Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Nasoethmoid Fractures Workup

  • Author: David W Kim, MD; Chief Editor: Deepak Narayan, MD, FRCS  more...
 
Updated: Sep 04, 2015
 

Imaging Studies

Generally, plain radiograph and CT scan images are taken of all patients with possible facial fractures. Plain radiographs have limited utility in assessing isolated nasoethmoid fractures. These films may demonstrate opacification or clouding of the maxillary and ethmoid sinuses, indicating the presence of blood. They also may show larger associated facial fractures but are unlikely to characterize the relatively detailed osseous anatomy of the NOE complex. Therefore, CT scan images have replaced plain films as the main imaging tool to assist in the diagnosis and treatment planning for NOE fractures.

CT scan images have superior resolution compared to plain films. They are also better for helping delineate multiple fractures, evaluate associated cartilaginous or soft tissue injury, evaluate brain involvement, and assess for the presence of impingement into the optic canal. Thin (2-mm or less) cuts in both the coronal and axial planes are needed to obtain adequate detail of fractures.[1]

More recently, the use of three-dimensional CT scan imaging and computer modeling allow reconstruction of facial symmetry in a virtual environment.[6]

 
 
Contributor Information and Disclosures
Author

David W Kim, MD Assistant Professor, Department of Otolaryngology-Head and Neck Surgery, Director, Division of Facial Plastic and Reconstructive Surgery, University of California at San Francisco

David W Kim, MD is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery

Disclosure: Nothing to disclose.

Coauthor(s)

Patrick Byrne, MD Associate Professor, Department of Head and Neck Surgery, Division of Facial Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine

Patrick Byrne, MD is a member of the following medical societies: American Academy of Facial Plastic and Reconstructive Surgery, American Academy of Otolaryngology-Head and Neck Surgery, American Cleft Palate-Craniofacial Association, American College of Surgeons

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Jaime R Garza, MD, DDS, FACS Consulting Staff, Private Practice

Jaime R Garza, MD, DDS, FACS is a member of the following medical societies: Alpha Omega Alpha, American Academy of Otolaryngology-Head and Neck Surgery, American College of Surgeons, American Society for Aesthetic Plastic Surgery, American Society of Maxillofacial Surgeons, Texas Medical Association, Texas Society of Plastic Surgeons

Disclosure: Received none from Allergan for speaking and teaching; Received none from LifeCell for consulting; Received grant/research funds from GID, Inc. for other.

Chief Editor

Deepak Narayan, MD, FRCS Associate Professor of Surgery (Plastic), Yale University School of Medicine; Chief of Plastic Surgery, West Haven Veterans Affairs Medical Center

Deepak Narayan, MD, FRCS is a member of the following medical societies: American Association for the Advancement of Science, American College of Surgeons, American Medical Association, American Society of Maxillofacial Surgeons, American Society of Plastic Surgeons, Plastic Surgery Research Council, Royal College of Surgeons of England, Royal College of Surgeons of Edinburgh, Indian Medical Association

Disclosure: Nothing to disclose.

Additional Contributors

James F Thornton, MD Associate Professor, Department of Plastic Surgery, University of Texas Southwestern Medical Center

Disclosure: Nothing to disclose.

Acknowledgements

Kristin K Egan, MD Chief Resident, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco School of Medicine

Disclosure: Nothing to disclose.

Adel R Tawfilis, DDS Assistant Clinical Professor, Department of Surgery, Division of Plastic Surgery, University of California at San Diego Medical Center

Adel R Tawfilis, DDS is a member of the following medical societies: American Association of Oral and Maxillofacial Surgeons, American Dental Association, and American Society of Maxillofacial Surgeons

Disclosure: Nothing to disclose.

References
  1. Sargent LA. Nasoethmoid orbital fractures: diagnosis and treatment. Plast Reconstr Surg. 2007 Dec. 120(7 Suppl 2):16S-31S. [Medline].

  2. Huempfner-Hierl H, Schaller A, Hierl T. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis. Scand J Trauma Resusc Emerg Med. 2015 Apr 21. 23:35. [Medline].

  3. Markowitz BL, Manson PN, Sargent L, et al. Management of the medial canthal tendon in nasoethmoid orbital fractures: the importance of the central fragment in classification and treatment. Plast Reconstr Surg. 1991 May. 87(5):843-53. [Medline].

  4. Gulses A, Varol A, Gayretli O, Kocabiyik N, Sencimen M. Anthropometry of the medial canthal ligament related to naso-orbitoethmoidal fractures. J Craniofac Surg. 2012 Jul. 23(4):1151-3. [Medline].

  5. Potter JK, Muzaffar AR, Ellis E, et al. Aesthetic management of the nasal component of naso-orbital ethmoid fractures. Plast Reconstr Surg. 2006 Jan. 117(1):10e-18e. [Medline].

  6. Pham AM, Rafii AA, Metzger MC, et al. Computer modeling and intraoperative navigation in maxillofacial surgery. Otolaryngol Head Neck Surg. 2007 Oct. 137(4):624-31. [Medline].

  7. Rosenberger E, Kriet JD, Humphrey C. Management of nasoethmoid fractures. Curr Opin Otolaryngol Head Neck Surg. 2013 Aug. 21(4):410-6. [Medline].

