Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Cold Agglutinin Disease Treatment & Management

  • Author: Salman Abdullah Aljubran, MD; Chief Editor: Michael A Kaliner, MD  more...
 
Updated: Jul 20, 2016
 

Approach Considerations

The treatment of cold agglutinin disease depends on the gravity of the symptoms as determined by the characteristics of the antibody and the presence of associated disease(s).

Cold agglutinin disease may be managed successfully using protective measures (clothing, avoidance of cold exposure) alone in most cases. Special protective clothing is sometimes necessary in extreme cases. Therapy is directed at serious symptoms and the underlying disorder, if any is found.

Keep in mind that the idiopathic variety of cold agglutinin disease is generally a benign disorder with prolonged survival and spontaneous exacerbations and remissions in the course of the disease. Acute postinfectious syndromes usually resolve spontaneously.

Anemia is generally mild. Only patients who have serious symptoms related to anemia or have a Raynaud-type syndrome that constitutes a threat to life or quality of life require active therapy. The presence of an associated malignancy requires specific therapy.

Cold agglutinin disease is so uncommon in children that no specific recommendations for therapy are available. Intravenous immunoglobulin (IVIG) was used successfully in an infant with IgA-associated autoimmune hemolytic anemia.[49]

Plasmapheresis

Plasmapheresis effectively, albeit temporarily, removes IgM antibody from plasma, reducing its concentration. This procedure is valuable for emergencies and allows time for drugs to have an effect. Plasmapheresis can also be used to prepare patients for hypothermic surgical procedures.[14, 50]

Plasmapheresis is effective because the autoantibodies, which are most often IgM, are loosely bound to the erythrocytes, and IgM antibodies are incapable of diffusing into the extravascular space.[51] The specifics of each exchange (ie, volume, frequency, duration) must be individualized, planned by an appropriate consultant, and monitored closely.

Splenectomy

Splenectomy is usually ineffective for the treatment of cold agglutinin disease, because the liver is the predominant site of sequestration. However, if the patient has splenomegaly, then the disease may respond to splenectomy. More importantly, a lymphoma localized to the spleen may only be found after splenectomy.

Diet and activity

Patients with cold agglutinin disease should include good sources of folic acid, such as fresh fruits and vegetables, in their diet. Activities for these individuals should be less strenuous than those for healthy people, particularly for patients with anemia. Jogging in the cold could be very hazardous because of the added windchill factor.

Consultations

A hematologist-oncologist working in collaboration with a blood banker is helpful in complicated cases of cold agglutinin disease.

Careful planning and coordination with multiple personnel are needed if patients are to undergo a procedure during which their body temperature could fall.

Next

Chemotherapy and Immunosuppression

Chemotherapeutic agents should be used under appropriate circumstances, such as for an associated malignancy. However, the authors currently do not recommend the use of chemotherapeutic or immunosuppressive agents in the routine management of idiopathic cold agglutinin disease, because of its basic benign nature.

When cold agglutinin disease is chronic and idiopathic, one must weigh the need for therapy, as dictated by the severity of the symptoms, versus the potentially serious, long-term consequences of chemotherapeutic or other agents used to treat monoclonal lymphoid populations. Such decisions should be made in close collaboration with well-informed patients and their families.

( Note: The authors advise extreme caution in selecting any chemotherapeutic or other immunosuppressive agents for the treatment of idiopathic cold agglutinin disease because of the potential long-term effects of these agents on the bone marrow stem cells and because of the leukemogenic effects of alkylating agents. The authors believe that such agents are not usually needed in the treatment of patients with idiopathic cold agglutinin disease.)

Glucocorticoids

Glucocorticoids are generally not useful in IgM-induced cold agglutinin disease but may occasionally work if an underlying warm antibody–induced hemolytic anemia exists; if a high thermal amplitude, low titer cold agglutinin is present; or (rarely) if a cold-reactive IgG antibody is produced.

