Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Anaphylaxis Clinical Presentation

  • Author: S Shahzad Mustafa, MD; Chief Editor: Michael A Kaliner, MD  more...
 
Updated: May 31, 2016
 

History

Anaphylaxis is an acute multiorgan system reaction. The most common organ systems involved include the cutaneous, respiratory, cardiovascular, and gastrointestinal (GI) systems. In most studies, the frequency of signs and symptoms of anaphylaxis is grouped by organ system.

Anaphylactic reactions almost always involve the skin or mucous membranes. Greater than 90% of patients have some combination of urticaria, erythema, pruritus, or angioedema. In the Memphis study, for example, 87% of patients had urticaria and/or angioedema.[29] Other retrospective studies have reported similar rates of mucocutaneous involvement.

Children, however, may be different. An Australian study evaluated 57 children under age 16 years who presented to a pediatric emergency department (ED) over a three-year period. Cutaneous features were noted in 82.5%, whereas 95% had respiratory symptoms. The reasons why a lack of dermal findings would be more common in children than in adults are not well understood.

The upper respiratory tract commonly is involved, with complaints of nasal congestion, sneezing, or coryza. Cough, hoarseness, or a sensation of tightness in the throat may presage significant airway obstruction. Eyes may itch and tearing may be noted. Conjunctival injection may occur.

Dyspnea is present when patients have bronchospasm or upper airway edema. Hypoxia and hypotension may cause weakness, dizziness, or syncope. Chest pain may occur due to bronchospasm or myocardial ischemia (secondary to hypotension and hypoxia). GI symptoms of cramplike abdominal pain with nausea, vomiting, or diarrhea also occur but are less common, except in the case of food allergy.

The Memphis study reported dyspnea in 59%, syncope or lightheadedness in 33%, and diarrhea or abdominal cramps in 29%.[29] Other studies have reported similar findings.

Initially, patients often describe a sense of impending doom, accompanied by pruritus and flushing. This can evolve rapidly into the following symptoms, broken down by organ system:

  • Cutaneous/ocular - Flushing, urticaria, angioedema, cutaneous and/or conjunctival pruritus, warmth, and swelling
  • Respiratory - Nasal congestion, rhinorrhea, throat tightness, wheezing, shortness of breath, cough, hoarseness
  • Cardiovascular - Dizziness, weakness, syncope, chest pain, palpitations
  • Gastrointestinal - Dysphagia, nausea, vomiting, diarrhea, bloating, cramps
  • Neurologic - Headache, dizziness, blurred vision, and seizure (very rare and often associated with hypotension)
  • Other - Metallic taste, feeling of impending doom

Symptoms usually begin within 5-30 minutes from the time the culprit antigen is injected but can occur within seconds. If the antigen is ingested, symptoms usually occur within minutes to 2 hours. In rare cases, symptoms can be delayed in onset for several hours. Parenteral administration of monoclonal antibodies and oral ingestion of mammalian meat (eg, beef, pork, lamb) have recently been reported to be potential causes for anaphylaxis characterized by delayed onset.[52, 53, 54, 55, 56] It must be remembered that anaphylaxis can begin with relatively minor cutaneous symptoms and rapidly progress to life-threatening respiratory or cardiovascular manifestations. In general, the more rapidly anaphylaxis develops after exposure to an offending stimulus, the more likely the reaction is to be severe.

A thorough history remains the best test to determine a causative agent. For recurrent idiopathic episodes, a patient diary may be helpful to implicate specific foods or medications, including over-the-counter (OTC) products.

Next

Physical Examination

The first priority in the physical examination should be to assess the patient’s airway, breathing, circulation, and adequacy of mentation (eg, alertness, orientation, coherence of thought).

General appearance and vital signs vary according to the severity of the anaphylactic episode and the organ system(s) affected. Vital signs may be normal or significantly disordered with tachypnea, tachycardia, and/or hypotension.

Patients commonly are restless due to severe pruritus from urticaria. Anxiety, tremor, and a sensation of cold may result from compensatory endogenous catecholamine release. Anxiety is common unless hypotension or hypoxia causes obtundation. Frank cardiovascular collapse or respiratory arrest may occur in severe cases.

