Medscape is available in 5 Language Editions – Choose your Edition here.


Allergic Rhinitis

  • Author: Javed Sheikh, MD; Chief Editor: Michael A Kaliner, MD  more...
Updated: Feb 16, 2015

Practice Essentials

Rhinitis, which occurs most commonly as allergic rhinitis, is an inflammation of the nasal membranes that is characterized by sneezing, nasal congestion, nasal itching, and rhinorrhea, in any combination.[2] Although allergic rhinitis itself is not life-threatening (unless accompanied by severe asthma or anaphylaxis), morbidity from the condition can be significant.

Essential update: New recommendations for treating allergic rhinitis released

The American Academy of Otolaryngology-Head and Neck Surgery Foundation has released new guidelines for treating patients ages 2 and up who suffer from allergic rhinitis.[7]

Key recommendations include the following:

  • For patients with a stuffy nose, nasal passage discoloration, and/or red and watery eyes, doctors should forgo sinus imaging process in favor of specific immunoglobulin E screening. Sinonasal imaging exposes patients to unnecessary radiation.
  • Intranasal steroids and oral antihistamines are recommended as first lines of treatment. Oral leukotriene receptor antagonists are not.
  • Sublingual or subcutaneous immunotherapy should be offered to patients who do not respond to pharmacologic therapy.
  • Acupuncture is an option for patients who do not wish to take meds.

Signs and Symptoms


Signs and symptoms of allergic rhinitis include the following:

  • Sneezing
  • Itching: Nose, eyes, ears, palate
  • Rhinorrhea
  • Postnasal drip
  • Congestion
  • Anosmia
  • Headache
  • Earache
  • Tearing
  • Red eyes
  • Eye swelling
  • Fatigue
  • Drowsiness
  • Malaise

Complications of this allergic rhinitis include the following:

  • Acute or chronic sinusitis
  • Otitis media
  • Sleep disturbance or apnea
  • Dental problems (overbite): Caused by excessive breathing through the mouth
  • Palatal abnormalities
  • Eustachian tube dysfunction

Physical examination

Nasal features of allergic rhinitis can include the following:

  • Nasal crease: A horizontal crease across the lower half of the bridge of the nose; caused by repeated upward rubbing of the tip of the nose by the palm of the hand
  • Thin, watery nasal secretions
  • Deviation or perforation of the nasal septum: May be associated with chronic rhinitis, although there can be other, unrelated causes

Manifestations of allergic rhinitis affecting the ears, eyes, and oropharynx include the following:

  • Ears: Retraction and abnormal flexibility of the tympanic membrane
  • Eyes: Injection and swelling of the palpebral conjunctivae, with excess tear production; Dennie-Morgan lines (prominent creases below the inferior eyelid); and dark circles around the eyes (“allergic shiners”), which are related to vasodilation or nasal congestion
  • Oropharynx: "Cobblestoning," that is, streaks of lymphoid tissue on the posterior pharynx; tonsillar hypertrophy; and malocclusion (overbite) and a high-arched palate

See Clinical Presentation for more detail.


Laboratory tests used in the diagnosis of allergic rhinitis include the following:

  • Allergy skin tests (immediate hypersensitivity testing): An in vivo method of determining immediate (IgE-mediated) hypersensitivity to specific allergens
  • Radioallergosorbent test (RAST): Indirectly measures the quantity of immunoglobulin E (IgE) serving as an antibody to a particular antigen
  • Total serum IgE: Neither sensitive nor specific for allergic rhinitis, but the results can be helpful in some cases when combined with other factors
  • Total blood eosinophil count: Neither sensitive nor specific for the diagnosis, but, as with total serum IgE, can sometimes be helpful when combined with other factors

Imaging studies used in the diagnosis and evaluation of allergic rhinitis include the following:

  • Radiography: Can be helpful for evaluating possible structural abnormalities or to help detect complications or comorbid conditions, such as sinusitis or adenoid hypertrophy
  • Computed tomography scanning: Can be very helpful for evaluating acute or chronic sinusitis
  • Magnetic resonance imaging: Also can be helpful for evaluating sinusitis

See Workup for more detail.


