a member of the following medical societies: American Burn Association, American College of Surgeons, American Medical Association, American Society for Laser Medicine and Surgery, American Society of Maxillofacial Surgeons, American Society of Plastic Surgeons, American Society for Reconstructive Microsurgery, Association for Academic Surgery, Medical Association of the State of Alabama

Disclosure: Nothing to disclose.

Additional Contributors

Dennis P Orgill, MD, PhD Professor of Surgery, Harvard Medical School; Associate Chief of Plastic Surgery, Brigham and Women's Hospital

Dennis P Orgill, MD, PhD is a member of the following medical societies: American Society for Reconstructive Microsurgery, Plastic Surgery Research Council, American Medical Association, Massachusetts Medical Society

Disclosure: Received consulting fee from Integra LifeSciences, Inc for consulting; Received consulting fee from Integra LifeSciences, Inc. for program and training services agreement; Received grant/research funds from Integra LifeSciences, Inc. for clinical research; Received grant/research funds from KCI for basic science research; Received grant/research funds from KCI for clinical research; Received consulting fee from DSM for consulting; Received consulting fee from Musculoskeletal Transplant Foundatio.


R Edward Newsome, MD† Former Program Director and Chief of Plastic Surgery, Henderson Chair in Surgery, Former Assistant Dean for Graduate Medical Education, Tulane University School of Medicine

  1. Fell GE. Forced respiration. JAMA. 1891. 16:325.

  2. O'Dwyer J. Fifty cases of croup in private practice treated by intubation of the larynx, with a description of the method and of the dangers incident thereto. Med Rec. 1887. 32:557.

  3. Tansini I. Sopra il mio nuovo processo di amputazione della mammella. Gazz Med ltal Torino. 1906. 57:141.

  4. Hutchins EH. A method for the prevention of elephantiasis chirurgica. Surg Gynecol Obstet. 1939. 69:795.

  5. Campbell DA. Reconstruction of the anterior thoracic wall. J Thorac Surg. 1950 Mar. 19(3):456-61. [Medline].

  6. Graham EA, Singer JJ. Successful removal of an entire lung for carcinoma of the bronchus. JAMA. 1933. 101:1371.

  7. Watson WL, James AG. Fascia lata grafts for the chest wall defects. J Thorac Surg. 1947. 16:399.

  8. Bisgard JD, Swenson SA, Jr. Tumors of the sternum: Report of a case with special operative technique. Arch Surg. 1948. 56:570.

  9. Hirase Y, Kojima T, Kinoshita Y, Bang HH, Sakaguchi T, Kijima M. Composite reconstruction for chest wall and scalp using multiple ribs-latissimus dorsi osteomyocutaneous flaps as pedicled and free flaps. Plast Reconstr Surg. 1991 Mar. 87(3):555-61. [Medline].

  10. Maier HC. Surgical management of large defects of the thoracic wall. Surgery. 1947. 22:169.

  11. Pairolero PC, Arnold PG. Thoracic wall defects: surgical management of 205 consecutive patients. Mayo Clin Proc. 1986 Jul. 61(7):557-63. [Medline].

  12. Poland A. Deficiency of the pectoralis muscle. Guy's Hosp Report. 1841. 6:191.

  13. de Haan B. Aangeboren ontbreken van de groote borstspier mit syndactylie. Leiden, Herinneringsb. 1902. 3-19.

  14. Parker DL, Mitchell PR, Holmes GL. Poland-Mobius syndrome. J Med Genet. 1981 Aug. 18(4):317-20. [Medline].

  15. Dingman RO, Argenta LC. Reconstruction of the chest wall. Ann Thorac Surg. 1981 Aug. 32(2):202-8. [Medline].

  16. McCormack PM. Use of prosthetic materials in chest-wall reconstruction. Assets and liabilities. Surg Clin North Am. 1989 Oct. 69(5):965-76. [Medline].

  17. Picciocchi A, Granone P, Cardillo G, Margaritora S, Benzoni C, D'Ugo D. Prosthetic reconstruction of the chest wall. Int Surg. 1993 Jul-Sep. 78(3):221-4. [Medline].

