Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Atrial Tachycardia Differential Diagnoses

  • Author: Adam S Budzikowski, MD, PhD, FHRS; Chief Editor: Jeffrey N Rottman, MD  more...
 
Updated: Dec 30, 2015
 
 

Diagnostic Considerations

The differential diagnosis of atrial tachycardia is the differential diagnosis of supraventricular tachycardia (SVT) and includes the following:

  • Sinus tachycardia
  • Atrial flutter (see the image below)
  • Atrial fibrillation
  • Atrioventricular (AV) junction–dependent reentrant tachycardias (AV nodal reentrant tachycardia and AV reentrant tachycardia using an accessory pathway)
    An example of rapid atrial tachycardia mimicking a An example of rapid atrial tachycardia mimicking atrial flutter. A single radiofrequency application terminates the tachycardia. The first 3 tracings show surface electrocardiograms, as labeled. HRA – High right atrial catheter RVA – Catheter located in right ventricular apex HBED and HBEP – Respectively, distal and proximal pair of electrodes in the catheter located at His bundle AblD and AblP – Respectively, distal and proximal pair of electrodes of the mapping catheter MAP – Unipolar electrograms from the tip of the mapping catheter

Differentiating among these diagnoses requires electrocardiographic (ECG) analysis of the tachycardia for P wave activity. In SVT, the ECG typically has narrow QRS complexes (unless aberrant conduction with typical left or right bundle-branch block occurs or a bystander preexcitation is seen).

Assessment of the relationship of the P waves to the QRS complex (R waves) can help to guide diagnosis. A short RP interval (P wave immediately following the QRS) suggests different causes of the tachycardia than does a long RP interval (interval wave preceding QRS).

In short RP interval SVT, the differential diagnosis includes the following:

  • Typical AV nodal reentrant tachycardia
  • AV reentrant tachycardia using accessory pathways
  • Atrial tachycardia with long first-degree AV block
  • Atrial tachycardia originating from the os of the coronary sinus or junctional tachycardia

To determine the diagnosis requires additional maneuvers, such as vagal stimulation (eg, carotid sinus massage, Valsalva maneuver), or adenosine.

In long RP interval SVT, the differential diagnosis includes the following:

  • Atypical (fast-slow) AV nodal reentrant tachycardia
  • Permanent junctional reciprocating tachycardia (PJRT) due to a slowly conducting retrograde accessory pathway
  • Atrial tachycardia
  • Sinus tachycardia
  • Sinus node reentry
  • Atrial flutter
  • AV reentrant tachycardia

Diagnosis requires assessment of the patient condition, vagal maneuvers, adenosine, and cardioversion—namely, procedures that may not only be diagnostic but also therapeutic.

For multifocal atrial tachycardia (MAT), the differential diagnosis includes atrial fibrillation because both can manifest with an irregular pulse. MAT with aberration or preexisting bundle branch block may be misinterpreted as ventricular tachycardia (VT).

However, if the patient also has new signs or symptoms (eg, chest pain, unexplained dyspnea, inappropriate hypotension) or a recent illness, perform a more extensive workup because atrial tachycardia may not be the primary problem; acute pulmonary embolus, acute noncardiac illness, thyroid disease, or drugs (especially sympathomimetics or bronchodilators) can cause atrial tachycardia. In addition, with frequent or incessant tachycardia, tachycardia-induced cardiomyopathy may develop.

Another tachycardia that mimics atrial tachycardia is inappropriate sinus tachycardia. Strictly speaking, inappropriate sinus tachycardia and postural orthostatic tachycardia syndrome (POTS) are not atrial tachycardias, because their origin is not abnormal. They are sinus tachycardias related to enhanced sinus automaticity, abnormal autonomic function (dysautonomia), or physiologic reflexes

Differentials

Atrial Fibrillation

Atrial Flutter

Atrioventricular Nodal Reentry Tachycardia

Chronic Anemia

Paroxysmal Supraventricular Tachycardia

Sympathomimetic Toxicity

Thyroid Hormone Toxicity

Torsade de Pointes

Ventricular Tachycardia

Wolff-Parkinson-White Syndrome

 
 
Contributor Information and Disclosures
Author

Adam S Budzikowski, MD, PhD, FHRS Assistant Professor of Medicine, Division of Cardiovascular Medicine, Electrophysiology Section, State University of New York Downstate Medical Center, University Hospital of Brooklyn

Adam S Budzikowski, MD, PhD, FHRS is a member of the following medical societies: European Society of Cardiology, Heart Rhythm Society

Disclosure: Received consulting fee from Boston Scientific for speaking and teaching; Received honoraria from St. Jude Medical for speaking and teaching; Received honoraria from Zoll for speaking and teaching.