The management of allergic rhinitis consists of the following 3 major treatment strategies:

  • Environmental control measures and allergen avoidance: These include keeping exposure to allergens such as pollen, dust mites, and mold to a minimum
  • Pharmacologic management: Patients are often successfully treated with oral antihistamines, decongestants, or both; regular use of an intranasal steroid spray may be more appropriate for patients with chronic symptoms
  • Immunotherapy: This treatment may be considered more strongly with severe disease, poor response to other management options, and the presence of comorbid conditions or complications; immunotherapy is often combined with pharmacotherapy and environmental control

See Treatment and Medication for more detail.



Rhinitis is defined as inflammation of the nasal membranes[1] and is characterized by a symptom complex that consists of any combination of the following: sneezing, nasal congestion, nasal itching, and rhinorrhea.[2] The eyes, ears, sinuses, and throat can also be involved. Allergic rhinitis is the most common cause of rhinitis. It is an extremely common condition, affecting approximately 20% of the population.

Although allergic rhinitis is not a life-threatening condition, complications can occur and the condition can significantly impair quality of life,[3, 4] which leads to a number of indirect costs. The total direct and indirect cost of allergic rhinitis was recently estimated to be $5.3 billion per year.[5] A 2011 analysis determined that patients with allergic rhinitis averaged 3 additional office visits, 9 more prescriptions filled, and $1500 in incremental healthcare costs in 1 year than similar patients without allergic rhinitis.[6]

See All About Allergies: Be Ready for Spring, a Critical Images slideshow, to help identify a variety of allergens and symptoms.



Allergic rhinitis involves inflammation of the mucous membranes of the nose, eyes, eustachian tubes, middle ear, sinuses, and pharynx. The nose invariably is involved, and the other organs are affected in certain individuals. Inflammation of the mucous membranes is characterized by a complex interaction of inflammatory mediators but ultimately is triggered by an immunoglobulin E (IgE)–mediated response to an extrinsic protein.[8]

The tendency to develop allergic, or IgE-mediated, reactions to extrinsic allergens (proteins capable of causing an allergic reaction) has a genetic component. In susceptible individuals, exposure to certain foreign proteins leads to allergic sensitization, which is characterized by the production of specific IgE directed against these proteins. This specific IgE coats the surface of mast cells, which are present in the nasal mucosa. When the specific protein (eg, a specific pollen grain) is inhaled into the nose, it can bind to the IgE on the mast cells, leading to immediate and delayed release of a number of mediators.[8, 9, 10]

The mediators that are immediately released include histamine, tryptase, chymase, kinins, and heparin.[9, 10] The mast cells quickly synthesize other mediators, including leukotrienes and prostaglandin D2.[11, 12, 13] These mediators, via various interactions, ultimately lead to the symptoms of rhinorrhea (ie, nasal congestion, sneezing, itching, redness, tearing, swelling, ear pressure, postnasal drip). Mucous glands are stimulated, leading to increased secretions. Vascular permeability is increased, leading to plasma exudation. Vasodilation occurs, leading to congestion and pressure. Sensory nerves are stimulated, leading to sneezing and itching. All of these events can occur in minutes; hence, this reaction is called the early, or immediate, phase of the reaction.

Over 4-8 hours, these mediators, through a complex interplay of events, lead to the recruitment of other inflammatory cells to the mucosa, such as neutrophils, eosinophils, lymphocytes, and macrophages.[14] This results in continued inflammation, termed the late-phase response. The symptoms of the late-phase response are similar to those of the early phase, but less sneezing and itching and more congestion and mucus production tend to occur.[14] The late phase may persist for hours or days.

Systemic effects, including fatigue, sleepiness, and malaise, can occur from the inflammatory response. These symptoms often contribute to impaired quality of life.




United States

Allergic rhinitis affects approximately 40 million people in the United States.[15] Recent US figures suggest a 20% cumulative prevalence rate.[16, 17]


Scandinavian studies have demonstrated a cumulative prevalence rate of 15% in men and 14% in women.[18] The prevalence of allergic rhinitis may vary within and among countries.[19, 20, 21, 22] This may be due to geographic differences in the types and potency of different allergens and the overall aeroallergen burden.