Respiratory findings

Severe angioedema of the tongue and lips (as may occur with the use of angiotensin-converting enzyme [ACE] inhibitors) may obstruct airflow. Laryngeal edema may manifest as stridor or severe air hunger. Loss of voice, hoarseness, and/or dysphonia may occur. Bronchospasm, airway edema, and mucus hypersecretion may manifest as wheezing. In the surgical setting, increased pressure of ventilation can be the only manifestation of bronchospasm. Complete airway obstruction is the most common cause of death in anaphylaxis.

Cardiovascular findings

Tachycardia is present in one fourth of patients, usually as a compensatory response to reduced intravascular volume or to stress from compensatory catecholamine release.

Bradycardia, in contrast, is more suggestive of a vasodepressor (vasovagal) reaction. Although tachycardia is the rule, bradycardia has also been observed in anaphylaxis (see Pathophysiology). Thus, bradycardia may not be as useful for distinguishing anaphylaxis from a vasodepressor reaction as was previously thought. Relative bradycardia (initial tachycardia followed by diminished heart rate despite worsening hypotension) has been reported previously in experimental settings of insect sting anaphylaxis, as well as in trauma patients.[6, 7, 57, 58, 59]

Hypotension (and resultant loss of consciousness) may be observed secondary to capillary leak, vasodilation, and hypoxic myocardial depression. Cardiovascular collapse and shock can occur immediately, without any other findings. This is an especially important consideration in the surgical setting. Because shock may develop without prominent skin manifestations or history of exposure, anaphylaxis is part of the differential diagnosis for patients who present with shock and no obvious cause.

Cognitive findings

If hypoperfusion or hypoxia occurs, it can cause altered mentation. The patient may exhibit a depressed level of consciousness or may be agitated and/or combative.

Cutaneous findings

The classic skin manifestation is urticaria (ie, hives). Urticaria can occur anywhere on the body, often localizing to the superficial dermal layers of the palms, soles, and inner thighs. Lesions are red and raised, and they sometimes have central blanching. Intense pruritus occurs with the lesions. Lesion borders are usually irregular and sizes vary markedly. Only a few small or large lesions may become confluent, forming giant urticaria. At times, the entire dermis is involved with diffuse erythema and edema.

In a local reaction, lesions occur near the site of a cutaneous exposure (eg, insect bite). The involved area is erythematous, edematous, and pruritic. If only a local skin reaction (as opposed to generalized urticaria) is present, systemic manifestations (eg, respiratory distress) are less likely. Local reactions, even if severe, are not predictive of systemic anaphylaxis on reexposure.

Angioedema (soft-tissue swelling) is also commonly observed. These lesions involve the deeper dermal layers of skin. It is usually nonpruritic and nonpitting. Common areas of involvement are the larynx, lips, eyelids, hands, feet, and genitalia.

Generalized (whole-body) erythema (or flushing) without urticaria or angioedema is also occasionally observed.

Cutaneous findings may be delayed or absent in rapidly progressive anaphylaxis.

Gastrointestinal findings

Vomiting, diarrhea, and abdominal distension are frequently observed.

Previous
Next

Complications

Complications from anaphylaxis are rare, and most patients completely recover. Myocardial ischemia may result from hypotension and hypoxia, particularly when underlying coronary artery disease exists. Ischemia or arrhythmias may result from treatment with pressors. Prolonged hypoxia also may cause brain injury. At times, a fall or other injury may occur when anaphylaxis leads to syncope.

Respiratory failure from severe bronchospasm or laryngeal edema can cause hypoxia, which could lead to brain injury if prolonged.

Previous
 
 
Contributor Information and Disclosures
Author

S Shahzad Mustafa, MD Physician in Allergy, Immunology, and Rheumatology, Rochester General Medical Group; Clinical Assistant Professor of Medicine, University of Rochester School of Medicine and Dentistry

S Shahzad Mustafa, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, Finger Lakes Allergy Society

Disclosure: Nothing to disclose.

Chief Editor

Michael A Kaliner, MD Clinical Professor of Medicine, George Washington University School of Medicine; Medical Director, Institute for Asthma and Allergy

Michael A Kaliner, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American Society for Clinical Investigation, American Thoracic Society, Association of American Physicians

Disclosure: Nothing to disclose.