Coauthor(s)

Christine S Cho, MD, MPH, MEd Assistant Professor, Departments of Pediatrics and Emergency Medicine, University of California, San Francisco, School of Medicine

Christine S Cho, MD, MPH, MEd is a member of the following medical societies: Academic Pediatric Association, American Academy of Pediatrics, Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Chief Editor

Jeffrey N Rottman, MD Professor of Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine; Cardiologist/Electrophysiologist, University of Maryland Medical System and VA Maryland Health Care System

Jeffrey N Rottman, MD is a member of the following medical societies: American Heart Association, Heart Rhythm Society

Disclosure: Nothing to disclose.

Acknowledgements

Mirna M Farah, MD Associate Professor of Pediatrics, University of Pennsylvania School of Medicine; Attending Physician, Division of Emergency Medicine, Children's Hospital of Philadelphia

Mirna M Farah, MD is a member of the following medical societies: American Academy of Pediatrics

Disclosure: Nothing to disclose.

Dariusz Michałkiewicz, MD Head, Electrophysiology Department, Military Medical Institute, Poland

Disclosure: Nothing to disclose.

Brian Olshansky, MD Professor of Medicine, Department of Internal Medicine, University of Iowa College of Medicine

Brian Olshansky, MD is a member of the following medical societies: American Autonomic Society, American College of Cardiology, American College of Chest Physicians, American College of Physicians, American College of Sports Medicine, American Federation for Clinical Research, American Heart Association, Cardiac Electrophysiology Society, Heart Rhythm Society, and New York Academy of Sciences

Disclosure: Guidant/Boston Scientific Honoraria Speaking and teaching; Medtronic Honoraria Speaking and teaching; Guidant/Boston Scientific Consulting fee Consulting; Novartis Honoraria Speaking and teaching; Novartis Consulting fee Consulting

David A Peak, MD Assistant Residency Director of Harvard Affiliated Emergency Medicine Residency, Attending Physician, Massachusetts General Hospital; Consulting Staff, Department of Hyperbaric Medicine, Massachusetts Eye and Ear Infirmary

David A Peak, MD is a member of the following medical societies: American College of Emergency Physicians, American Medical Association, Society for Academic Emergency Medicine, and Undersea and Hyperbaric Medical Society

Disclosure: Pfizer Salary Employment

Justin D Pearlman, MD, PhD, ME, MA Director of Advanced Cardiovascular Imaging, Professor of Medicine, Professor of Radiology, Adjunct Professor, Thayer Bioengineering and Computer Science, Dartmouth-Hitchcock Medical Center

Justin D Pearlman, MD, PhD, ME, MA is a member of the following medical societies: American College of Cardiology, American College of Physicians, American Federation for Medical Research, International Society for Magnetic Resonance in Medicine, and Radiological Society of North America

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Grace M Young, MD Associate Professor, Department of Pediatrics, University of Maryland Medical Center

Grace M Young, MD is a member of the following medical societies: American Academy of Pediatrics and American College of Emergency Physicians

Disclosure: Nothing to disclose.

References
  1. Weber R, Letsas KP, Arentz T, Kalusche D. Adenosine sensitive focal atrial tachycardia originating from the non-coronary aortic cusp. Europace. 2009 Jun. 11(6):823-6. [Medline].

  2. Ma G, Brady WJ, Pollack M, Chan TC. Electrocardiographic manifestations: digitalis toxicity. J Emerg Med. 2001 Feb. 20(2):145-52. [Medline].

  3. McCord J, Borzak S. Multifocal atrial tachycardia. Chest. 1998 Jan. 113(1):203-9. [Medline].

  4. Lennox EG. Cardiology. Arcara KM, Tschudy MM, eds. Johns Hopkins: The Harriet Lane Handbook. 19th ed. Philadelphia, PA: Mosby Elsevier Inc; 2012.

  5. Song MK, Baek JS, Kwon BS, Kim GB, Bae EJ, Noh CI, et al. Clinical spectrum and prognostic factors of pediatric ventricular tachycardia. Circ J. 2010 Sep. 74(9):1951-8. [Medline].

  6. Shine KI, Kastor JA, Yurchak PM. Multifocal atrial tachycardia. Clinical and electrocardiographic features in 32 patients. N Engl J Med. 1968 Aug 15. 279(7):344-9. [Medline].

  7. Wu RC, Berger R, Calkins H. Catheter ablation of atrial flutter and macroreentrant atrial tachycardia. Curr Opin Cardiol. 2002 Jan. 17(1):58-64. [Medline].