While allergic rhinitis itself is not life-threatening (unless accompanied by severe asthma or anaphylaxis), morbidity from the condition can be significant. Allergic rhinitis often coexists with other disorders, such as asthma, and may be associated with asthma exacerbations.[23, 24, 25]

Allergic rhinitis is also associated with otitis media, eustachian tube dysfunction, sinusitis, nasal polyps, allergic conjunctivitis, and atopic dermatitis.[1, 2, 26] It may also contribute to learning difficulties, sleep disorders, and fatigue.[27, 28, 29]

  • Numerous complications that can lead to increased morbidity or even mortality can occur secondary to allergic rhinitis. Possible complications include otitis media, eustachian tube dysfunction, acute sinusitis, and chronic sinusitis.
  • Allergic rhinitis can be associated with a number of comorbid conditions, including asthma, atopic dermatitis, and nasal polyps. Evidence now suggests that uncontrolled allergic rhinitis can actually worsen the inflammation associated with asthma[23, 24, 25] or atopic dermatitis.[26] This could lead to further morbidity and even mortality.
  • Allergic rhinitis can frequently lead to significant impairment of quality of life. Symptoms such as fatigue, drowsiness (due to the disease or to medications), and malaise can lead to impaired work and school performance, missed school or work days, and traffic accidents. The overall cost (direct and indirect) of allergic rhinitis was recently estimated to be $5.3 billion per year.[5]


Allergic rhinitis occurs in persons of all races. Prevalence of allergic rhinitis seems to vary among different populations and cultures, which may be due to genetic differences, geographic factors or environmental differences, or other population-based factors.


In childhood, allergic rhinitis is more common in boys than in girls, but in adulthood, the prevalence is approximately equal between men and women.


Onset of allergic rhinitis is common in childhood, adolescence, and early adult years, with a mean age of onset 8-11 years, but allergic rhinitis may occur in persons of any age. In 80% of cases, allergic rhinitis develops by age 20 years.[30] The prevalence of allergic rhinitis has been reported to be as high as 40% in children, subsequently decreasing with age.[16, 17] In the geriatric population, rhinitis is less commonly allergic in nature.

Contributor Information and Disclosures

Javed Sheikh, MD Assistant Professor of Medicine, Harvard Medical School; Clinical Director, Division of Allergy and Inflammation, Clinical Director, Center for Eosinophilic Disorders, Beth Israel Deaconess Medical Center

Javed Sheikh, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology

Disclosure: Received grant/research funds from Genentech for other.


Umer Najib, MD Clinical Research Fellow, Department of Medicine, Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Stephen C Dreskin, MD, PhD Professor of Medicine, Departments of Internal Medicine, Director of Allergy, Asthma, and Immunology Practice, University of Colorado Health Sciences Center

Stephen C Dreskin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association for the Advancement of Science, American College of Allergy, Asthma and Immunology, Clinical Immunology Society, Joint Council of Allergy, Asthma and Immunology, American Association of Immunologists

Disclosure: Received consulting fee from Genentech for consulting; Received grant support from NIH for research; Received consulting fee from Clinical Immunization and Safety Assessment (CISA) Network (administered by Vanderbilt University) for consulting; Received consulting fee from o Member, Medical Expert Panel, Division of Vaccine Injury Compensation (DVIC), Department of Health and Human Services. for med legal reviews; Received consulting fee from o Member, Medical Expert Panel, Vaccine Review, Pfize.

Chief Editor

Michael A Kaliner, MD Clinical Professor of Medicine, George Washington University School of Medicine; Medical Director, Institute for Asthma and Allergy

Michael A Kaliner, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American Society for Clinical Investigation, American Thoracic Society, Association of American Physicians

Disclosure: Nothing to disclose.

Additional Contributors

William F Schoenwetter, MD Consultant in Allergic Diseases, Brainerd Medical Center, Brainerd, Minnesota

William F Schoenwetter, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology, American College of Physicians, American Medical Association, Joint Council of Allergy, Asthma and Immunology, Minnesota Medical Association

Disclosure: Nothing to disclose.

  1. Togias AG. Systemic immunologic and inflammatory aspects of allergic rhinitis. J Allergy Clin Immunol. 2000 Nov. 106(5 Suppl):S247-50. [Medline].

  2. Druce HM. Allergic and nonallergic rhinitis. Middleton EM Jr, Reed CE, Ellis EF, Adkinson NF Jr, Yunginger JW, Busse WW, eds. Allergy: Principles and Practice. 5th ed. St. Louis, Mo: Mosby Year-Book; 1998. 1005-16.

