Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Acute Pericarditis Workup

  • Author: Sean Spangler, MD; Chief Editor: Richard A Lange, MD, MBA  more...
 
Updated: Oct 06, 2014
 

Approach Considerations

An example of a diagnostic workup protocol is as follows:

  • The initial evaluation includes a clinical history and physical examination, chest radiography, electrocardiography (ECG), echocardiography as indicated, and initial laboratory work.
  • Consider thoracentesis with adenosine deaminase in addition to conventional studies in patients with a pleural effusion.
  • Pericardiocentesis should be performed on all patients with cardiac tamponade or suspected purulent pericarditis.

Other considerations

Tension pneumothorax may mimic cardiac tamponade. Trauma ultrasonography has limited this misdiagnosis.

If echocardiography is unavailable, placement of a central venous pressure (CVP) line may reveal increased right-sided pressures. CVP measurements more than 12-14 mm Hg are usually found in cardiac tamponade.

The diagnosis of rheumatoid arthritis (RA) pericarditis is suggested by serous or hemorrhagic pericardial fluid with a glucose level of less than 45 mg/dL, a white blood cell (WBC) count higher than 15,000/µL with cytoplasmic inclusion bodies, a protein level higher than 5 g/dL, a low total serum hemolytic complement (CH50), a high immunoglobulin G (IgG) level, and a high rheumatoid factor. Cholesterol levels may be high in the fluid of patients with RA who have nodules.

For pericarditis due to RA and other systemic autoimmune diseases, the European Society of Cardiology (ESC) 2004 guideline on the diagnosis and management of pericardial diseases recommends intensified treatment of the underlying disease and symptomatic management.[24]

In patients with rheumatic fever pericarditis, the antistreptolysin O titer is usually greater than 400. Rarely is a large effusion present.

When evaluating for tuberculous pericarditis, the diagnostic yield for acid-fast bacilli (AFB) in pericardial fluid is fairly low (30-76%). Pericardial biopsy has a much better yield (approximately 100%). Elevated adenosine deaminase in pericardial fluid is useful for diagnosing tuberculosis; studies note greater than 90% sensitivity and specificity with levels higher than 50-70 U/L.

In neoplastic pericarditis, the pericardial carcinoembryonic antigen (CEA) level is often elevated. Cytology findings are positive in 80-90% of breast and lung cancer cases, but the percentage is lower in other malignancies. Obstruction of the lymphatic drainage can cause the pericardial effusion to be more significant than the tumor mass.

The ESC 2004 guideline recommends pericardial drainage in all neoplastic pericarditis patients with large effusions because of the high recurrence rate (40-70%). Tetracyclines used as sclerosing agents control malignant pericardial effusion in roughly 85% of cases, but side effects and complications such as fever, chest pain, and atrial arrhythmias, are frequent.[24]

In patients with radiosensitive tumors, such as lymphomas and leukemias, the ESC 2004 guideline states that radiation therapy is very effective (93%) in controlling malignant pericardial effusion.[24]

Next

Routine Laboratory Studies

The following tests may be indicated in pericarditis and cardiac tamponade:

  • Complete blood cell (CBC) count with differential and coagulations studies
  • Serum electrolyte, blood urea nitrogen (BUN), and creatinine levels
  • Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels
  • Cardiac biomarker measurements, lactate dehydrogenase (LDH) and serum glutamic-oxaloacetic transaminase (SGOT; AST) levels

CBC count and coagulation studies

Obtain a CBC count with a differential. Significant leukocytosis may be present with an either inflammatory or infective cause of pericarditis. Serially monitor hemoglobin and hematocrit values. Transfuse patients with a hemoglobin value of less than 8 g because this improves the abnormalities of hemostasis associated with uremia. Monitor the platelet count.

Also, determine prothrombin time/activated partial thromboplastin time (PT/aPTT) and, if abnormal, correct in order to lessen the chance of developing tamponade.

Serum electrolytes, BUN, creatinine

Determine serum electrolyte (ie, sodium, potassium, chloride, magnesium, calcium, phosphate) concentrations because of the increased risk of cardiac arrhythmias in patients with pericarditis. In addition, during dialysis, frequent monitoring of electrolytes is helpful to detect and treat hypokalemia and hypophosphatemia, especially in patients with dialysis-associated pericarditis.

Blood urea nitrogen (BUN) and creatinine levels can be measured to evaluate for uremia. These levels are often elevated with azotemia.