The possibility of missing a lymphoproliferative disorder if glucocorticoids are used before obtaining necessary biopsies should be kept in mind. In addition, if the use of glucocorticoids is contemplated, keep in mind that all necessary biopsies should be performed before the start of therapy.

In patients who are pregnant, avoid all cytotoxic therapy or immunosuppressive therapy other than glucocorticoids because of the potential teratogenic effects on the fetus and the long-term effects on the mother.

Rituximab

The anti-CD20 monoclonal antibody rituximab depletes B-lymphocytes, thereby interfering with the production of cold agglutinin.[52]

In case studies, patients with cold agglutinin disease have had a prompt response to the drug. One case series suggested higher response rates than were previously achieved with alkylators, glucocorticoids, or purine nucleoside analogues.[1, 53]

Studies demonstrate a response rate of 54% with a median response duration of 11 months when rituximab is used as a single agent. Purine analogs, such as fludarabine, are being studied in combination therapy with rituximab for the treatment of primary cold agglutinin disease, to achieve higher response rates and prolonged remission.[23, 54, 55]

Eculizumab

In case reports, eculizumab, a monoclonal antibody used to treat paroxysmal nocturnal hemoglobinuria, has been effective in patients with transfusion-dependent cold agglutinin disease that was refractory to rituximab.[1] One case report describes succesful use of eculizumab as a bridge to rituximab therapy in a patient with severe complement-mediated hemolysis whose hemodynamic status deteriorated in spite of supportive blood transfusions and therapeutic plasma exchange.[56]

Previous
Next

Transfusions

Avoid unnecessary transfusions, because cold agglutinin disease is usually self-limited. Risks of blood transfusion include transfusion reactions and transmission of infections.

RBC transfusion is indicated in severe, acute disease. The response to transfused RBCs may be transient, but it can result in significant improvement in an acutely ill patient.

Washed (to remove complement), warmed RBCs may be transfused for cardiovascular indications (ie, heart failure) or ischemic conditions in any part of the body requiring increased oxygen carrying capacity. (Also, prescribe bed rest and oxygen therapy.)

Transfusions should be attempted with caution, starting with a slow rate of infusion initially and discontinuing the procedure if a significant reaction is imminent. An in-line blood warmer is useful, as is performing the entire transfusion at 37°C whenever feasible.

Typing and cross-matching may be very difficult because of clumping of the RBCs at room temperature in patients with a high thermal amplitude cold agglutinin. Therefore, all cross-matching (compatibility testing) should be performed at 37°C, with IgG-specific antiglobulin reagents used to avoid misleading results due to the cold agglutinin in the serum and the RBC-bound C3d.

Transfused RBCs may have increased susceptibility to lysis by cold agglutinins, in comparison with autologous RBCs, because they lack proteolytically cleaved complement on their surface. This may inhibit complement-mediated lysis.[57]

Pregnancy

When cold-induced autoimmune hemolytic anemia occurs in pregnant women, the pregnancy may be continued with frequent blood transfusions. Transfusions may be continued until the thirty-seventh week, when fetal lungs have matured. (Mode of delivery is not affected by the anemia and should be defined by obstetric indications. Ironically, these women are still subject to thrombophlebitis of pregnancy.)[58]

Previous
Next

Management of Surgical Patients

Critical planning is needed if a patient with a high titer, high thermal amplitude cold agglutinin requires cooling for cardiovascular surgery. Antibody activation may lead to hemolysis, renal failure, hepatic failure, and myocardial or cerebral infarctions.

The temperature below which antibody activation occurs should be quantified preoperatively. These patients may require monitoring of core body temperatures to avoid cooling to temperatures at which the cold agglutinin is still active. Reducing the titer of the cold agglutinin to lower its effective thermal amplitude may be needed during preoperative preparation of the patient.

Ambient operating room temperatures usually result in cooling of the patient and require close attention.