  3. Blaiss MS. Quality of life in allergic rhinitis. Ann Allergy Asthma Immunol. 1999 Nov. 83(5):449-54. [Medline].

  4. Thompson AK, Juniper E, Meltzer EO. Quality of life in patients with allergic rhinitis. Ann Allergy Asthma Immunol. 2000 Nov. 85(5):338-47; quiz 347-8. [Medline].

  5. Ray NF, Baraniuk JN, Thamer M, Rinehart CS, Gergen PJ, Kaliner M. Direct expenditures for the treatment of allergic rhinoconjunctivitis in 1996, including the contributions of related airway illnesses. J Allergy Clin Immunol. 1999 Mar. 103(3 Pt 1):401-7. [Medline].

  6. Bhattacharyya N. Incremental healthcare utilization and expenditures for allergic rhinitis in the United States. Laryngoscope. 2011 Sep. 121(9):1830-3.

  7. Henderson, D. New Guidelines for Allergic Rhinitis Released. Medscape Medical News. Available at Accessed: February 9, 2015.

  8. Skoner DP. Allergic rhinitis: definition, epidemiology, pathophysiology, detection, and diagnosis. J Allergy Clin Immunol. 2001 Jul. 108(1 Suppl):S2-8. [Medline].

  9. Walls AF, He S, Buckley MG, McEuen AR. Roles of the mast cell and basophil in asthma. Clin Exp Allergy. 2001. 1:68.

  10. Haberal I, Corey JP. The role of leukotrienes in nasal allergy. Otolaryngol Head Neck Surg. 2003 Sep. 129(3):274-9. [Medline].

  11. Iwasaki M, Saito K, Takemura M, Sekikawa K, Fujii H, Yamada Y. TNF-alpha contributes to the development of allergic rhinitis in mice. J Allergy Clin Immunol. 2003 Jul. 112(1):134-40. [Medline].

  12. Cates EC, Gajewska BU, Goncharova S, Alvarez D, Fattouh R, Coyle AJ. Effect of GM-CSF on immune, inflammatory, and clinical responses to ragweed in a novel mouse model of mucosal sensitization. J Allergy Clin Immunol. 2003 May. 111(5):1076-86. [Medline].

  13. Salib RJ, Kumar S, Wilson SJ, Howarth PH. Nasal mucosal immunoexpression of the mast cell chemoattractants TGF-beta, eotaxin, and stem cell factor and their receptors in allergic rhinitis. J Allergy Clin Immunol. 2004 Oct. 114(4):799-806. [Medline].

  14. Hansen I, Klimek L, Mosges R, Hormann K. Mediators of inflammation in the early and the late phase of allergic rhinitis. Curr Opin Allergy Clin Immunol. 2004 Jun. 4(3):159-63. [Medline].

  15. Meltzer EO. The prevalence and medical and economic impact of allergic rhinitis in the United States. J Allergy Clin Immunol. 1997 Jun. 99(6 Pt 2):S805-28. [Medline].

  16. U.S. Department of Health and Human Services. Agency for Healthcare Research and Quality. Management of Alllergic and Nonallergic rhinitis. May 2002. AHQR publication 02:E023, Boston, MA. Summary, Evidence Report/Technology Assessment: No 54. Last accessed August 3, 2007.

  17. Settipane RA. Demographics and epidemiology of allergic and nonallergic rhinitis. Allergy Asthma Proc. 2001 Jul-Aug. 22(4):185-9. [Medline].

  18. Nihlen U, Greiff L, Montnemery P, Lofdahl CG, Johannisson A, Persson C. Incidence and remission of self-reported allergic rhinitis symptoms in adults. Allergy. 2006 Nov. 61(11):1299-304. [Medline].

  19. Sly RM. Changing prevalence of allergic rhinitis and asthma. Ann Allergy Asthma Immunol. 1999 Mar. 82(3):233-48; quiz 248-52. [Medline].

  20. Von Mutius E, Weiland SK, Fritzsch C, et al. Increasing prevalence of hay fever and atopy among children in Leipzig, East Germany. Lancet. 1998. 351:862.