  18. Miller JI, Mansour KA, Nahai F, Jurkiewicz MJ, Hatcher CR Jr. Single-stage complete muscle flap closure of the postpneumonectomy empyema space: a new method and possible solution to a disturbing complication. Ann Thorac Surg. 1984 Sep. 38(3):227-31. [Medline].

  19. Arnold PG, Pairolero PC, Waldorf JC. The serratus anterior muscle: intrathoracic and extrathoracic utilization. Plast Reconstr Surg. 1984 Feb. 73(2):240-8. [Medline].

  20. Hammond DC, Fisher J, Meland NB. Intrathoracic free flaps. Plast Reconstr Surg. 1993 Jun. 91(7):1259-64. [Medline].

  21. Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg. 2005 Oct. 116(5):1263-75; discussion 1276-7. [Medline].

  22. Grégoire R, Deslauriers J, Beaulieu M, Piraux M. Thoracoplasty: its forgotten role in the management of nontuberculous postpneumonectomy empyema. Can J Surg. 1987 Sep. 30(5):343-5. [Medline].

  23. Debreceni T, Szerafin T, Galajda Z, Miskolczi S, Peterffy A. Results of vacuum-assisted wound closure system in the treatment of sternotomy wound infections following cardiac surgery. Magy Seb. May 2008. 61:29-35.

  24. Agarwal JP, Ogilvie M, Wu LC, Lohman RF, Gottlieb LJ, Franczyk M. Vacuum-assisted closure for sternal wounds: a first-line therapeutic management approach. Plast Reconstr Surg. 2005 Sep 15. 116(4):1035-40; discussion 1041-3. [Medline].

  25. Lee AB Jr, Schimert G, Shaktin S, Seigel JH. Total excision of the sternum and thoracic pedicle transposition of the greater omentum; useful stratagems in managing severe mediastinal infection following open heart surgery. Surgery. 1976 Oct. 80(4):433-6. [Medline].

  26. Jurkiewicz MJ, Bostwick J 3rd, Hester TR, Bishop JB, Craver J. Infected median sternotomy wound. Successful treatment by muscle flaps. Ann Surg. 1980 Jun. 191(6):738-44. [Medline].

  27. Christen T, Koch N, Philandrianos C, Ramirez R, Raffoul W, Beldi M, et al. The V-Y Latissimus Dorsi Musculocutaneous Flap in the Reconstruction of Large Posterior Chest Wall Defects. Aesthetic Plast Surg. 2012 Jan 19. [Medline].

  28. Seki M. Chest wall reconstruction with a latissimus dorsi musculocutaneous flap via the pleural cavity. Interact Cardiovasc Thorac Surg. 2012 Jan. 14(1):96-8. [Medline].

  29. McCraw JB, Penix JO, Baker JW. Repair of major defects of the chest wall and spine with the latissimus dorsi myocutaneous flap. Plast Reconstr Surg. 1978 Aug. 62(2):197-206. [Medline].

  30. Matsuo K, Hirose T, Hayashi R, Senga O. Chest-wall reconstruction by contralateral latissimus dorsi musculocutaneous flap. Plast Reconstr Surg. 1988 Dec. 82(6):994-9. [Medline].

  31. May JW Jr, Toth BA, Cohen AM. Teres major--latissimus dorsi skin-muscle flap for chest-wall reconstruction. Plast Reconstr Surg. 1982 Feb. 69(2):326-8. [Medline].

  32. Arnold PG, Pairolero PC. Intrathoracic muscle flaps: a 10-year experience in the management of life-threatening infections. Plast Reconstr Surg. 1989 Jul. 84(1):92-8; discussion 99. [Medline].

  33. Moon HK, Taylor GI. The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system. Plast Reconstr Surg. 1988 Nov. 82(5):815-32. [Medline].

  34. Ye X, Rozen WM, Alonso-Burgos A, Ashton MW. "Choke" vessels between vascular territories of the abdominal wall: Literature review and rare case of Leriche's syndrome. Clin Anat. 2012 Jan 23. [Medline].

  35. Fernando B, Muszynski C, Mustoe T. Closure of a sternal defect with the rectus abdominis muscle after sacrifice of both internal mammary arteries. Ann Plast Surg. 1988 Nov. 21(5):468-71. [Medline].

