Medscape is available in 5 Language Editions – Choose your Edition here.


Angina Pectoris Workup

  • Author: Jamshid Alaeddini, MD, FACC, FHRS; Chief Editor: Eric H Yang, MD  more...
Updated: Nov 23, 2015

Laboratory Studies

Investigative studies

Urinary proton nuclear magnetic resonance (1H NMR) spectroscopy–based metabolomic profiling appears to have the potential for identifying diagnostic biomarkers in the investigation of unstable angin pectoris metabolic signatures.[16]

Investigators have demonstrated enhanced expression of toll-like receptors 2 and 4 (TLR-2 and TLR-4)  on platelets in patients with acute coronary syndrome, which has potential clinical implications for prophylactic and therapeutic targets.[17]


Chest Radiography

Chest radiograph findings are usually normal in patients with angina pectoris. However, they may show cardiomegaly in patients with previous MI, ischemic cardiomyopathy, pericardial effusion, or acute pulmonary edema. Calcification of coronary arteries frequently correlates with major coronary artery disease.[18]


Exercise Stress Testing

Graded exercise stress testing is the most widely used test for the evaluation of patients presenting with chest pain. In patients with established stable angina pectoris, it also can provide prognostic information about the extent of disease.

Exercise stress testing can be performed alone and in conjunction with echocardiography or myocardial perfusion scintigraphy tests. Stress echocardiography has an overall sensitivity of 78% and specificity of 86%; myocardial perfusion scintigraphy has an overall sensitivity of 83% and specificity of 77%. Exercise stress testing alone generally has somewhat lower sensitivity and specificity, but it is cheaper and therefore is a reasonable choice in those with a low probability of disease.[19]

These test results must be interpreted in the context of the likelihood of the presence of coronary artery disease determined from the patient's history and physical examination findings. In a population with low prevalence, the predictive abilities of these tests are low; however, in patients with a high likelihood of coronary artery disease, the predictive value is much higher.

The frequency of infarction or death is 1 case per 10,000 stress tests. Absolute contraindications include symptomatic cardiac arrhythmias, severe aortic stenosis, acute MI within the previous 2 days, acute myocarditis, or pericarditis. Discontinue the exercise stress test in the presence of chest pain, a drop in systolic blood pressure of more than 10 mm Hg, severe shortness of breath, fatigue, dizziness or near syncope, ST depression of more than 2 mm, ST elevation of at least 1 mm without diagnostic Q waves, or development of ventricular tachyarrhythmia.


Stress Echocardiography

Stress echocardiography can be used to evaluate segmental wall motion during exercise. It detects changes in regional wall motion that occur during myocardial ischemia. Normal myocardium becomes hyperdynamic during exercise; ischemic segments become hypokinetic or akinetic.

Stress echocardiography has the advantage of simultaneous evaluation of LV function, cardiac dimensions, and valvular disease. It is especially useful in patients with baseline ECG abnormalities and those with systolic murmurs suggestive of aortic stenosis or hypertrophic cardiomyopathy.

It is also helpful for localizing ischemia and evaluating its severity.

Signs of severe coronary artery disease during exercise stress echocardiography include LV dilation, a decrease in global systolic function, and new or worsening mitral regurgitation. However, with dobutamine stress echocardiography, even in patients with severe coronary artery disease, the LV cavity may not dilate and global systolic function may improve. A major problem with stress echocardiography is the technical difficulty with obtaining adequate images in some patients.


Nuclear Imaging

Myocardial perfusion scintigraphy

Thallium Tl 201 and technetium Tc 99m sestamibi are the most frequently used myocardial perfusion scintigraphy tests. These tests are especially useful in patients with baseline ECG abnormalities, to localize the region of ischemia, and as prognostic indicators. The presence of increased lung uptake upon thallium imaging is associated with a poor prognosis. Increased lung uptake, together with poststress dilation of the LV and multiple perfusion defects, is suggestive of either left main coronary artery disease or severe 3-vessel disease. The number of affected myocardial segments is predictive of long-term survival. Smaller perfusion defects are usually associated with peripheral coronary artery lesions, which are associated with a better prognosis. The absence of perfusion defects even in the presence of symptoms indicates an excellent prognosis.