  21. Romano-Zelekha O, Graif Y, Garty BZ, Livne I, Green MS, Shohat T. Trends in the prevalence of asthma symptoms and allergic diseases in Israeli adolescents: results from a national survey 2003 and comparison with 1997. J Asthma. 2007 Jun. 44(5):365-9. [Medline].

  22. Lima RG, Pastorino AC, Casagrande RR, et al. Prevalence of asthma, rhinitis and eczema in 6 - 7 years old students from the western districts of Sao Paulo City, using the standardized questionnaire of the "International Study of Asthma and Allergies in Childhood" (ISAAC)-phase IIIB. Clinics. 2007. 62:225.

  23. Watson WT, Becker AB, Simons FE. Treatment of allergic rhinitis with intranasal corticosteroids in patients with mild asthma: effect on lower airway responsiveness. J Allergy Clin Immunol. 1993 Jan. 91(1 Pt 1):97-101. [Medline].

  24. Meltzer EO, Grant JA. Impact of cetirizine on the burden of allergic rhinitis. Ann Allergy Asthma Immunol. 1999 Nov. 83(5):455-63. [Medline].

  25. Nayak AS. The asthma and allergic rhinitis link. Allergy Asthma Proc. 2003 Nov-Dec. 24(6):395-402. [Medline].

  26. Kiyohara C, Tanaka K, Miyake Y. Genetic susceptibility to atopic dermatitis. Allergol Int. 2008 Mar. 57(1):39-56. [Medline].

  27. Fireman P. Otitis media and eustachian tube dysfunction: connection to allergic rhinitis. J Allergy Clin Immunol. 1997 Feb. 99(2):S787-97. [Medline].

  28. McColley SA, Carroll JL, Curtis S, Loughlin GM, Sampson HA. High prevalence of allergic sensitization in children with habitual snoring and obstructive sleep apnea. Chest. 1997 Jan. 111(1):170-3. [Medline].

  29. Craig TJ, Teets S, Lehman EB, Chinchilli VM, Zwillich C. Nasal congestion secondary to allergic rhinitis as a cause of sleep disturbance and daytime fatigue and the response to topical nasal corticosteroids. J Allergy Clin Immunol. 1998 May. 101(5):633-7. [Medline].

  30. Dykewicz MS, Fineman S, Skoner DP, Nicklas R, Lee R, Blessing-Moore J. Diagnosis and management of rhinitis: complete guidelines of the Joint Task Force on Practice Parameters in Allergy, Asthma and Immunology. American Academy of Allergy, Asthma, and Immunology. Ann Allergy Asthma Immunol. 1998 Nov. 81(5 Pt 2):478-518. [Medline].

  31. Banov CH, Lieberman P,. Efficacy of azelastine nasal spray in the treatment of vasomotor (perennial nonallergic) rhinitis. Ann Allergy Asthma Immunol. 2001 Jan. 86(1):28-35. [Medline].

  32. Colás C, Galera H, Añibarro B, Soler R, Navarro A, Jáuregui I, et al. Disease severity impairs sleep quality in allergic rhinitis (The SOMNIAAR study). Clin Exp Allergy. 2012 Jan 18. [Medline].

  33. Tsai JD, Chang SN, Mou CH, Sung FC, Lue KH. Association between atopic diseases and attention-deficit/hyperactivity disorder in childhood: a population-based case-control study. Ann Epidemiol. 2013 Apr. 23(4):185-8. [Medline].

  34. Torres-Borrego J, Molina-Teran AB, Montes-Mendoza C. Prevalence and associated factors of allergic rhinitis and atopic dermatitis in children. Allergol Immunopathol (Madr). 2008 Mar-Apr. 36(2):90-100. [Medline].

  35. Frew AJ. Advances in environmental and occupational diseases 2003. J Allergy Clin Immunol. 2004 Jun. 113(6):1161-6. [Medline].

  36. Boulet LP, Turcotte H, Laprise C, Lavertu C, Bedard PM, Lavoie A. Comparative degree and type of sensitization to common indoor and outdoor allergens in subjects with allergic rhinitis and/or asthma. Clin Exp Allergy. 1997 Jan. 27(1):52-9. [Medline].