  36. Ghazi BH, Carlson GW, Losken A. Use of the greater omentum for reconstruction of infected sternotomy wounds: a prognostic indicator. Ann Plast Surg. 2008 Feb. 60(2):169-73. [Medline].

  37. Teich-Alasia S, Ambroggio G, Oberto E, Cerutti V, Perla A. A subscapular-pubic fascio-cutaneous flap for reconstruction of the chest wall following excision to the extent of near inoperability. Scand J Plast Reconstr Surg. 1986. 20(1):85-7. [Medline].

  38. Hidalgo DA, Saldana EF, Rusch VW. Free flap chest wall reconstruction for recurrent breast cancer and radiation ulcers. Ann Plast Surg. 1993 Apr. 30(4):375-80. [Medline].

  39. Sullivan SR, Truxillo TM, Mann GN, Isik FF. Utility of the free deep inferior epigastric perforator flap in chest wall reconstruction. Breast J. 2007 Jan-Feb. 13(1):50-4. [Medline].

  40. Anderl H, Kerschbaumer S. Early correction of the thoracic deformity of Poland's syndrome in children with the latissimus dorsi muscle flap: long term follow-up of two cases. Br J Plast Surg. 1986 Apr. 39(2):167-72. [Medline].

  41. Argenta LC, VanderKolk C, Friedman RJ, Marks M. Refinements in reconstruction of congenital breast deformities. Plast Reconstr Surg. 1985 Jul. 76(1):73-82. [Medline].

  42. Versaci AD, Balkovich ME, Goldstein SA. Breast reconstruction by tissue expansion for congenital and burn deformities. Ann Plast Surg. 1986 Jan. 16(1):20-31. [Medline].

  43. Murray JF. Correction of pectus excavatum by synthetic subcutaneous implant. Presented at the Annual Meeting of the American Society of Plastic and Reconstructive. 1965.

  44. Haller JA Jr, Scherer LR, Turner CS, Colombani PM. Evolving management of pectus excavatum based on a single institutional experience of 664 patients. Ann Surg. 1989 May. 209(5):578-82; discussion 582-3. [Medline].

  45. Ravitch MM. The operative treatment of pectus excavatum. Ann Surg. 1949. 129:429.

  46. Hayashi A, Maruyama Y. Vascularized rib strut technique for repair of pectus excavatum. Ann Thorac Surg. 1992 Feb. 53(2):346-8. [Medline].

  47. Matsui T, Kitano M, Nakamura T, Shimizu Y, Hyon SH, Ikada Y. Bioabsorbable struts made from poly-L-lactide and their application for treatment of chest deformity. J Thorac Cardiovasc Surg. 1994 Jul. 108(1):162-8. [Medline].

  48. Wada J, Ikeda K, Ishida T, Hasegawa T. Results of 271 funnel chest operations. Ann Thorac Surg. 1970 Dec. 10(6):526-32. [Medline].

  49. Doty DB, Hawkins JA. A turnover operation for pectus excavatum at the time of correction of intracardiac defects. J Thorac Cardiovasc Surg. 1983 Nov. 86(5):787-90. [Medline].

  50. Ishikawa S, Uchinuma E, Itoh M, Shioya N. A simple sternal turnover procedure using a vascular pedicle for a funnel chest. Ann Plast Surg. 1988 May. 20(5):485-91. [Medline].

  51. Wolf WM, Fischer MD, Saltzman DA, Leonard AS. Surgical correction of pectus excavatum and carinatum. Minn Med. 1987 Aug. 70(8):447-53. [Medline].

  52. Udholm S, Maagaard M, Pilegaard H, Hjortdal V. Cardiac function in adults following minimally invasive repair of pectus excavatum†. Interact Cardiovasc Thorac Surg. 2016 Feb 8. [Medline]. [Full Text].

  53. Kozlow JH, Lisiecki J, Terjimanian MN, et al. Cross-sectional area of the abdomen predicts complication incidence in patients undergoing sternal reconstruction. J Surg Res. 2014 May 24. [Medline].