Computed Tomography Scanning

In relatively recent years, coronary artery calcium (CAC) scoring by fast computed tomography (CT) has become more popular in clinical practice for risk assessment of patients with chest pain. Currently, electron-beam computed tomography (EBCT) and multi-detector computed tomography (MDCT) are the primary fast CT methods for CAC measurement. However, some controversy exists about the usefulness of this test.[20]

In asymptomatic patients, analysis of the data from CAC scoring in patients with an intermediate Framingham risk score reveals that for a score of 400 or more, the patient’s 10-year CAD risk would achieve a risk equivalent status similar to that noted with diabetes or peripheral arterial disease.[21] Thus, finding a high CAC score in asymptomatic patients with an intermediate Framingham risk score (10-20% risk of CAD in 10 y) could be useful by resulting in a more aggressive management approach. However, unselected screening is of limited clinical value in asymptomatic patients who have a low Framingham risk score. On the other hand, assessment of CAC in asymptomatic patients with a high Framingham risk score (>20% risk of CAD in 10 y) has limited value since, based on current guidelines, these patients should be treated aggressively irrespective of their CAC scoring.

In symptomatic patients, exclusion of measurable CAC may be an effective tool before undertaking invasive diagnostic procedures or hospital admission. Patients with CAC scores of less than 100 have a low probability (< 2%) of abnormal perfusion on nuclear stress tests, and a low probability (< 3%) of obstructive CAD (>50% stenosis) on cardiac catheterization. Studies of large numbers of symptomatic patients demonstrated that the absence of CAC has a high negative predictive value of 96-100%. Thus, an individual with no coronary calcium (score _ 0) can be told with a high level of confidence that he or she has no obstructive angiographic coronary disease.

In patients with documented CAD, clinical monitoring of CAC progression through serial fast CT scanning to assess progression or regression of CAD is not recommended at this time.

Because most of current data regarding CAC are collected from patient population of mostly white men, the guidelines suggest caution in applying these findings to women and ethnic minorities.


CT Angiography

In a 2008 study of 79 patients with stable angina pectoris, all patients underwent both dual-source computed tomography coronary angiography (CTCA) with quantitative CT coronary angiography (QCT) and coronary angiography with intracoronary fractional flow reserve (FFR) measurement of discrete coronary stenoses.[22] A total of 89 stenoses were evaluated which demonstrated that correlation between QCT and QCA with FFR measurement was weak (R values of -0.32 and -0.30, respectively). Although correlation between QCT and QCA was statistically significant, this correlation was only moderate (R = 0.53; p < 0.0001). This study demonstrated that anatomical assessment of the hemodynamic significance of coronary stenoses determined by visual CTCA, CCA, or QCT or QCA does not correlate well with the functional assessment of FFR.

Bamberg et al found that, in patients with acute chest pain and an inconclusive initial evaluation (nondiagnostic electrocardiographic findings, negative cardiac biomarkers), age and gender can serve as simple criteria to select patients who would derive the greatest diagnostic benefit from coronary computed tomographic angiography (CTA). In an observational cohort study in 368 low-risk patients, positive findings on 64-slice coronary CTA led to restratification to high risk, and negative findings led to restratification to very low risk, in men younger than 55 years and women younger than 65 years. In contrast, in women older than 65 years and men older than 55 years, a negative result on CTA did not result in restratification to a low-risk category.[23]



ECG is useful for evaluating persons with angina pectoris; however, findings are variable among patients.

Approximately 50% of patients with angina pectoris have normal findings after a resting ECG. However, abnormalities such as evidence for prior MI, intraventricular conduction delay, various degrees of atrioventricular block, arrhythmias, or ST-T–wave changes may be seen.

During an attack of angina pectoris, 50% of patients with normal findings after resting ECG show abnormalities. A 1-mm or greater depression of the ST segment below the baseline, measured 80 milliseconds from the J point, is the most characteristic change. Reversible ST-segment elevation occurs with Prinzmetal angina. Some patients with coronary artery disease may show pseudonormalization of the resting ECG ST-T–wave abnormalities during episodes of chest pain.

Exercise with ECG monitoring

Exercise with ECG monitoring alone is the initial procedure of choice in patients without baseline ST-segment abnormalities or in whom anatomic localization of ischemia is not a consideration. Note the following:

  • Horizontal or down-sloping ST-segment depression of at least 1 mm, measured 80 milliseconds from the J point, is considered the characteristic ischemic response.
  • ST-segment depression of more than 2 mm at a low workload or that persists for more than 5 minutes after termination of exercise and a failure of blood pressure to rise or an actual drop in blood pressure are signs of severe ischemic heart disease and a poor prognosis.
  • Withhold beta-blockers for approximately 48 hours before the stress test, whenever possible. Patients on digoxin and those with LV hypertrophy with repolarization abnormalities more often show positive results. Exercise stress tests have lower sensitivity and specificity in women and in patients with left bundle-branch block.
  • Pharmacologic agents (eg, dobutamine, dipyridamole, adenosine) can be used in patients who are unable to exercise.