In patients requiring bypass surgery, a high titer of cold agglutinin is reduced by a combination of plasmapheresis and hemodilution achieved by standard techniques used in open-heart surgery. The laboratory can help to assess the temperature range of cold agglutinin activity after the titer has been reduced so that a minimum target temperature may be estimated. Surgical techniques employing normothermic cardiopulmonary bypass and continuous warm blood cardioplegia have been successful.[59, 60]

In one study at the Mayo Clinic of 16 patients undergoing cardiopulmonary bypass procedures, 6 patients were found to have cold hemagglutinin disease. In 3 of the patients, cold agglutinin detection was made intraoperatively. The lowest recorded intraoperative core temperature, in 1 case, was under 34° C. None of the patients had evidence of permanent myocardial dysfunction, had a neurologic event, required dialysis, or died within 30 days.[61]

The authors of the Mayo study noted that patients with cold hemagglutinin disease should undergo laboratory testing, including cold agglutinin titers and thermal amplitude, and hematology consultation before cardiac surgery is begun. One patient underwent preoperative plasma exchange. In 2 of 16 procedures that utilized cardioplegia, cold blood cardioplegia was used; in the other procedures, warmer blood cardioplegia was used. One patient experienced cold agglutinin-related postoperative hemolysis requiring transfusion, which was resolved with active warming.[61]

Organs that are used for transplantation (eg, kidneys) are usually kept cool with cold perfusate to preserve organ function. However, if patients with cold agglutinin disease require transplants, the organs may require perfusion with warm solutions before the transplantation, to prevent cold-induced damage by the cold agglutinin present in the recipient.

Previous
Next

Transfer

Transfer is necessary if an institution is unable to handle the needs of a patient with a high titer, high thermal amplitude cold agglutinin hemolytic anemia who requires open heart surgery—which is usually performed under hypothermic conditions—and needs monitoring of thermal amplitude and core body temperature. Consultation with a hematologist and the support of a blood bank are also required.

Transfer patients with severe anemia to a facility where pediatric hematology/oncology, blood bank, and pediatric intensive care services are available.

Previous
Next

Deterrence

Idiopathic cold agglutinin disease itself cannot be prevented. Protective measures for patients with cold agglutinin disease include avoidance of cold by covering the hands, feet, and, if possible, face in cold weather or low wind-chill temperatures.

An exact temperature cannot be defined, because symptoms are due to the thermal amplitude and other characteristics of the antibody. In some individuals, a wind-chill temperature of 15°C, if sustained, precipitates symptoms; more commonly, a temperature of 10°C would precipitate symptoms. Sleeping uncovered may result in symptoms when the room temperature is 21°C.

Recommendations to move to a warm climate have merit in severe cases in which symptoms and hemolysis are less likely to develop at higher ambient temperatures.

For patients with cold agglutinin disease, avoid cooling blankets for any reason; in rare cases, these may precipitate gangrene.

Previous
Next

Long-Term Monitoring

Long-term follow-up care and vigilance for the development of systemic symptoms of any lymphoproliferative disorder are necessary, because patients may become dejected about a chronic process.

Postinfectious anemia, infectious mononucleosis, M pneumoniae infection, acrocyanosis, or cold-precipitated symptoms are clues that require follow-up care.

Provide follow-up care after in-hospital therapy. Long-term follow-up care, with or without therapy, is an important means of monitoring for the development of any additional illnesses, such as a lymphoproliferative disorder, that would require specific therapy.

Provide patients with cold agglutinin disease with periodic follow-up care to monitor for signs of worsening or improvement that might prompt changes in management. The frequency of reassessment varies with the severity of the disease. Periodic checkups may vary from daily to weekly or monthly and may eventually occur as infrequently as every 2-3 months. Make reevaluations more often in colder weather than in warmer weather.

Monitor blood cell counts and observe for infection, renal function, development of lymphoma, and evidence of ischemia.