Acknowledgements

Roy Alson, MD, PhD, FACEP, FAAEM Associate Professor, Department of Emergency Medicine, Wake Forest University School of Medicine; Medical Director, Forsyth County EMS; Deputy Medical Advisor, North Carolina Office of EMS; Associate Medical Director, North Carolina Baptist AirCare

Roy Alson, MD, PhD, FACEP, FAAEM is a member of the following medical societies: Air Medical Physician Association, American Academy of Emergency Medicine, American College of Emergency Physicians, American Medical Association, National Association of EMS Physicians, North Carolina Medical Society, Society for Academic Emergency Medicine, and World Association for Disaster and Emergency Medicine

Disclosure: Nothing to disclose.

Stephen C Dreskin, MD, PhD Professor of Medicine, Departments of Internal Medicine, Director of Allergy, Asthma, and Immunology Practice, University of Colorado Health Sciences Center

Stephen C Dreskin, MD, PhD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association for the Advancement of Science, American Association of Immunologists, American College of Allergy, Asthma and Immunology, Clinical Immunology Society, and Joint Council of Allergy, Asthma and Immunology

Disclosure: Genentech Consulting fee Consulting; American Health Insurance Plans Consulting fee Consulting; Johns Hopkins School of Public Health Consulting fee Consulting; Array BioPharma Consulting fee Consulting

Stephen F Kemp, MD, FACP Professor of Medicine, Associate Professor of Pediatrics, Director of Allergy and Immunology Fellowship Program, Departments of Medicine and Pediatrics, Associate Director of Division of Clinical Immunology and Allergy, Department of Medicine, University of Mississippi Medical Center; Staff Physician and Consultant in Allergy and Immunology, Medical Service, G V (Sonny) Montgomery Veterans Affairs Medical Center

Stephen F Kemp, MD, FACP is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology, American College of Physicians, Association of Subspecialty Professors, Joint Council of Allergy, Asthma and Immunology, Mississippi State Medical Association, and Southern Society for Clinical Investigation

Disclosure: Nothing to disclose.

Richard S Krause, MD Senior Clinical Faculty/Clinical Assistant Professor, Department of Emergency Medicine, University of Buffalo State University of New York School of Medicine and Biomedical Sciences

Richard S Krause, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

G William Palmer, MD Consulting Staff, Shoreline Allergy and Asthma Associates

G William Palmer, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology

Disclosure: Nothing to disclose.

Matthew M Rice, MD, JD, FACEP Senior Vice President, Chief Medical Officer, Northwest Emergency Physicians of TeamHealth; Assistant Clinical Professor of Medicine, University of Washington School of Medicine

Matthew M Rice, MD, JD, FACEP is a member of the following medical societies: American College of Emergency Physicians, American Medical Association, National Association of EMS Physicians, Society for Academic Emergency Medicine, and Washington State Medical Association

Disclosure: Team Health Salary Employment

Erik D Schraga, MD Staff Physician, Department of Emergency Medicine, Mills-Peninsula Emergency Medical Associates

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Kemp SF, Lockey RF. Anaphylaxis: a review of causes and mechanisms. J Allergy Clin Immunol. 2002 Sep. 110(3):341-8. [Medline].

  2. Simons FE. Anaphylaxis. J Allergy Clin Immunol. 2008 Feb. 121(2 Suppl):S402-7; quiz S420. [Medline].

  3. Braganza SC, Acworth JP, Mckinnon DR, Peake JE, Brown AF. Paediatric emergency department anaphylaxis: different patterns from adults. Arch Dis Child. 2006 Feb. 91(2):159-63. [Medline]. [Full Text].

  4. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004 May. 113(5):832-6. [Medline].

  5. Finkelman FD. Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol. 2007 Sep. 120(3):506-15; quiz 516-7. [Medline].

  6. Schadt JC, Ludbrook J. Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. Am J Physiol. 1991 Feb. 260(2 Pt 2):H305-18. [Medline].