  54. Alexander J. The collapse therapy of pulmonary tuberculosis. 1937.

  55. Amoroso PJ, Angelats J. Latissimus dorsi myocutaneous flap in Poland syndrome. Ann Plast Surg. 1981 Apr. 6(4):287-90. [Medline].

  56. Bavinck JN, Weaver DD. Subclavian artery supply disruption sequence: hypothesis of a vascular etiology for Poland, Klippel-Feil, and Mobius anomalies. Am J Med Genet. 1986 Apr. 23(4):903-18. [Medline].

  57. Beggs JH, McCoy DM. Reconstruction of the sternum and anterior chest wall using autologous tissues. South Med J. 1991 May. 84(5):655-6. [Medline].

  58. BLADES B, PAUL JS. Chest wall tumors. Ann Surg. 1950 Jun. 131(6):976-84. [Medline].

  59. Bobin JY, Crozet B, Ranchere JY. Using the costal muscle flap with latissimus dorsi muscle to repair full-thickness anterior chest wall defects. Ann Plast Surg. 1988 May. 20(5):471-6. [Medline].

  60. Bouvet JP, Leveque D, Bernetieres F, Gros JJ. Vascular origin of Poland syndrome? A comparative rheographic study of the vascularisation of the arms in eight patients. Eur J Pediatr. 1978 May 22. 128(1):17-26. [Medline].

  61. Boyd JB, Taylor GI, Corlett R. The vascular territories of the superior epigastric and the deep inferior epigastric systems. Plast Reconstr Surg. 1984 Jan. 73(1):1-16. [Medline].

  62. Bryant LR, Spencer FC, Trinkle JK. Treatment of median sternotomy infection by mediastinal irrigation with an antibiotic solution. Ann Surg. 1969 Jun. 169(6):914-20. [Medline].

  63. Clagett OT, Geraci JE. A procedure for the management of postpneumonectomy empyema. J Thorac Cardiovasc Surg. 1963 Feb. 45:141-5. [Medline].

  64. Clarkson P. Poland's syndactyly. Guy's Hosp Rep. 1962. 111:335.

  65. Converse JM, Campbell RM, Watson WL. Repair of large radiation ulcers situated over the heart and the brain. Ann Surg. 1951. 133:95.

  66. Cormack GC, Lamberty BG. The anatomical vascular basis of the axillary fascio-cutaneous pedicled flap. Br J Plast Surg. 1983 Oct. 36(4):425-7. [Medline].

  67. Daniel RK, Kerrigan CL, Gard DA. The great potential of the intercostal flap for torso reconstruction. Plast Reconstr Surg. 1978 May. 61(5):653-65. [Medline].

  68. Dieter RA Jr, Pifarre R, Neville WE, Magno M, Jasuja M. Empyema treated with neomycin irrigation and closed-chest drainage. J Thorac Cardiovasc Surg. 1970 Apr. 59(4):496-500. [Medline].

  69. Fisher J, Bostwick J 3rd, Powell RW. Latissimus dorsi blood supply after thoracodorsal vessel division: the serratus collateral. Plast Reconstr Surg. 1983 Oct. 72(4):502-11. [Medline].

  70. Fix RJ, Vasconez LO. Use of the omentum in chest-wall reconstruction. Surg Clin North Am. 1989 Oct. 69(5):1029-46. [Medline].

  71. Fraser FC, Ronen GM, O'Leary E. Pectoralis major defect and Poland sequence in second cousins: extension of the Poland sequence spectrum. Am J Med Genet. 1989 Aug. 33(4):468-70. [Medline].

  72. Freire-Maia N, Chautard EA, Opitz JM, Freire-Maia A, Quelce-Salgado A. The Poland syndrome-clinical and genealogical data, dermatoglyphic analysis, and incidence. Hum Hered. 1973. 23(2):97-104. [Medline].

  73. Graham J, Usher FC, Perry JL. Marlex mesh as a prosthesis in the repair of thoracic wall defects. Ann Surg. 1960. 151:469.

  74. Haller JA Jr. Operative management of chest wall deformities in children: unique contributions of Southern thoracic surgeons. Ann Thorac Surg. 1988 Jul. 46(1):4-12. [Medline].