The following tests can be performed weekly until the patient’s condition is stable:

  • Clinical examination
  • CBC
  • Reticulocyte count
  • Urinalysis

The following tests can be performed monthly until the cold agglutinin disease has resolved:

  • Clinical examination
  • CBC
  • Reticulocyte count
  • Urinalysis
  • Direct antiglobulin test
  • Cold agglutinin titer
Previous
 
 
Contributor Information and Disclosures
Author

Salman Abdullah Aljubran, MD Clinical Fellow, Division of Allergy and Immunology, University of South Florida College of Medicine

Salman Abdullah Aljubran, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology, American Thoracic Society, Massachusetts Medical Society

Disclosure: Nothing to disclose.

Coauthor(s)

Richard F Lockey, MD University Distinguished Health Professor, Professor of Medicine, Pediatrics and Public Health, Joy McCann Culverhouse Chair in Allergy and Immunology, University of South Florida College of Medicine; Director, Division of Allergy and Immunology, James A Haley Veterans’ Hospital

Richard F Lockey, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Allergy Asthma and Immunology, American Association for the Advancement of Science, American College of Occupational and Environmental Medicine, American College of Chest Physicians, American College of Physicians, American Medical Association, Florida Medical Association

Disclosure: Nothing to disclose.

Chief Editor

Michael A Kaliner, MD Clinical Professor of Medicine, George Washington University School of Medicine; Medical Director, Institute for Asthma and Allergy

Michael A Kaliner, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Association of Immunologists, American College of Allergy, Asthma and Immunology, American Society for Clinical Investigation, American Thoracic Society, Association of American Physicians

Disclosure: Nothing to disclose.

Acknowledgements

Nicolas A Camilo, MD Consulting Staff, Mountain States Tumor Institute, Division of Pediatric Hematology-Oncology, St Luke's Regional Medical Center

Disclosure: Nothing to disclose.

Max J Coppes, MD, PhD, MBA Senior Vice President, Center for Cancer and Blood Disorders, Children's National Medical Center; Professor of Medicine, Oncology, and Pediatrics, Georgetown University School of Medicine; Clinical Professor of Pediatrics, George Washington University School of Medicine and Health Sciences

Max J Coppes, MD, PhD, MBA is a member of the following medical societies: American Association for Cancer Research, American Society of Pediatric Hematology/Oncology, and Society for Pediatric Research

Disclosure: Nothing to disclose.

Gary D Crouch, MD Program Director of Pediatric Hematology-Oncology Fellowship, Department of Pediatrics, Associate Professor, Uniformed Services University of the Health Sciences

Gary D Crouch, MD is a member of the following medical societies: American Academy of Pediatrics and American Society of Hematology

Disclosure: Nothing to disclose.

Sharon Georgy, MD Resident Physician, Department of Internal Medicine, University of South Florida College of Medicine

Sharon Georgy, MD is a member of the following medical societies: Phi Beta Kappa

Disclosure: Nothing to disclose.

James L Harper, MD Associate Professor, Department of Pediatrics, Division of Hematology/Oncology and Bone Marrow Transplantation, Associate Chairman for Education, Department of Pediatrics, University of Nebraska Medical Center; Assistant Clinical Professor, Department of Pediatrics, Creighton University School of Medicine; Director, Continuing Medical Education, Children's Memorial Hospital; Pediatric Director, Nebraska Regional Hemophilia Treatment Center

James L Harper, MD is a member of the following medical societies: American Academy of Pediatrics, American Association for Cancer Research, American Federation for Clinical Research, American Society of Hematology, American Society of Pediatric Hematology/Oncology, Council on Medical Student Education in Pediatrics, and Hemophilia and Thrombosis Research Society

Disclosure: Nothing to disclose.