  8. Yabe T, Ozawa T. Treatment of nasoethmoid-orbital fractures using Kirschner wire fixation of the nasal septum. J Craniofac Surg. 2011 Jul. 22(4):1510-2. [Medline].

  9. Elbarbary AS, Ali A. Medial canthopexy of old unrepaired naso-orbito-ethmoidal (noe) traumatic telecanthus. J Craniomaxillofac Surg. 2014 Mar. 42 (2):106-12. [Medline].

  10. Wolff J, Sándor GK, Pyysalo M, Miettinen A, Koivumäki AV, Kainulainen VT. Late Reconstruction of Orbital and Naso-orbital Deformities. Oral Maxillofac Surg Clin North Am. 2013 Nov. 25(4):683-95. [Medline].

  11. Crockett DM, Funk GF. Management of complicated fractures involving the orbits and nasoethmoid complex in young children. Otolaryngol Clin North Am. 1991 Feb. 24(1):119-37. [Medline].

  12. Cruse CW, Blevins PK, Luce EA. Naso-ethmoid-orbital fractures. J Trauma. 1980 Jul. 20(7):551-6. [Medline].

  13. Ellis E 3rd. Sequencing treatment for naso-orbito-ethmoid fractures. J Oral Maxillofac Surg. 1993 May. 51(5):543-58. [Medline].

  14. Fedok FG. Comprehensive management of nasoethmoid-orbital injuries. J Craniomaxillofac Trauma. 1995. 1(4):36-48. [Medline].

  15. Heine RD, Catone GA, Bavitz JB, et al. Naso-orbital-ethmoid injury: report of a case and review of the literature. Oral Surg Oral Med Oral Pathol. 1990 May. 69(5):542-9. [Medline].

  16. Holt GR, Holt JE. Nasoethmoid complex injuries. Otolaryngol Clin North Am. 1985 Feb. 18(1):87-98. [Medline].

  17. Leipziger LS, Manson PN. Nasoethmoid orbital fractures. Current concepts and management principles. Clin Plast Surg. 1992 Jan. 19(1):167-93. [Medline].

  18. Mathog RH. Posttraumatic telecanthus. Mathog RH, ed. Maxillofacial Trauma. Baltimore, Md: Williams & Wilkins; 1984. 303-17.

  19. Rhee JS, Chen CT. Endoscopic approach to medial orbital wall fractures. Facial Plast Surg Clin North Am. 2006 Feb. 14(1):17-23. [Medline].

  20. Sargent LA, Rogers GF. Nasoethmoid orbital fractures: diagnosis and management. J Craniomaxillofac Trauma. 1999. 5(1):19-27. [Medline].

  21. Vora NM, Fedok FG. Management of the central nasal support complex in naso-orbital ethmoid fractures. Facial Plast Surg. 2000. 16(2):181-91. [Medline].

Previous
Next
 
Naso-orbito-ethmoid complex fractures are classified according to 3 types. (A) Type I fractures involve a single, noncomminuted, central fragment without medial canthal tendon disruption (left-unilateral, right-bilateral). (B) Type II fractures involve comminution of the central fragment without medial canthal tendon disruption (left-unilateral, right-bilateral). (C) Type III fractures result in severe central fragment comminution with medial canthal tendon disruption (left-unilateral, right-bilateral).
The naso-orbito-ethmoid complex is composed of a confluence of several bones: (1) frontal bone, (2) nasal bone, (3) maxillary bone, (4) lacrimal bone, (5) ethmoid bone, and (6) sphenoid bone.
The medial canthal tendon is composed of 3 limbs. The superior and anterior limbs are the condensation of the superficial aspect of the pretarsal and preseptal orbicularis oculi muscle. The posterior limb arises from the deep head of the muscle.
(A) In rare instances, the medial canthal tendon is avulsed from the central bony segment. (B, C) The angular artery may be encountered in the subcutaneous plane in the approach to the medial orbital wall. The artery may be controlled with suture ligation or cautery.
Dissection along the medial orbital wall should be performed carefully to avoid damaging the lacrimal sac or further disrupting the already damaged structures. Dissection should proceed toward the anterior and posterior lacrimal crests, which are the insertion points of the medial canthal tendon.
(A) In those cases in which the medial canthal tendon is avulsed from its bony insertion, the tendon retracts laterally toward the lids. The free end of the tendon should be grasped and, when pulled medially, should result in tightening of the lids. (B, C) The tendon must be reattached to the bony medial orbital wall. In order to restore the anatomic medial, superior, and posterior vectors of tension, the fixation point should be in the region of the posterior lacrimal crest. The tendon should be fixed with thick-gauge nonabsorbable suture, and screw holes, either at the posterior lacrimal crest or around a screw in this region, should be used for fixation.
(A) An example of a unilateral type II or III fracture in which the central fragment cannot be easily attached to adjacent ipsilateral bone and thus requires transnasal wiring for fixation. (B) The central segment is secured with a 30-gauge wire, which is passed with a large, curved needle. The first end of the wire must penetrate the ipsilateral medial orbital wall above the lacrimal sac; then proceed posteriorly, superiorly, and medially through the nasal septum; and finally pass through the opposite medial orbital wall. The remaining end of the wire is then passed with another needle in a similar fashion. (C) The 2 free ends of the wire are retrieved at the opposite medial orbital wall and either twisted together or secured onto a screw fixed in the bone.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.