Ambulatory ECG monitoring

Ambulatory ECG monitoring can be used for diagnostic purposes in patients with chest pain suggestive of Prinzmetal angina but is primarily used to evaluate the frequency of silent ischemia. Silent ischemia has been shown to be an independent predictor of mortality in patients with angina pectoris.



Coronary angiography

Selective coronary angiography is the definitive diagnostic test for evaluating the anatomic extent and severity of coronary artery disease.

Consider coronary angiography in symptomatic patients with inconclusive noninvasive study results, in survivors of sudden cardiac death, in those who are considered to have a poor prognosis based on the results of noninvasive studies, in those with occupational requirements for a definite diagnosis (eg, pilots), or in patients with coronary artery disease who are severely symptomatic despite maximal medical therapy.

In patients in whom Prinzmetal angina is suggested, provocative testing with ergonovine maleate during coronary angiography may be useful.

Intra-aortic balloon counterpulsation

Intra-aortic balloon counterpulsation can be used in patients who continue to have unstable angina pectoris despite maximal medical treatment. This procedure should be followed promptly by coronary angiography with possible coronary revascularization.[3]

Enhanced external counterpulsation

In patients whose angina is refractory to medical therapy who are not suitable candidates for either percutaneous or surgical revascularization, enhanced external counterpulsation (EECP) is a safe and noninvasive alternative therapy.[4, 24] It increases coronary perfusion and reduces myocardial oxygen demand by diastolic augmentation of the central aortic pressure. Several studies have shown that patients treated with enhanced external counterpulsation have a significantly reduced number of anginal episodes, improved exercise tolerance, and decreased daily use of nitroglycerin tablets. Its therapeutic effects on quality of life are noted to remain at 1-year follow-up.[25, 26]

EECP also improves systolic blood pressure in patients with refractory angina. In a recent study of 108 consecutive patients undergoing EECP, on average, EECP decreased systolic blood pressure during treatment and follow-up; but in patients with low baseline systolic blood pressure (<110 mm Hg), EECP significantly increased systolic blood pressure.[4]



The Canadian Cardiovascular Society grading scale is used for classification of angina severity, as follows:

  • Class I - Angina only during strenuous or prolonged physical activity
  • Class II - Slight limitation, with angina only during vigorous physical activity
  • Class III - Symptoms with everyday living activities, ie, moderate limitation
  • Class IV - Inability to perform any activity without angina or angina at rest, ie, severe limitation

The New York Heart Association classification is also used to quantify the functional limitation imposed by patients' symptoms, as follows:

  • Class I - No limitation of physical activity (Ordinary physical activity does not cause symptoms.)
  • Class II - Slight limitation of physical activity (Ordinary physical activity does cause symptoms.)
  • Class III - Moderate limitation of activity (Patient is comfortable at rest, but less than ordinary activities cause symptoms.)
  • Class IV - Unable to perform any physical activity without discomfort, therefore severe limitation (Patient may be symptomatic even at rest.)

Unstable angina is defined as new-onset angina (ie, within 2 mo of initial presentation) of at least class III severity, significant recent increase in frequency and severity of angina, or angina at rest.

Contributor Information and Disclosures

Jamshid Alaeddini, MD, FACC, FHRS Director, Cardiac Electrophysiology Services, Lake Health System

Jamshid Alaeddini, MD, FACC, FHRS is a member of the following medical societies: American College of Cardiology, American Heart Association, Heart Rhythm Society

Disclosure: Nothing to disclose.


Jamshid Shirani, MD Director of Cardiology Fellowship Program, Director of Echocardiography Laboratory, Director of Hypertrophic Cardiomyopathy Clinic, St Luke's University Health Network

Jamshid Shirani, MD is a member of the following medical societies: American Association for the Advancement of Science, American Federation for Medical Research, American Society of Echocardiography, Association of Subspecialty Professors, American College of Cardiology, American College of Physicians, American Heart Association

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Steven J Compton, MD, FACC, FACP, FHRS Director of Cardiac Electrophysiology, Alaska Heart Institute, Providence and Alaska Regional Hospitals

Steven J Compton, MD, FACC, FACP, FHRS is a member of the following medical societies: American College of Physicians, American Heart Association, American Medical Association, Heart Rhythm Society, Alaska State Medical Association, American College of Cardiology

Disclosure: Nothing to disclose.