Gary R Jones, MD Associate Medical Director, Clinical Development, Berlex Laboratories

Gary R Jones, MD is a member of the following medical societies: American Academy of Pediatrics, American Society of Pediatric Hematology/Oncology, and Western Society for Pediatric Research

Disclosure: Nothing to disclose.

Jeffrey Lee Kishiyama, MD Assistant Clinical Professor of Medicine, University of California, San Francisco, School of Medicine; Consulting Staff, Allergy and Asthma Associates of Santa Clara Valley Research Center

Disclosure: Nothing to disclose.

Thomas W Loew, MD Director, Clinical Associate Professor of Pediatrics, Pediatric Hematology/Oncology Subspecialty Training Program, University of Iowa Hospitals and Clinics

Disclosure: Nothing to disclose.

Rajalaxmi McKenna, MD, FACP Southwest Medical Consultants, SC, Department of Medicine, Good Samaritan Hospital, Advocate Health Systems

Rajalaxmi McKenna, MD, FACP is a member of the following medical societies: American Society of Clinical Oncology, American Society of Hematology, and International Society on Thrombosis and Haemostasis

Disclosure: Nothing to disclose.

Harry L Messmore, Jr, MD Professor, Department of Medicine, Division of Hematology/Oncology, Loyola University Stritch School of Medicine

Harry L Messmore, Jr, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Angiology, American College of Physicians, American Heart Association, American Society of Hematology, and Phi Beta Kappa

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

References
  1. Swiecicki PL, Hegerova LT, Gertz MA. Cold agglutinin disease. Blood. 2013 Aug 15. 122 (7):1114-21. [Medline]. [Full Text].

  2. Małecka A, Trøen G, Tierens A, Østlie I, Małecki J, Randen U, et al. Immunoglobulin heavy and light chain gene features are correlated with primary cold agglutinin disease onset and activity. Haematologica. 2016 May 19. [Medline].

  3. Berentsen S, Randen U, Tjønnfjord GE. Cold agglutinin-mediated autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015 Jun. 29 (3):455-71. [Medline].

  4. Rosse WF, Adams JP. The variability of hemolysis in the cold agglutinin syndrome. Blood. 1980 Sep. 56(3):409-16. [Medline]. [Full Text].

  5. Dacie J, The auto-immune haemolytic anaemias. The Haemolytic Anaemias. 3rd ed. Edinburgh, United Kingdom: Churchill Livingstone; 1992. Vol 3.: 210-362.

  6. Harboe M, van Furth R, Schubothe H, Lind K, Evans RS. Exclusive occurrence of K chains in isolated cold haemagglutinins. Scand J Haematol. 1965. 2(3):259-66. [Medline].

  7. Angevine CD, Andersen BR, Barnett EV. A cold agglutinin of the IgA class. J Immunol. 1966 Apr. 96(4):578-86. [Medline].

  8. Garratty G, Petz LD, Hoops JK. The correlation of cold agglutinin titrations in saline and albumin with haemolytic anaemia. Br J Haematol. 1977 Apr. 35(4):587-95. [Medline].

  9. Wortman J, Rosse W, Logue G. Cold agglutinin autoimmune hemolytic anemia in nonhematologic malignancies. Am J Hematol. 1979. 6(3):275-83. [Medline].

  10. Roelcke D. The Lud cold agglutinin: a further antibody recognizing N-acetylneuraminic acid-determined antigens not fully expressed at birth. Vox Sang. 1981 Nov-Dec. 41(5-6):316-8. [Medline].

  11. Crisp D, Pruzanski W. B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins). Am J Med. 1982 Jun. 72(6):915-22. [Medline].

  12. Sokol RJ, Hewitt S, Stamps BK. Autoimmune hemolysis: mixed warm and cold antibody type. Acta Haematol. 1983. 69(4):266-74. [Medline].

  13. Roelcke D. Reaction of anti-Gd, anti-Fl and anti-Sa cold agglutinins with p erythrocytes. Vox Sang. 1984. 46(3):161-4. [Medline].