  75. Haller JA Jr, Colombani PM, Miller D, Manson P. Early reconstruction of Poland's syndrome using autologous rib grafts combined with a latissimus muscle flap. J Pediatr Surg. 1984 Aug. 19(4):423-9. [Medline].

  76. Hartrampf CR Jr. Abdominal wall competence in transverse abdominal island flap operations. Ann Plast Surg. 1984 Feb. 12(2):139-46. [Medline].

  77. Hartrampf CR Jr, Elliott LF, Feldman S. A triceps musculocutaneous flap for chest-wall defects. Plast Reconstr Surg. 1990 Sep. 86(3):502-9. [Medline].

  78. Herrmann J, Pallister PD, Gilbert EF, et al. Studies of malformation syndromes of man XXXXI B: nosologic studies in the Hanhart and the Möbius syndrome. Eur J Pediatr. 1976 Apr 6. 122(1):19-55. [Medline].

  79. Hester TR Jr, Bostwick J 3rd. Poland's syndrome: correction with latissimus muscle transposition. Plast Reconstr Surg. 1982 Feb. 69(2):226-33. [Medline].

  80. Hopper KD, Haas DK, Rice MM, Freeley DA, Taubner RW, Ghaed N. Poland-Möbius syndrome: evaluation by computerized tomography. South Med J. 1985 May. 78(5):523-7. [Medline].

  81. Hwang CY, Yeh FL, Lin JT, Fang RH. Coverage of chest wall defect with pectoralis-breast myocutaneous flap: a report of two cases. Zhonghua Yi Xue Za Zhi (Taipei). 1995 Nov. 56(5):356-60. [Medline].

  82. Kao CC, Rand RP, Stridde BC, Marchioro TL. Techniques in the composite reconstruction of extensive thoracoabdominal tumor resections. J Am Coll Surg. 1995 Feb. 180(2):146-9. [Medline].

  83. Kiricuta I. L'emploi du grand epiploon dans la chirugie du sein cancereux. Presse Med (Paris). 1963. 71:15.

  84. Kroll SS, Walsh G, Ryan B, King RC. Risks and benefits of using Marlex mesh in chest wall reconstruction. Ann Plast Surg. 1993 Oct. 31(4):303-6. [Medline].

  85. Le Roux BT. Maintenance of chest wall stability. Thorax. 1964. 19:397.

  86. Lejour M, Dome M. Abdominal wall function after rectus abdominis transfer. Plast Reconstr Surg. 1991 Jun. 87(6):1054-68. [Medline].

  87. Martini N, Starzynski TE, Beattie EJ Jr. Problems in chest wall resection. Surg Clin North Am. 1969 Apr. 49(2):313-22. [Medline].

  88. Maxwell GP, McGibbon BM, Hoopes JE. Vascular considerations in the use of a latissimus dorsi myocutaneous flap after a mastectomy with an axillary dissection. Plast Reconstr Surg. 1979 Dec. 64(6):771-80. [Medline].

  89. McKenna RJ Jr, Mountain CF, McMurtrey MJ, Larson D, Stiles QR. Current techniques for chest wall reconstruction: expanded possibilities for treatment. Ann Thorac Surg. 1988 Nov. 46(5):508-12. [Medline].

  90. Miller JI, Nahai F. Repair of the dehisced median sternotomy incision. Surg Clin North Am. 1989 Oct. 69(5):1091-102. [Medline].

  91. Miller LB, Bostwick J 3rd, Hartrampf CR Jr, Hester TR Jr, Nahai F. The superiorly based rectus abdominis flap: predicting and enhancing its blood supply based on an anatomic and clinical study. Plast Reconstr Surg. 1988 May. 81(5):713-24. [Medline].

  92. Myre TT, Kirklin JW. Resection of tumors of the sternum. Ann Surg. 1956. 144:1023.

  93. Nahai F, Morales L Jr, Bone DK, Bostwick J 3rd. Pectoralis major muscle turnover flaps for closure of the infected sternotomy wound with preservation of form and function. Plast Reconstr Surg. 1982 Oct. 70(4):471-4. [Medline].

  94. Nahai F, Rand RP, Hester TR, Bostwick J 3rd, Jurkiewicz MJ. Primary treatment of the infected sternotomy wound with muscle flaps: a review of 211 consecutive cases. Plast Reconstr Surg. 1989 Sep. 84(3):434-41. [Medline].