  7. Demetriades D, Chan LS, Bhasin P, Berne TV, Ramicone E, Huicochea F, et al. Relative bradycardia in patients with traumatic hypotension. J Trauma. 1998 Sep. 45(3):534-9. [Medline].

  8. Wang J, Sampson HA. Food anaphylaxis. Clin Exp Allergy. 2007 May. 37(5):651-60. [Medline].

  9. Osborne NJ, Koplin JJ, Martin PE, et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J Allergy Clin Immunol. 2011 Mar. 127(3):668-76.e1-2. [Medline].

  10. Hourihane JO'B, Kilburn SA, Nordlee JA, Hefle SL, Taylor SL, Warner JO. An evaluation of the sensitivity of subjects with peanut allergy to very low doses of peanut protein: a randomized, double-blind, placebo-controlled food challenge study. J Allergy Clin Immunol. 1997 Nov. 100(5):596-600. [Medline].

  11. Decker WW, Campbell RL, Manivannan V, et al. The etiology and incidence of anaphylaxis in Rochester, Minnesota: a report from the Rochester Epidemiology Project. J Allergy Clin Immunol. 2008 Dec. 122(6):1161-5. [Medline]. [Full Text].

  12. Greenhawt MJ, Li JT, Bernstein DI, et al. Administering influenza vaccine to egg allergic recipients: a focused practice parameter update. Ann Allergy Asthma Immunol. 2011 Jan. 106(1):11-6. [Medline].

  13. [Guideline] Centers for Disease Control and Prevention. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2011. MMWR Morb Mortal Wkly Rep. 2011 Aug 26. 60(33):1128-32. [Medline].

  14. Annè S, Reisman RE. Risk of administering cephalosporin antibiotics to patients with histories of penicillin allergy. Ann Allergy Asthma Immunol. 1995 Feb. 74(2):167-70. [Medline].

  15. Daulat S, Solensky R, Earl HS, Casey W, Gruchalla RS. Safety of cephalosporin administration to patients with histories of penicillin allergy. J Allergy Clin Immunol. 2004 Jun. 113(6):1220-2. [Medline].

  16. Lin RY. A perspective on penicillin allergy. Arch Intern Med. 1992 May. 152(5):930-7. [Medline].

  17. Pichichero ME. A review of evidence supporting the American Academy of Pediatrics recommendation for prescribing cephalosporin antibiotics for penicillin-allergic patients. Pediatrics. 2005 Apr. 115(4):1048-57. [Medline].

  18. Mertes PM, Malinovsky JM, Jouffroy L, et al. Reducing the risk of anaphylaxis during anesthesia: 2011 updated guidelines for clinical practice. J Investig Allergol Clin Immunol. 2011. 21(6):442-53. [Medline].

  19. Golden DB. Insect sting anaphylaxis. Immunol Allergy Clin North Am. 2007 May. 27(2):261-72, vii. [Medline]. [Full Text].

  20. Amin HS, Liss GM, Bernstein DI. Evaluation of near-fatal reactions to allergen immunotherapy injections. J Allergy Clin Immunol. 2006 Jan. 117(1):169-75. [Medline].

  21. Bernstein DI, Wanner M, Borish L, Liss GM. Twelve-year survey of fatal reactions to allergen injections and skin testing: 1990-2001. J Allergy Clin Immunol. 2004 Jun. 113(6):1129-36. [Medline].

  22. Lockey RF, Benedict LM, Turkeltaub PC, Bukantz SC. Fatalities from immunotherapy (IT) and skin testing (ST). J Allergy Clin Immunol. 1987 Apr. 79(4):660-77. [Medline].

  23. Greenberger PA. Idiopathic anaphylaxis. Immunol Allergy Clin North Am. 2007 May. 27(2):273-93, vii-viii. [Medline].

  24. Meggs WJ, Pescovitz OH, Metcalfe D, Loriaux DL, Cutler G Jr, Kaliner M. Progesterone sensitivity as a cause of recurrent anaphylaxis. N Engl J Med. 1984 Nov 8. 311(19):1236-8. [Medline].