  8. Knecht S, Veenhuyzen G, O'Neill MD, Wright M, Nault I, Weerasooriya R, et al. Atrial tachycardias encountered in the context of catheter ablation for atrial fibrillation part ii: mapping and ablation. Pacing Clin Electrophysiol. 2009 Apr. 32(4):528-38. [Medline].

  9. Hirai Y, Nakano Y, Yamamoto H, Ogi H, Yamamoto Y, Suenari K, et al. Pulmonary artery mapping for differential diagnosis of left-sided atrial tachycardia. Circ J. 2013. 77(2):345-51. [Medline].

  10. Chen SA, Chiang CE, Yang CJ, et al. Sustained atrial tachycardia in adult patients. Electrophysiological characteristics, pharmacological response, possible mechanisms, and effects of radiofrequency ablation. Circulation. 1994. 90(3):1262-78.

  11. Chung H, Joung B, Lee KY, et al. Left Atrial Volume Index Predicts Recurrence of Stroke in Patients with Nonsustained Atrial Tachycardia. J Stroke Cerebrovasc Dis. 2015 Oct. 24 (10):2408-15. [Medline].

  12. [Guideline] Blomström-Lundqvist C, Scheinman MM, Aliot EM, et al. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias--executive summary. a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to develop guidelines for the management of patients with supraventricular arrhythmias) developed in collaboration with NASPE-Heart Rhythm Society. J Am Coll Cardiol. 2003 Oct 15. 42(8):1493-531. [Medline]. [Full Text].

  13. Tucker KJ, Law J, Rodriques MJ. Treatment of refractory recurrent multifocal atrial tachycardia with atrioventricular junction ablation and permanent pacing. J Invasive Cardiol. 1995 Sep. 7(7):207-12. [Medline].

  14. Kastor JA. Multifocal atrial tachycardia. N Engl J Med. 1990 Jun 14. 322(24):1713-7. [Medline].

  15. Cohen L, Kitzes R, Shnaider H. Multifocal atrial tachycardia responsive to parenteral magnesium. Magnes Res. 1988 Dec. 1(3-4):239-42. [Medline].

  16. Iseri LT, Fairshter RD, Hardemann JL, Brodsky MA. Magnesium and potassium therapy in multifocal atrial tachycardia. Am Heart J. 1985 Oct. 110(4):789-94. [Medline].

  17. McCord JK, Borzak S, Davis T, Gheorghiade M. Usefulness of intravenous magnesium for multifocal atrial tachycardia in patients with chronic obstructive pulmonary disease. Am J Cardiol. 1998 Jan 1. 81(1):91-3. [Medline].

  18. Ho KM. Intravenous magnesium for cardiac arrhythmias: jack of all trades. Magnes Res. 2008 Mar. 21(1):65-8. [Medline].

  19. Parillo JE. Treating Multifocal Atrial Tachycardia (MAT) in a critical care unit: new data regarding verapamil and metoprlol. Update Crit Care Med. 1987. 2:3-5.

  20. Arsura E, Lefkin AS, Scher DL, Solar M, Tessler S. A randomized, double-blind, placebo-controlled study of verapamil and metoprolol in treatment of multifocal atrial tachycardia. Am J Med. 1988 Oct. 85(4):519-24. [Medline].

  21. Arsura EL, Solar M, Lefkin AS, Scher DL, Tessler S. Metoprolol in the treatment of multifocal atrial tachycardia. Crit Care Med. 1987 Jun. 15(6):591-4. [Medline].

  22. Hazard PB, Burnett CR. Treatment of multifocal atrial tachycardia with metoprolol. Crit Care Med. 1987 Jan. 15(1):20-5. [Medline].

  23. Adcock JT, Heiselman DE, Hulisz DT. Continuous infusion diltiazem hydrochloride for treatment of multifocal atrial tachycardia (abstract). Clin Res. 1994. 42:430A.

  24. Aronow WS, Plasencia G, Wong R. Effect of verapamil versus placebo on PAT and MAT. Current Ther Res. 1980. 27:823-29.

  25. Hazard PB, Burnett CR. Verapamil in multifocal atrial tachycardia. Hemodynamic and respiratory changes. Chest. 1987 Jan. 91(1):68-70. [Medline].

  26. Levine JH, Michael JR, Guarnieri T. Treatment of multifocal atrial tachycardia with verapamil. N Engl J Med. 1985 Jan 3. 312(1):21-5. [Medline].