  14. Agarwal SK, Ghosh PK, Gupta D. Cardiac surgery and cold-reactive proteins. Ann Thorac Surg. 1995 Oct. 60(4):1143-50. [Medline].

  15. Packman CH, Leddy JP. Cryopathic hemolytic syndromes. Beutler E, Lichtman M, Coller B, Kippst, eds. Williams Hematology. 5th ed. New York, NY: McGraw-Hill; 1995. 685-91.

  16. Jacobs A. Cold agglutinin hemolysis responding to fludarabine therapy. Am J Hematol. 1996 Dec. 53(4):279-80. [Medline].

  17. Terness P, Kirschfink M, Navolan D, et al. Inverse correlation between IgG-antihinge region and antierythrocyte autoantibody in chronic benign and malignant cold agglutination. J Clin Immunol. 1997 May. 17(3):220-7. [Medline].

  18. Thorpe SJ, Turner CE, Stevenson FK, et al. Human monoclonal antibodies encoded by the V4-34 gene segment show cold agglutinin activity and variable multireactivity which correlates with the predicted charge of the heavy-chain variable region. Immunology. 1998 Jan. 93(1):129-36. [Medline]. [Full Text].

  19. Ciejka JZ, Cook EB, Lawler D, et al. Severe cold agglutinin disease and cryoglobulinemia secondary to a monoclonal anti-Pr2 IgM lambda cryoagglutinin. Clin Exp Rheumatol. 1999 Mar-Apr. 17(2):227-31. [Medline].

  20. De Silva BD, McLaren K, Doherty VR. Equestrian perniosis associated with cold agglutinins: a novel finding. Clin Exp Dermatol. 2000 Jun. 25(4):285-8. [Medline].

  21. Potter KN. Molecular characterization of cold agglutinins. Transfus Sci. 2000 Feb-Apr. 22(1-2):113-9. [Medline].

  22. Jefferies LC, Carchidi CM, Silberstein LE. Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment. J Clin Invest. 1993 Dec. 92(6):2821-33. [Medline]. [Full Text].

  23. Berentsen S, Beiske K, Tjonnfjord GE. Primary chronic cold agglutinin disease: an update on pathogenesis, clinical features and therapy. Hematology. 2007 Oct. 12(5):361-70. [Medline]. [Full Text].

  24. Gertz MA. Management of cold haemolytic syndrome. Br J Haematol. 2007 Aug. 138(4):422-9. [Medline].

  25. McNicholl FP. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000 Feb-Apr. 22(1-2):125-33. [Medline].

  26. Maniatis A, Papayannopoulou T, Bertles JF. Fetal characteristics of erythrocytes in sickle cell anemia: an immunofluorescence study of individual cells. Blood. 1979 Jul. 54(1):159-68. [Medline]. [Full Text].

  27. Sokol RJ, Booker DJ, Stamps R. Erythropoiesis: Paroxysmal Cold Haemoglobinuria: A Clinico-Pathological Study of Patients with a Positive Donath-Landsteiner Test. Hematology. 1999. 4 (2):137-164. [Medline].

  28. Sokol RJ, Booker DJ, Stamps R, Walewska R. Cold haemagglutinin disease: clinical significance of serum haemolysins. Clin Lab Haematol. 2000 Dec. 22(6):337-44. [Medline].

  29. Maura F, Visco C, Falisi E, Reda G, Fabris S, Agnelli L, et al. B-cell receptor configuration and adverse cytogenetics are associated with autoimmune hemolytic anemia in chronic lymphocytic leukemia. Am J Hematol. 2012 Sep 26. [Medline].

  30. Khan FY, A yassin M. Mycoplasma pneumoniae associated with severe autoimmune hemolytic anemia: case report and literature review. Braz J Infect Dis. 2009 Feb. 13(1):77-9. [Medline].