  25. Slater JE, Raphael G, Cutler GB Jr, Loriaux DL, Meggs WJ, Kaliner M. Recurrent anaphylaxis in menstruating women: treatment with a luteinizing hormone-releasing hormone agonist--a preliminary report. Obstet Gynecol. 1987 Oct. 70(4):542-6. [Medline].

  26. Lieberman P. Anaphylaxis. Adkinson NF Jr, Bochner BS, Busse, WW, Holgate ST, Lemanske RF Jr, Simons FER, eds. Middleton’s Allergy: Principles and Practice. 7th. Philadelphia, Pa: Elsevier; 2009. 1027-49.

  27. Stark BJ, Sullivan TJ. Biphasic and protracted anaphylaxis. J Allergy Clin Immunol. 1986 Jul. 78(1 Pt 1):76-83. [Medline].

  28. Sampson HA, Mendelson L, Rosen JP. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N Engl J Med. 1992 Aug 6. 327(6):380-4. [Medline].

  29. Webb LM, Lieberman P. Anaphylaxis: a review of 601 cases. Ann Allergy Asthma Immunol. 2006 Jul. 97(1):39-43. [Medline].

  30. Boggs W. Anaphylaxis worse with antihypertensive medication. Medscape Medical News. March 21, 2013. Available at http://www.medscape.com/viewarticle/781274. Accessed: April 2, 2013.

  31. Lee S, Hess EP, Nestler DM, Bellamkonda Athmaram VR, Bellolio MF, Decker WW, et al. Antihypertensive medication use is associated with increased organ system involvement and hospitalization in emergency department patients with anaphylaxis. J Allergy Clin Immunol. 2013 Apr. 131(4):1103-8. [Medline].

  32. Lieberman P. Epidemiology of anaphylaxis. Curr Opin Allergy Clin Immunol. 2008 Aug. 8(4):316-20. [Medline].

  33. Neugut AI, Ghatak AT, Miller RL. Anaphylaxis in the United States: an investigation into its epidemiology. Arch Intern Med. 2001 Jan 8. 161(1):15-21. [Medline].

  34. Bresser H, Sandner CH, Rakoski J. Anaphylactic emergencies in Munich in 1992 (abstract). J Allergy Clin Immunol. Jan 1995. 95:368.

  35. Mertes PM, Laxenaire MC, Alla F. Anaphylactic and anaphylactoid reactions occurring during anesthesia in France in 1999-2000. Anesthesiology. 2003 Sep. 99(3):536-45. [Medline].

  36. Simons FE, Sampson HA. Anaphylaxis epidemic: fact or fiction?. J Allergy Clin Immunol. 2008 Dec. 122(6):1166-8. [Medline].

  37. Simons FE, Peterson S, Black CD. Epinephrine dispensing patterns for an out-of-hospital population: a novel approach to studying the epidemiology of anaphylaxis. J Allergy Clin Immunol. 2002 Oct. 110(4):647-51. [Medline].

  38. Moneret-Vautrin DA, Morisset M, Flabbee J, Beaudouin E, Kanny G. Epidemiology of life-threatening and lethal anaphylaxis: a review. Allergy. 2005 Apr. 60(4):443-51. [Medline].

  39. Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001 Jan. 107(1):191-3. [Medline].

  40. Greenberger PA, Rotskoff BD, Lifschultz B. Fatal anaphylaxis: postmortem findings and associated comorbid diseases. Ann Allergy Asthma Immunol. 2007 Mar. 98(3):252-7. [Medline].

  41. Shehadi WH. Adverse reactions to intravascularly administered contrast media. A comprehensive study based on a prospective survey. Am J Roentgenol Radium Ther Nucl Med. 1975 May. 124(1):145-52. [Medline].

  42. Katayama H, Yamaguchi K, Kozuka T, Takashima T, Seez P, Matsuura K. Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media. Radiology. 1990 Jun. 175(3):621-8. [Medline].

  43. Greenberger PA, Patterson R. The prevention of immediate generalized reactions to radiocontrast media in high-risk patients. J Allergy Clin Immunol. 1991 Apr. 87(4):867-72. [Medline].

  44. Pumphrey RS. Fatal posture in anaphylactic shock. J Allergy Clin Immunol. 2003 Aug. 112(2):451-2. [Medline].

  45. Demuth KA, Fitzpatrick AM. Epinephrine autoinjector availability among children with food allergy. Allergy Asthma Proc. 2011 Jul. 32(4):295-300. [Medline].