  27. Salerno DM, Anderson B, Sharkey PJ, Iber C. Intravenous verapamil for treatment of multifocal atrial tachycardia with and without calcium pretreatment. Ann Intern Med. 1987 Nov. 107(5):623-8. [Medline].

  28. Kouvaras G, Cokkinos DV, Halal G, Chronopoulos G, Ioannou N. The effective treatment of multifocal atrial tachycardia with amiodarone. Jpn Heart J. 1989 May. 30(3):301-12. [Medline].

  29. Hsieh MY, Lee PC, Hwang B, Meng CC. Multifocal atrial tachycardia in 2 children. J Chin Med Assoc. 2006 Sep. 69(9):439-43. [Medline]. [Full Text].

  30. Kuralay E, Cingöz F, Kiliç S, Bolcal C, Günay C, Demirkiliç U, et al. Supraventricular tachyarrythmia prophylaxis after coronary artery surgery in chronic obstructive pulmonary disease patients (early amiodarone prophylaxis trial). Eur J Cardiothorac Surg. 2004 Feb. 25(2):224-30. [Medline].

  31. Pierce WJ, McGroary K. Multifocal atrial tachycardia and Ibutilide. Am J Geriatr Cardiol. 2001 Jul-Aug. 10(4):193-5. [Medline].

  32. Barranco F, Sanchez M, Rodriguez J, Guerrero M. Efficacy of flecainide in patients with supraventricular arrhythmias and respiratory insufficiency. Intensive Care Med. 1994. 20(1):42-4. [Medline].

 
Previous
Next
 
This 12-lead electrocardiogram demonstrates an atrial tachycardia at a rate of approximately 150 beats per minute. Note that the negative P waves in leads III and aVF (upright arrows) are different from the sinus beats (downward arrows). The RP interval exceeds the PR interval during the tachycardia. Note also that the tachycardia persists despite the atrioventricular block.
Propagation map of right atrial tachycardia originating from the right atrial appendage obtained with non-contact mapping using EnSite mapping system.
Note that the atrial activities originate from the right atrium and persist despite the atrioventricular block. These features essentially exclude atrioventricular nodal reentry tachycardia and atrioventricular tachycardia via an accessory pathway. Note also that the change in the P wave axis at the onset of tachycardia makes sinus tachycardia unlikely.
Anterior-posterior projection is shown. An example of activation mapping using contact technique and EnSite system. The atrial anatomy is partially reconstructed. Early activation points are marked with white/red color. The activation waveform spreads from the inferior/lateral aspect of the atrium through the entire chamber. White points indicate successful ablation sites that terminated the tachycardia. TV – Tricuspid valveCS – Shadow of the catheter inserted in the coronary sinus
Intracardiac tracings showing atrial tachycardia breaking with application of radiofrequency energy. Before ablation, the local electrograms from the treatment site preceded the surface P wave by 51 ms, consistent with this site being the source of the tachycardia. Note that postablation electrograms on the ablation catheter are inscribed well past the onset of the sinus rhythm P wave. The first 3 tracings show surface electrocardiograms as labeled.CS – Respective pair of electrodes of the coronary sinus catheterCS 7,8 – Located at the os of the coronary sinusCS 1,2 – Distal pair of electrodes Abl – Ablation catheter (D-distal pair of electrodes)
An example of rapid atrial tachycardia mimicking atrial flutter. A single radiofrequency application terminates the tachycardia. The first 3 tracings show surface electrocardiograms, as labeled. HRA – High right atrial catheter RVA – Catheter located in right ventricular apex HBED and HBEP – Respectively, distal and proximal pair of electrodes in the catheter located at His bundle AblD and AblP – Respectively, distal and proximal pair of electrodes of the mapping catheter MAP – Unipolar electrograms from the tip of the mapping catheter
Electrocardiogram showing multifocal atrial tachycardia (MAT).
This electrocardiogram belongs to an asymptomatic 17-year-old male who was incidentally discovered to have Wolff-Parkinson-White (WPW) pattern. It shows sinus rhythm with evident preexcitation. To locate the accessory pathway (AP), the initial 40 milliseconds of the QRS (delta wave) are evaluated. Note that the delta wave is positive in lead I and aVL, negative in III and aVF, isoelectric in V1, and positive in the rest of the precordial leads. Therefore, this is likely a posteroseptal AP.
This is a 12-lead electrocardiogram from an asymptomatic 7-year-old boy with Wolff-Parkinson-White (WPW) pattern. Delta waves are positive in leads I and aVL; negative in II, III, and aVF; isoelectric in V1; and positive in the rest of the precordial leads. This again predicts a posteroseptal location for the accessory pathway (AP).
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.