Chief Editor

Eric H Yang, MD Associate Professor of Medicine, Director of Cardiac Catherization Laboratory and Interventional Cardiology, Mayo Clinic Arizona

Eric H Yang, MD is a member of the following medical societies: Alpha Omega Alpha

Disclosure: Nothing to disclose.

  1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) (Adult Treatment Panel III). JAMA. 2001 May 16. 285(19):2486-97. [Medline].

  2. Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011 Aug 5. 109(4):428-36. [Medline].

  3. den Uil CA, Valk SD, Cheng JM, et al. Prognosis of patients undergoing cardiac surgery and treated with intra-aortic balloon pump counterpulsation prior to surgery: a long-term follow-up study. Interact Cardiovasc Thorac Surg. 2009 Aug. 9(2):227-31. [Medline].

  4. Campbell AR, Satran D, Zenovich AG, et al. Enhanced external counterpulsation improves systolic blood pressure in patients with refractory angina. Am Heart J. 2008 Dec. 156(6):1217-22. [Medline].

  5. Oesterle SN, Sanborn TA, Ali N, et al. Percutaneous transmyocardial laser revascularisation for severe angina: the PACIFIC randomised trial. Potential Class Improvement From Intramyocardial Channels. Lancet. 2000 Nov 18. 356(9243):1705-10. [Medline].

  6. Crea F, Pupita G, Galassi AR, et al. Role of adenosine in pathogenesis of anginal pain. Circulation. 1990 Jan. 81(1):164-72. [Medline].

  7. Kugiyama K, Yasue H, Okumura K, et al. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation. 1996 Aug 1. 94(3):266-71. [Medline].

  8. Rosano GM, Collins P, Kaski JC, et al. Syndrome X in women is associated with oestrogen deficiency. Eur Heart J. 1995 May. 16(5):610-4. [Medline].

  9. Kaski JC, Elliott PM, Salomone O, et al. Concentration of circulating plasma endothelin in patients with angina and normal coronary angiograms. Br Heart J. 1995 Dec. 74(6):620-4. [Medline].

  10. Lanza GA, Giordano A, Pristipino C, et al. Abnormal cardiac adrenergic nerve function in patients with syndrome X detected by [123I]metaiodobenzylguanidine myocardial scintigraphy. Circulation. 1997 Aug 5. 96(3):821-6. [Medline].

  11. Deedwania PC, Carbajal EV. Silent ischemia during daily life is an independent predictor of mortality in stable angina. Circulation. 1990 Mar. 81(3):748-56. [Medline].

  12. Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation. 1995 Aug 1. 92(3):518-25. [Medline].

  13. Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009 Jan 27. 119(3):e21-181. [Medline].

  14. Hemingway H, Langenberg C, Damant J, Frost C, Pyorala K, Barrett-Connor E. Prevalence of angina in women versus men: a systematic review and meta-analysis of international variations across 31 countries. Circulation. 2008 Mar 25. 117(12):1526-36. [Medline].

  15. Tanindi A, Erkan AF, Ekici B. Epicardial adipose tissue thickness can be used to predict major adverse cardiac events. Coron Artery Dis. 2015 Dec. 26 (8):686-91. [Medline].

  16. Li Z, Liu X, Wang J, et al. Analysis of urinary metabolomic profiling for unstable angina pectoris disease based on nuclear magnetic resonance spectroscopy. Mol Biosyst. 2015 Dec 10. 11 (12):3387-96. [Medline].

  17. Gurses KM, Kocyigit D, Yalcin MU, et al. Enhanced platelet toll-like receptor 2 and 4 expression in acute coronary syndrome and stable angina pectoris. Am J Cardiol. 2015 Dec 1. 116 (11):1666-71. [Medline].

  18. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol. 2004 Aug 4. 44(3):720-32. [Medline].

  19. O'Keefe JH Jr, Barnhart CS, Bateman TM. Comparison of stress echocardiography and stress myocardial perfusion scintigraphy for diagnosing coronary artery disease and assessing its severity. Am J Cardiol. 1995 Apr 13. 75(11):25D-34D. [Medline].