  37. Fornadley JA, Corey JP, Osguthorpe JD, Powell JP, Emanuel IA, Boyles JH. Allergic rhinitis: clinical practice guideline. Committee on Practice Standards, American Academy of Otolaryngic Allergy. Otolaryngol Head Neck Surg. 1996 Jul. 115(1):115-22. [Medline].

  38. Hadley JA. Evaluation and management of allergic rhinitis. Med Clin North Am. 1999 Jan. 83(1):13-25. [Medline].

  39. Vazquez-Nava F, Quezada-Castillo JA, Oviedo-Trevino S, Saldivar-Gonzalez AH, Sanchez-Nuncio HR, Beltran-Guzman FJ. Association between allergic rhinitis, bottle feeding, non-nutritive sucking habits, and malocclusion in the primary dentition. Arch Dis Child. 2006 Oct. 91(10):836-40. [Medline].

  40. Siracusa A, Desrosiers M, Marabini A. Epidemiology of occupational rhinitis: prevalence, aetiology and determinants. Clin Exp Allergy. 2000 Nov. 30(11):1519-34. [Medline].

  41. Gelber LE, Seltzer LH, Bouzoukis JK, Pollart SM, Chapman MD, Platts-Mills TA. Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital. Am Rev Respir Dis. 1993 Mar. 147(3):573-8. [Medline].

  42. Kang B, Vellody D, Homburger H, Yunginger JW. Cockroach cause of allergic asthma. Its specificity and immunologic profile. J Allergy Clin Immunol. 1979 Feb. 63(2):80-6. [Medline].

  43. Eggleston PA, Ansari AA, Ziemann B, Adkinson NF Jr, Corn M. Occupational challenge studies with laboratory workers allergic to rats. J Allergy Clin Immunol. 1990 Jul. 86(1):63-72. [Medline].

  44. Phipatanakul W, Eggleston PA, Wright EC, Wood RA,. Mouse allergen. II. The relationship of mouse allergen exposure to mouse sensitization and asthma morbidity in inner-city children with asthma. J Allergy Clin Immunol. 2000 Dec. 106(6):1075-80. [Medline].

  45. Matsui EC, Simons E, Rand C, Butz A, Buckley TJ, Breysse P. Airborne mouse allergen in the homes of inner-city children with asthma. J Allergy Clin Immunol. 2005 Feb. 115(2):358-63. [Medline].

  46. Gendo K, Larson EB. Evidence-based diagnostic strategies for evaluating suspected allergic rhinitis. Ann Intern Med. 2004 Feb 17. 140(4):278-89. [Medline].

  47. Platts-Mills TA. Allergen avoidance. J Allergy Clin Immunol. 2004 Mar. 113(3):388-91. [Medline].

  48. Morgan WJ, Crain EF, Gruchalla RS, O'Connor GT, Kattan M, Evans R 3rd. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004 Sep 9. 351(11):1068-80. [Medline].

  49. McDonald LG, Tovey E. The role of water temperature and laundry procedures in reducing house dust mite populations and allergen content of bedding. J Allergy Clin Immunol. 1992 Oct. 90(4 Pt 1):599-608. [Medline].

  50. Miller JD, Miller A. Ten minutes in a clothes dryer kills all mites in blankets. J Allergy Clin Immunol. 1996. 97:423.

  51. Korsgaard J. House-dust mites and absolute indoor humidity. Allergy. 1983 Feb. 38(2):85-92. [Medline].

  52. de Blay F, Chapman MD, Platts-Mills TA. Airborne cat allergen (Fel d I). Environmental control with the cat in situ [see comments]. Am Rev Respir Dis. 1991. 143:1334.

  53. Weber RW. Immunotherapy with allergens. JAMA. 1997 Dec 10. 278(22):1881-7. [Medline].

  54. Bozek A, Ignasiak B, Filipowska B, Jarzab J. House dust mite sublingual immunotherapy: a double-blind, placebo-controlled study in elderly patients with allergic rhinitis. Clin Exp Allergy. 2013 Feb. 43(2):242-8. [Medline].

  55. Di Bona D, Plaia A, Leto-Barone MS, La Piana S, Di Lorenzo G. Efficacy of subcutaneous and sublingual immunotherapy with grass allergens for seasonal allergic rhinitis: A meta-analysis-based comparison. J Allergy Clin Immunol. 2012 Sep 26. [Medline].