  46. [Guideline] Golden DB, Moffitt J, Nicklas RA, Freeman T, Graft DF, Reisman RE, et al. Stinging insect hypersensitivity: a practice parameter update 2011. J Allergy Clin Immunol. 2011 Apr. 127(4):852-4.e1-23. [Medline].

  47. Lieberman P, Nicklas RA, Oppenheimer J, et al. The diagnosis and management of anaphylaxis practice parameter: 2010 update. J Allergy Clin Immunol. 2010 Sep. 126(3):477-80.e1-42. [Medline].

  48. [Guideline] Simons FE, Ardusso LR, Bilò MB, El-Gamal YM, Ledford DK, Ring J, et al. World Allergy Organization anaphylaxis guidelines: summary. J Allergy Clin Immunol. 2011 Mar. 127(3):587-93.e1-22. [Medline].

  49. Haymore BR, Carr WW, Frank WT. Anaphylaxis and epinephrine prescribing patterns in a military hospital: underutilization of the intramuscular route. Allergy Asthma Proc. 2005 Sep-Oct. 26(5):361-5. [Medline].

  50. Rosen JP. Empowering patients with a history of anaphylaxis to use an epinephrine autoinjector without fear. Ann Allergy Asthma Immunol. 2006 Sep. 97(3):418. [Medline].

  51. Soller L, Fragapane J, Ben-Shoshan M, et al. Possession of epinephrine auto-injectors by Canadians with food allergies. J Allergy Clin Immunol. 2011 Aug. 128(2):426-8. [Medline].

  52. Cox L, Platts-Mills TA, Finegold I, Schwartz LB, Simons FE, Wallace DV. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis. J Allergy Clin Immunol. 2007 Dec. 120(6):1373-7. [Medline].

  53. Limb SL, Starke PR, Lee CE, Chowdhury BA. Delayed onset and protracted progression of anaphylaxis after omalizumab administration in patients with asthma. J Allergy Clin Immunol. 2007 Dec. 120(6):1378-81. [Medline].

  54. Cheifetz A, Smedley M, Martin S, et al. The incidence and management of infusion reactions to infliximab: a large center experience. Am J Gastroenterol. 2003 Jun. 98(6):1315-24. [Medline].

  55. Stallmach A, Giese T, Schmidt C, Meuer SC, Zeuzem SS. Severe anaphylactic reaction to infliximab: successful treatment with adalimumab - report of a case. Eur J Gastroenterol Hepatol. 2004 Jun. 16(6):627-30. [Medline].

  56. Commins SP, Platts-Mills TA. Anaphylaxis syndromes related to a new mammalian cross-reactive carbohydrate determinant. J Allergy Clin Immunol. 2009 Oct. 124(4):652-7. [Medline]. [Full Text].

  57. Smith PL, Kagey-Sobotka A, Bleecker ER, et al. Physiologic manifestations of human anaphylaxis. J Clin Invest. 1980 Nov. 66(5):1072-80. [Medline]. [Full Text].

  58. van der Linden PW, Struyvenberg A, Kraaijenhagen RJ, Hack CE, van der Zwan JK. Anaphylactic shock after insect-sting challenge in 138 persons with a previous insect-sting reaction. Ann Intern Med. 1993 Feb 1. 118(3):161-8. [Medline].

  59. Brown SG, Blackman KE, Stenlake V, Heddle RJ. Insect sting anaphylaxis; prospective evaluation of treatment with intravenous adrenaline and volume resuscitation. Emerg Med J. 2004 Mar. 21(2):149-54. [Medline]. [Full Text].

  60. Akin C. Anaphylaxis and mast cell disease: what is the risk?. Curr Allergy Asthma Rep. 2010 Jan. 10(1):34-8. [Medline].

  61. Bonadonna P, Perbellini O, Passalacqua G, et al. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J Allergy Clin Immunol. 2009 Mar. 123(3):680-6. [Medline].