  31. Delval A, Stojkovic T, Vermersch P. Relapsing sensorimotor neuropathy with ophthalmoplegia, antidisialosyl antibodies, and extramembranous glomerulonephritis. Muscle Nerve. 2006 Feb. 33(2):274-7. [Medline].

  32. Siddiqui K, Cahalane E, Keogan M, Hardiman O. Chronic ataxic neuropathy with cold agglutinins: atypical phenotype and response to anti-CD20 antibodies. Neurology. 2003 Nov 11. 61(9):1307-8. [Medline].

  33. Skorupa A, Chaudhary UB, Lazarchick J. Cold agglutinin induced autoimmune hemolytic anemia and NK-cell leukemia: a new association. Am J Hematol. 2007 Jul. 82(7):668-71. [Medline]. [Full Text].

  34. Cao L, Kaiser P, Gustin D, Hoffman R, Feldman L. Cold agglutinin disease in a patient with uterine sarcoma. Am J Med Sci. 2000 Nov. 320(5):352-4. [Medline].

  35. Michaux L, Dierlamm J, Wlodarska L, et al. Trisomy 3q11-q29 is recurrently observed in B-cell non-Hodgkin's lymphomas associated with cold agglutinin syndrome. Ann Hematol. 1998 May. 76(5):201-4. [Medline].

  36. Chng WJ, Chen J, Lim S, et al. Translocation (8;22) in cold agglutinin disease associated with B-cell lymphoma. Cancer Genet Cytogenet. 2004 Jul 1. 152(1):66-9. [Medline].

  37. Kitamura T, Mizuta K, Kawarasaki H, Sugawara Y, Makuuchi M. Severe hemolytic anemia related to production of cold agglutinins following living donor liver transplantation: a case report. Transplant Proc. 2003 Feb. 35(1):399-400. [Medline].

  38. Tamura T, Kanamori H, Yamazaki E, et al. Cold agglutinin disease following allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994 Mar. 13(3):321-3. [Medline].

  39. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995 Dec. 17(6):584-91. [Medline].

  40. Oshima M, Maeda H, Morimoto K, Doi M, Kuwabara M. Low-titer cold agglutinin disease with systemic sclerosis. Intern Med. 2004 Feb. 43(2):139-42. [Medline]. [Full Text].

  41. Torres JR, Villegas L, Perez H, et al. Low-grade parasitaemias and cold agglutinins in patients with hyper-reactive malarious splenomegaly and acute haemolysis. Ann Trop Med Parasitol. 2003 Mar. 97(2):125-30. [Medline].

  42. Johnson ST, McFarland JG, Kelly KJ, Casper JT, Gottschall JL. Transfusion support with RBCs from an Mk homozygote in a case of autoimmune hemolytic anemia following diphtheria-pertussis-tetanus vaccination. Transfusion. 2002 May. 42(5):567-71. [Medline].

  43. Gunduz Gedikoglu A, Cantez T. Haemolytic-anaemia relapses after immunisation and pertussis. Lancet. 1967 Oct 21. 2(7521):894-5. [Medline].

  44. Zupanska B, Lawkowicz W, Gorska B, et al. Autoimmune haemolytic anaemia in children. Br J Haematol. 1976 Nov. 34(3):511-20. [Medline].

  45. Haneberg B, Matre R, Winsnes R, et al. Acute hemolytic anemia related to diphtheria-pertussis-tetanus vaccination. Acta Paediatr Scand. 1978 May. 67(3):345-50. [Medline].

  46. Kamesaki T, Toyotsuji T, Kajii E. Characterization of direct antiglobulin test-negative autoimmune hemolytic anemia: A study of 154 cases. Am J Hematol. 2012 Oct 25. [Medline].