  56. Li JT. Immunotherapy for allergic rhinitis. Immunol Allergy Clin North Am. 2000. 20:383.

  57. Leynadier F, Banoun L, Dollois B, Terrier P, Epstein M, Guinnepain MT. Immunotherapy with a calcium phosphate-adsorbed five-grass-pollen extract in seasonal rhinoconjunctivitis: a double-blind, placebo-controlled study. Clin Exp Allergy. 2001 Jul. 31(7):988-96. [Medline].

  58. Walker SM, Pajno GB, Lima MT, Wilson DR, Durham SR. Grass pollen immunotherapy for seasonal rhinitis and asthma: a randomized, controlled trial. J Allergy Clin Immunol. 2001 Jan. 107(1):87-93. [Medline].

  59. Ewbank PA, Murray J, Sanders K, Curran-Everett D, Dreskin S, Nelson HS. A double-blind, placebo-controlled immunotherapy dose-response study with standardized cat extract. J Allergy Clin Immunol. 2003 Jan. 111(1):155-61. [Medline].

  60. Nanda A, O'connor M, Anand M, Dreskin SC, Zhang L, Hines B. Dose dependence and time course of the immunologic response to administration of standardized cat allergen extract. J Allergy Clin Immunol. 2004 Dec. 114(6):1339-44. [Medline].

  61. FDA OKs Oralair, First US Sublingual Allergy Immunotherapy. Medscape. Available at Accessed: April 4, 2014.

  62. Grastek [package insert]. Whitehouse Station, NJ: Merck & Co, Inc. April 2014. Available at [Full Text].

  63. Maloney J, Bernstein DI, Nelson H, Creticos P, Hébert J, Noonan M, et al. Efficacy and safety of grass sublingual immunotherapy tablet, MK-7243: a large randomized controlled trial. Ann Allergy Asthma Immunol. 2014 Feb. 112(2):146-153.e2. [Medline].

  64. Creticos PS, Esch RE, Couroux P, Gentile D, D'Angelo P, Whitlow B, et al. Randomized, double-blind, placebo-controlled trial of standardized ragweed sublingual-liquid immunotherapy for allergic rhinoconjunctivitis. J Allergy Clin Immunol. 2014 Mar. 133(3):751-8. [Medline].

  65. Creticos PS, Maloney J, Bernstein DI, Casale T, Kaur A, Fisher R, et al. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J Allergy Clin Immunol. 2013 May. 131(5):1342-9.e6. [Medline].

  66. Meltzer EO. Performance effects of antihistamines. J Allergy Clin Immunol. 1990 Oct. 86(4 Pt 2):613-9. [Medline].

  67. Vacchiano C, Moore J, Rice GM, Crawley G. Fexofenadine effects on cognitive performance in aviators at ground level and simulated altitude. Aviat Space Environ Med. 2008 Aug. 79(8):754-60. [Medline].

  68. Newer antihistamines. Med Lett Drugs Ther. 2001 Apr 30. 43(1103):35. [Medline].

  69. De Weck AL, Derer T, Bahre M. Investigation of the anti-allergic activity of azelastine on the immediate and late-phase reactions to allergens and histamine using telethermography. Clin Exp Allergy. 2000 Feb. 30(2):283-7. [Medline].

  70. Lee TA, Pickard AS. Meta-analysis of azelastine nasal spray for the treatment of allergic rhinitis. Pharmacotherapy. 2007 Jun. 27(6):852-9. [Medline].

  71. Berger W, Hampel F Jr, Bernstein J, Shah S, Sacks H, Meltzer EO. Impact of azelastine nasal spray on symptoms and quality of life compared with cetirizine oral tablets in patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol. 2006 Sep. 97(3):375-81. [Medline].

  72. Chervinsky P, Philip G, Malice MP, Bardelas J, Nayak A, Marchal JL. Montelukast for treating fall allergic rhinitis: effect of pollen exposure in 3 studies. Ann Allergy Asthma Immunol. 2004 Mar. 92(3):367-73. [Medline].

  73. Perry TT, Corren J, Philip G, Kim EH, Conover-Walker MK, Malice MP. Protective effect of montelukast on lower and upper respiratory tract responses to short-term cat allergen exposure. Ann Allergy Asthma Immunol. 2004 Nov. 93(5):431-8. [Medline].