  20. [Guideline] Greenland P, Bonow RO, Brundage BH, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the So... J Am Coll Cardiol. 2007 Jan 23. 49(3):378-402. [Medline].

  21. Kannel WB, Feinleib M. Natural history of angina pectoris in the Framingham study. Prognosis and survival. Am J Cardiol. 1972 Feb. 29(2):154-63. [Medline].

  22. Meijboom WB, Van Mieghem CA, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008 Aug 19. 52(8):636-43. [Medline].

  23. Bamberg F, Truong QA, Blankstein R, et al. Usefulness of age and gender in the early triage of patients with acute chest pain having cardiac computed tomographic angiography. Am J Cardiol. 2009 Nov 1. 104(9):1165-70. [Medline]. [Full Text].

  24. Soran O. Alternative therapy for medically refractory angina: enhanced external counterpulsation and transmyocardial laser revascularization. Heart Fail Clin. 2016 Jan. 12 (1):107-16. [Medline].

  25. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999 Jun. 33(7):1833-40. [Medline].

  26. Kumar A, Aronow WS, Vadnerkar A, et al. Effect of enhanced external counterpulsation on clinical symptoms, quality of life, 6-minute walking distance, and echocardiographic measurements of left ventricular systolic and diastolic function after 35 days of treatment and at 1-year follow up in 47 patients with chronic refractory angina pectoris. Am J Ther. 2009 Mar-Apr. 16(2):116-8. [Medline].

  27. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994 Nov 19. 344(8934):1383-9. [Medline].

  28. Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001 Apr 4. 285(13):1711-8. [Medline].

  29. Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomi. Lancet. 2003 Apr 5. 361(9364):1149-58. [Medline].

  30. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002 Nov 23. 360(9346):1623-30. [Medline].

  31. LaRosa JC, Grundy SM, Waters DD, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005 Apr 7. 352(14):1425-35. [Medline].

  32. Nissen SE, Tardif JC, Nicholls SJ, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007 Mar 29. 356(13):1304-16. [Medline].

  33. Bots ML, Visseren FL, Evans GW, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007 Jul 14. 370(9582):153-60. [Medline].

  34. Ridker PM, Manson JE, Gaziano JM, et al. Low-dose aspirin therapy for chronic stable angina. A randomized, placebo-controlled clinical trial. Ann Intern Med. 1991 May 15. 114(10):835-9. [Medline].

  35. Juul-Moller S, Edvardsson N, Jahnmatz B, et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. The Swedish Angina Pectoris Aspirin Trial (SAPAT) Group. Lancet. 1992 Dec 12. 340(8833):1421-5. [Medline].

  36. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med. 2001 Aug 16. 345(7):494-502. [Medline].

  37. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002 Jul 17. 288(3):321-33. [Medline].

  38. Lacoste LL, Theroux P, Lidon RM, et al. Antithrombotic properties of transdermal nitroglycerin in stable angina pectoris. Am J Cardiol. 1994 Jun 1. 73(15):1058-62. [Medline].

  39. Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med. 1981 Apr 2. 304(14):801-7. [Medline].

  40. Werdan K, Ebelt H, Nuding S, et al, for the ADDITIONS Study Investigators. Ivabradine in combination with metoprolol improves symptoms and quality of life in patients with stable angina pectoris: a post hoc analysis from the ADDITIONS trial. Cardiology. 2016. 133 (2):83-90. [Medline].

  41. Miwa K, Miyagi Y, Igawa A, et al. Vitamin E deficiency in variant angina. Circulation. 1996 Jul 1. 94(1):14-8. [Medline].

  42. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme inhibition on exercise-induced angina and ST segment depression in patients with microvascular angina. J Am Coll Cardiol. 1994 Mar 1. 23(3):652-7. [Medline].

  43. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002 Jun 6. 346(23):1773-80. [Medline].

  44. Kastrati A, Mehilli J, Pache J, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med. 2007 Mar 8. 356(10):1030-9. [Medline].

  45. Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. COURAGE Trial Research Group. N Engl J Med. 2007 Apr 12. 356(15):1503-16. [Medline].

  46. De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012 Sep 13. 367(11):991-1001. [Medline].

  47. Allen KB, Dowling RD, Fudge TL, et al. Comparison of transmyocardial revascularization with medical therapy in patients with refractory angina. N Engl J Med. 1999 Sep 30. 341(14):1029-36. [Medline].