  95. Northrop WP, O'Dwyer J. His methods of work on intubation: The measure of his success; the interest of both to young graduates. Med Rec. 1904. 65:561.

  96. Ohmori K, Takada H. Correction of Poland's pectoralis major muscle anomaly with latissimus dorsi musculocutaneous flaps. Plast Reconstr Surg. 1980 Apr. 65(4):400-4. [Medline].

  97. Pairolero PC, Arnold PG, Piehler JM. Intrathoracic transposition of extrathoracic skeletal muscle. J Thorac Cardiovasc Surg. 1983 Dec. 86(6):809-17. [Medline].

  98. Parham FW. Thoracic resection for tumors growing from the bony wall of the chest. Trans South Surg Gynecol Assoc. 1898. 11:223.

  99. Pickrell KL, Kelley JW, Marzoni FA. The surgical treatment of recurrent carcinoma of the breast and chest wall. Plast Reconstr Surg. 1948. 3:156.

  100. Ravitch MM. Poland's sydrome--a study of an eponym. Plast Reconstr Surg. 1977 Apr. 59(4):508-12. [Medline].

  101. Ravitch MM. Technical problems in the operative correction of pectus excavatum. Ann Surg. 1966. 162:29.

  102. Rees TD, Converse JM. Surgical reconstruction of defects of the thoracic wall. Surg Gynecol Obstet. 1965 Nov. 121(5):1066-72. [Medline].

  103. Salmon RJ, Razaboni R, Soussaline M. The use of the latissimus dorsi musculocutaneous flap following recurrence of cancer in irradiated breasts. Br J Plast Surg. 1988 Jan. 41(1):41-4. [Medline].

  104. Savant DN, Patel SG, Bokil KP, Bhathena HM, Kavarana NM, Vyas JJ. Reconstruction of chest wall defects following extirpative surgery. J Surg Oncol. 1994 Mar. 55(3):186-9. [Medline].

  105. Serry C, Bleck PC, Javid H, et al. Sternal wound complications. Management and results. J Thorac Cardiovasc Surg. 1980 Dec. 80(6):861-7. [Medline].

  106. Seyfer AE, Icochea R, Graeber GM. Poland's anomaly. Natural history and long-term results of chest wall reconstruction in 33 patients. Ann Surg. 1988 Dec. 208(6):776-82. [Medline].

  107. Shamberger RC, Welch KJ, Upton J 3rd. Surgical treatment of thoracic deformity in Poland's syndrome. J Pediatr Surg. 1989 Aug. 24(8):760-5; discussion 766. [Medline].

  108. Shaw WW, Aston SJ, Zide BM. Reconstruction of the trunk. McCarthy JG, ed. Plastic Surgery. Philadelphia, Pa: WB Saunders; 1990. Vol 6: 3675.

  109. Starzynski TE, Snyderman RK, Beattie EJ Jr. Problems of major chest wall reconstruction. Plast Reconstr Surg. 1969 Dec. 44(6):525-35. [Medline].

  110. Tobin GR. Pectoralis major muscle-musculocutaneous flap for chest-wall reconstruction. Surg Clin North Am. 1989 Oct. 69(5):991-1006. [Medline].

  111. Urschel HC Jr, Byrd HS, Sethi SM, Razzuk MA. Poland's syndrome: improved surgical management. Ann Thorac Surg. 1984 Mar. 37(3):204-11. [Medline].

  112. Versaci AD. Discussion of "Refinements in reconstruction of congenital breast deformities", by L.C. Argenta, et al. Plast Reconstr Surg. 1985. 76:81.

Right lateral photo of a patient who underwent pneumonectomy, which was complicated by a bronchopleural cutaneous fistula. The photograph is of the fistula tract.
CT scan showing large right-sided empyema.
Omental flap for obliteration of the empyema cavity.
Postoperative photo, chest wall reconstruction.
Infected and open sternal wound after coronary artery bypass graft.
Sternal wound debridement with vacuum-assisted closure therapy.
Sternal wound with omental flap.
Healed sternal wound appearance after omental flap and split-thickness skin graft.
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.