  74. Patel P, Philip G, Yang W, et al. Randomized, double-blind, placebo-controlled study of montelukast for treating perennial allergic rhinitis. Ann Allergy Asthma Immunol. 2005 Dec. 95(6):551-7. [Medline].

  75. Nayak A, Langdon RB. Montelukast in the treatment of allergic rhinitis: an evidence-based review. Drugs. 2007. 67(6):887-901. [Medline].

  76. Gengo FM, Manning C. A review of the effects of antihistamines on mental processes related to automobile driving. J Allergy Clin Immunol. 1990 Dec. 86(6 Pt 2):1034-9. [Medline].

  77. Verster JC, Volkerts ER. Antihistamines and driving ability: evidence from on-the-road driving studies during normal traffic. Ann Allergy Asthma Immunol. 2004 Mar. 92(3):294-303; quiz 303-5, 355. [Medline].

  78. O'Hanlon JF, Ramaekers JG. Antihistamine effects on actual driving performance in a standard test: a summary of Dutch experience, 1989-94. Allergy. 1995 Mar. 50(3):234-42. [Medline].

  79. Ray WA, Thapa PB, Shorr RI. Medications and the older driver. Clin Geriatr Med. 1993 May. 9(2):413-38. [Medline].

  80. Cimbura G, Lucas DM, Bennett RC, Warren RA, Simpson HM. Incidence and toxicological aspects of drugs detected in 484 fatally injured drivers and pedestrians in Ontario. J Forensic Sci. 1982 Oct. 27(4):855-67. [Medline].

  81. van Bavel J, Findlay SR, Hampel FC Jr, Martin BG, Ratner P, Field E. Intranasal fluticasone propionate is more effective than terfenadine tablets for seasonal allergic rhinitis. Arch Intern Med. 1994 Dec 12-26. 154(23):2699-704. [Medline].

  82. Welsh PW, Stricker WE, Chu CP, Naessens JM, Reese ME, Reed CE. Efficacy of beclomethasone nasal solution, flunisolide, and cromolyn in relieving symptoms of ragweed allergy. Mayo Clin Proc. 1987 Feb. 62(2):125-34. [Medline].

  83. Kaszuba SM, Baroody FM, deTineo M, Haney L, Blair C, Naclerio RM. Superiority of an intranasal corticosteroid compared with an oral antihistamine in the as-needed treatment of seasonal allergic rhinitis. Arch Intern Med. 2001 Nov 26. 161(21):2581-7. [Medline].

  84. Rak S, Heinrich C, Jacobsen L, Scheynius A, Venge P. A double-blinded, comparative study of the effects of short preseason specific immunotherapy and topical steroids in patients with allergic rhinoconjunctivitis and asthma. J Allergy Clin Immunol. 2001 Dec. 108(6):921-8. [Medline].

  85. Pullerits T, Praks L, Ristioja V, Lotvall J. Comparison of a nasal glucocorticoid, antileukotriene, and a combination of antileukotriene and antihistamine in the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol. 2002 Jun. 109(6):949-55. [Medline].

  86. Brooks M. FDA OKs OTC Triamcinolone (Nasacort) Nasal Spray. Medscape [serial online]. Available at Accessed: October 21, 2013.

  87. Norris AA, Alton EW. Chloride transport and the action of sodium cromoglycate and nedocromil sodium in asthma. Clin Exp Allergy. 1996 Mar. 26(3):250-3. [Medline].

  88. Brown T. FDA OKs Oralair, first US sublingual allergy immunotherapy. Medscape Medical News. April 2, 2014. [Full Text].

  89. Brown T. FDA OKs Sublingual Grastek for Timothy Grass Pollen Allergy. Medscape Medical News. Available at Accessed: April 22, 2014.

  90. Onrust SV, Lamb HM. Mometasone furoate. A review of its intranasal use in allergic rhinitis. Drugs. 1998 Oct. 56(4):725-45. [Medline].

  91. US Food and Drug Administration. FDA approves first sublingual allergen extract for the treatment of certain grass pollen allergies [press release]. April 2, 2014. Available at Accessed: April 7, 2014.

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.