  47. Schubothe H. The cold hemagglutinin disease. Semin Hematol. 1966 Jan. 3(1):27-47. [Medline].

  48. Hamblin T. Management of cold agglutination syndrome. Transfus Sci. 2000 Feb-Apr. 22(1-2):121-4. [Medline].

  49. Hoppe B, Gaedicke G, Kiesewetter H, Salama AR. Response to intravenous immunoglobulin G in an infant with immunoglobulin A-associated autoimmune haemolytic anaemia. Vox Sang. 2004 Feb. 86(2):151-3. [Medline].

  50. Roy-Burman A, Glader BE. Resolution of severe Donath-Landsteiner autoimmune hemolytic anemia temporally associated with institution of plasmapheresis. Crit Care Med. 2002 Apr. 30(4):931-4. [Medline].

  51. Teachey DT, Felix CA. Development of cold agglutinin autoimmune hemolytic anemia during treatment for pediatric acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2005 Jul. 27(7):397-9. [Medline].

  52. Giulino LB, Bussel JB, Neufeld EJ. Treatment with rituximab in benign and malignant hematologic disorders in children. J Pediatr. 2007 Apr. 150(4):338-44, 344.e1. [Medline]. [Full Text].

  53. Webster D, Ritchie B, Mant MJ. Prompt response to rituximab of severe hemolytic anemia with both cold and warm autoantibodies. Am J Hematol. 2004 Apr. 75(4):258-9. [Medline]. [Full Text].

  54. Berentsen S, Ulvestad E, Tjonnfjord GE. B-lymphocytes as targets for therapy in chronic cold agglutinin disease. Cardiovasc Hematol Disord Drug Targets. 2007 Sep. 7(3):219-27. [Medline].

  55. Berentsen S, Randen U, Vagan AM, Hjorth-Hansen H, Vik A, Dalgaard J. High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. 2010 Oct 28. 116(17):3180-4. [Medline].

  56. Shapiro R, Chin-Yee I, Lam S. Eculizumab as a bridge to immunosuppressive therapy in severe cold agglutinin disease of anti-Pr specificity. Clin Case Rep. 2015 Nov. 3 (11):942-4. [Medline].

  57. Inaba H, Geiger TL, Lasater OE, Wang WC. A case of hemoglobin SC disease with cold agglutinin-induced hemolysis. Am J Hematol. 2005 Jan. 78(1):37-40. [Medline]. [Full Text].

  58. Batalias L, Trakakis E, Loghis C, et al. Autoimmune hemolytic anemia caused by cold agglutinins in a young pregnant woman. J Matern Fetal Neonatal Med. 2006 Apr. 19(4):251-3. [Medline].

  59. Atkinson VP, Soeding P, Horne G, Tatoulis J. Cold agglutinins in cardiac surgery: management of myocardial protection and cardiopulmonary bypass. Ann Thorac Surg. 2008 Jan. 85(1):310-1. [Medline].

  60. Aoki A, Kay GL, Zubiate P, Ruggio J, Kay JH. Cardiac operation without hypothermia for the patient with cold agglutinin. Chest. 1993 Nov. 104(5):1627-9. [Medline].

  61. Barbara DW, Mauermann WJ, Neal JR, Abel MD, Schaff HV, Winters JL. Cold agglutinins in patients undergoing cardiac surgery requiring cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2013 Sep. 146(3):668-80. [Medline].

  62. Hippe E, Jensen KB, Olesen H, Lind K, Thomsen PE. Chlorambucil treatment of patients with cold agglutinin syndrome. Blood. 1970 Jan. 35(1):68-72. [Medline]. [Full Text].

  63. O'Connor BM, Clifford JS, Lawrence WD, Logue GL. Alpha-interferon for severe cold agglutinin disease. Ann Intern Med. 1989 Aug 1. 111(3):255-6. [Medline].

 
Previous
Next
 
Peripheral blood smear showing several clumps of RBCs with the largest in the center. These are typical of aggregates seen in persons with cold agglutinin disease.
Blood smear showing spherocytic and agglutinated red blood cells.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.