  62. Rueff F, Przybilla B, Bilo MB, et al. Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: importance of baseline serum tryptase-a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity. J Allergy Clin Immunol. 2009 Nov. 124(5):1047-54. [Medline].

  63. Lin RY, Schwartz LB, Curry A, Pesola GR, Knight RJ, Lee HS, et al. Histamine and tryptase levels in patients with acute allergic reactions: An emergency department-based study. J Allergy Clin Immunol. 2000 Jul. 106(1 Pt 1):65-71. [Medline].

  64. Simons FE. Anaphylaxis pathogenesis and treatment. Allergy. 2011 Jul. 66 Suppl 95:31-4. [Medline].

  65. Vadas P, Gold M, Perelman B, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008 Jan 3. 358(1):28-35. [Medline].

  66. [Guideline] Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol. 2010 Dec. 126(6 Suppl):S1-58. [Medline].

  67. Lieberman P. Use of epinephrine in the treatment of anaphylaxis. Curr Opin Allergy Clin Immunol. 2003 Aug. 3(4):313-8. [Medline].

  68. Sampson HA, Muñoz-Furlong A, Campbell RL, et al. Second symposium on the definition and management of anaphylaxis: summary report--second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. Ann Emerg Med. 2006 Apr. 47(4):373-80. [Medline].

  69. Kemp SF, Lockey RF, Simons FE. Epinephrine: the drug of choice for anaphylaxis. A statement of the World Allergy Organization. Allergy. 2008 Aug. 63(8):1061-70. [Medline].

  70. Laidman J. Anaphylaxis requires prompt epinephrine shot. Medscape Medical News. December 3, 2014. [Full Text].

  71. [Guideline] Campbell RL, Li JT, Nicklas RA, Sadosty AT. Emergency department diagnosis and treatment of anaphylaxis: a practice parameter. Ann Allergy Asthma Immunol. 2014 Dec. 113(6):599-608. [Medline].

  72. Sheikh A, Shehata YA, Brown SG, Simons FE. Adrenaline for the treatment of anaphylaxis: cochrane systematic review. Allergy. 2009 Feb. 64(2):204-12. [Medline].

  73. Sheikh A, Ten Broek V, Brown SG, Simons FE. H1-antihistamines for the treatment of anaphylaxis: Cochrane systematic review. Allergy. 2007 Aug. 62(8):830-7. [Medline].

  74. Choo KJ, Simons E, Sheikh A. Glucocorticoids for the treatment of anaphylaxis: Cochrane systematic review. Allergy. 2010 Oct. 65(10):1205-11. [Medline].

  75. Thomas M, Crawford I. Best evidence topic report. Glucagon infusion in refractory anaphylactic shock in patients on beta-blockers. Emerg Med J. 2005 Apr. 22(4):272-3. [Medline]. [Full Text].

  76. Borish L, Tamir R, Rosenwasser LJ. Intravenous desensitization to beta-lactam antibiotics. J Allergy Clin Immunol. 1987 Sep. 80(3 Pt 1):314-9. [Medline].

  77. Kemp SF. The post-anaphylaxis dilemma: how long is long enough to observe a patient after resolution of symptoms?. Curr Allergy Asthma Rep. 2008 Mar. 8(1):45-8. [Medline].

  78. Simons FE. Anaphylaxis: evidence-based long-term risk reduction in the community. Immunol Allergy Clin North Am. 2007 May. 27(2):231-48, vi-vii. [Medline].

  79. Nurmatov U, Worth A, Sheikh A. Anaphylaxis management plans for the acute and long-term management of anaphylaxis: a systematic review. J Allergy Clin Immunol. 2008 Aug. 122(2):353-61, 361.e1-3. [Medline].

  80. Choo K, Sheikh A. Action plans for the long-term management of anaphylaxis: systematic review of effectiveness. Clin Exp Allergy. 2007 Jul. 37(7):1090-4. [Medline].

  81. Alrasbi M, Sheikh A. Comparison of international guidelines for the emergency medical management of anaphylaxis. Allergy. 2007 Aug. 62(8):838-41. [Medline].

  82. Johnson K. Antibiotics common cause of perioperative anaphylaxis. Medscape Medical News. November 22, 2013. [Full Text].

 
Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.