  48. Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007 Jun 26. 115(25):3165-72. [Medline].

  49. Banai S, Ben Muvhar S, Parikh KH, et al. Coronary sinus reducer stent for the treatment of chronic refractory angina pectoris: a prospective, open-label, multicenter, safety feasibility first-in-man study. J Am Coll Cardiol. 2007 May 1. 49(17):1783-9. [Medline].

  50. Anderson HV. Angiotensin-converting enzyme inhibitors: ischemia is not the correct measure of benefit. J Am Coll Cardiol. 2003 Dec 17. 42(12):2060-2. [Medline].

  51. Khan NA, Hemmelgarn B, Herman RJ, et al. The 2009 Canadian Hypertension Education Program recommendations for the management of hypertension: Part 2--therapy. Can J Cardiol. 2009 May. 25(5):287-98. [Medline]. [Full Text].

  52. Ambrosio G, Betocchi S, Pace L, et al. Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation. 1996 Nov 15. 94(10):2455-64. [Medline].

  53. Boggs W. Coronary CT angiography, or usual care, in the ED? Medscape Medical News. February 6, 2013. Available at Accessed: March 25, 2013.

  54. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990 Nov 8. 323(19):1289-98. [Medline].

  55. Califf RM, Armstrong PW, Carver JR, et al. 27th Bethesda Conference: matching the intensity of risk factor management with the hazard for coronary disease events. Task Force 5. Stratification of patients into high, medium and low risk subgroups for purposes of risk factor management. J Am Coll Cardiol. 1996 Apr. 27(5):1007-19. [Medline].

  56. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004 Apr 8. 350(15):1495-504. [Medline].

  57. Chauhan A, Mullins PA, Taylor G, et al. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J. 1997 Jan. 18(1):60-8. [Medline].

  58. Connolly DC, Elveback LR, Oxman HA. Coronary heart disease in residents of Rochester, Minnesota. IV. Prognostic value of the resting electrocardiogram at the time of initial diagnosis of angina pectoris. Mayo Clin Proc. 1984 Apr. 59(4):247-50. [Medline].

  59. Frileux S, Munoz Sastre MT, Mullet E, Sorum PC. The impact of the preventive medical message on intention to change behavior. Patient Educ Couns. 2004 Jan. 52(1):79-88. [Medline].

  60. [Guideline] Gibbons RJ, Abrams J, Chatterjee K, et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients With Chronic Stable Angina). J Am Coll Cardiol. 2003 Jan 1. 41(1):159-68. [Medline].

  61. [Guideline] Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation. 2002 Oct 1. 106(14):1883-92. [Medline].

  62. Hulten E, Pickett C, Bittencourt MS, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013 Feb 26. 61(8):880-92. [Medline].

  63. Khan NE, De Souza A, Mister R, et al. A randomized comparison of off-pump and on-pump multivessel coronary-artery bypass surgery. N Engl J Med. 2004 Jan 1. 350(1):21-8. [Medline].

  64. Margolis JR, Chen JT, Kong Y, et al. The diagnostic and prognostic significance of coronary artery calcification. A report of 800 cases. Radiology. 1980 Dec. 137(3):609-16. [Medline].

  65. Mark DB, Califf RM, Morris KG, et al. Clinical characteristics and long-term survival of patients with variant angina. Circulation. 1984 May. 69(5):880-8. [Medline].

  66. Maseri A, Crea F, Kaski JC, Davies G. Mechanisms and significance of cardiac ischemic pain. Prog Cardiovasc Dis. 1992 Jul-Aug. 35(1):1-18. [Medline].

  67. Piatti P, Fragasso G, Monti LD, et al. Endothelial and metabolic characteristics of patients with angina and angiographically normal coronary arteries: comparison with subjects with insulin resistance syndrome and normal controls. J Am Coll Cardiol. 1999 Nov 1. 34(5):1452-60. [Medline].

  68. Rocco MB, Nabel EG, Campbell S, et al. Prognostic importance of myocardial ischemia detected by ambulatory monitoring in patients with stable coronary artery disease. Circulation. 1988 Oct. 78(4):877-84. [Medline].

  69. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med. 1999 Aug 5. 341(6):410-8. [Medline].

  70. Wenger NK, Speroff L, Packard B. Cardiovascular health and disease in women. N Engl J Med. 1993 Jul 22. 329(4):247-56. [Medline].

  71. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000 Jan 20. 342(3):145-53. [Medline].

All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.