ESR and CRP

Erythrocyte sedimentation rate (ESR) and CRP levels are usually elevated in pericarditis. High-sensitivity CRP (hs-CRP) levels are elevated in 78% of cases of acute pericarditis. Thus, an elevated CRP level may confirm the diagnosis of acute pericarditis. A normal value does not exclude a diagnosis of acute pericarditis; in some patients, the hs-CRP increased later, supporting the use of serial testing in patients with an initial negative result. Most patients showed normalization of CRP level by 2 weeks and all patients by 4 weeks. Persistently elevated hs-CRP level was a marker for increased risk of reoccurrence. Serial monitoring of hs-CRP level weekly may be warranted to follow disease activity and guide the appropriate length of therapy, with continuation of treatment doses until the CRP level normalizes.[25]

Cardiac biomarkers

Evaluate cardiac biomarkers, such as creatine kinase and isoenzymes levels, as well as LDH and SGOT (AST) for associated myocarditis or myocardial infarction. Troponin I may be elevated in viral or idiopathic acute pericarditis.

In a study by Imazio and colleagues, an elevated troponin I level was found in 32% of patients with viral or idiopathic pericarditis.[26] In this study, the troponin I level was related to the extent of myocardial inflammation but was not a negative prognostic marker.[26] In a study by Machado et al, elevated troponin I levels were found to be associated with a significant increase in cardiac mortality in patients with myopericarditis compared with pericarditis only.[27]

Further laboratory workup may be clinically indicated, as follows:

  • Blood and/or viral cultures
  • Tuberculosis skin testing and/or tuberculin sputum testing for acid-fast bacilli (AFB) can be used if the illness exceeds 1 week duration. The ESC 2004 guideline also recommends obtaining mycobacterium culture or radiometric growth detection (eg, BACTEC-460), adenosine deaminase (ADA), interferon (IFN)-gamma, and pericardial lysozyme, in addition to polymerase chain reaction (PCR) analyses of tuberculosis. [24]
  • Antistreptolysin titer
  • Rheumatoid factor (RF), antinuclear antibody (ANA), and anti-DNA values, particularly if the illness is prolonged or severe
  • Thyroid function in patients with severe pericardial effusion
  • The ESC 2004 guideline on the diagnosis and management of pericardial diseases recommends pericardial fluid or pericardial or epicardial biopsy analyses to confirm diagnosis of malignant pericardial disease. The guideline states that at least 3 cultures of pericardial fluid for aerobes and anaerobes, as well as blood cultures, are mandatory in cases of suspected bacterial infection. [24]
  • Human immunodeficiency virus (HIV) testing, if indicated
Previous
Next

Chest Radiography

Chest radiography is not helpful in uncomplicated pericarditis. Patients with small effusions (less than a few hundred milliliters) may present with a normal cardiac silhouette. In one study, pleural effusions were seen in 33% of patients with pericarditis. Approximately 75% of the effusions were left-sided only.

A flask-shaped, enlarged cardiac silhouette may be the first indication of a large pericardial effusion (200-250 mL of fluid accumulation) or cardiac tamponade (see the following image). This occurs in patients with slow fluid accumulation, compared with a normal cardiac silhouette seen in patients with rapid accumulation and tamponade. Thus, the chronicity of the effusion may be suggested by the presence of a huge cardiac silhouette.

Chest radiographs revealing markedly enlarged card Chest radiographs revealing markedly enlarged cardiac silhouette and normal-appearing lung parenchyma in prepericardiocentesis (A) and postpericardiocentesis (B). Courtesy of Zhi Zhou, MD.

Go to Imaging in Constrictive Pericarditis for complete information on this topic.

Previous
Next

Echocardiography

Although transthoracic echocardiography remains the initial test of choice for detecting pericardial effusions and diagnosing tamponade, this study is limited in its capacity to reveal the entire pericardium and its operator dependence. Rarely, air can enter the pericardium and obscure the ultrasonographic evaluation. Nonetheless, echocardiography is particularly helpful if pericardial effusion is suspected on clinical or radiographic grounds, the illness lasts longer than 1 week, or myocarditis or purulent pericarditis is suspected.

This study is helpful in quickly confirming the diagnosis, particularly if cardiac tamponade is suspected,[28] and it can also be used to evaluate for chamber size and ventricular dysfunction.

Go to Imaging in Constrictive Pericarditis for complete information on this topic.

Acute pericarditis

Echocardiography is recommended in all cases of pericarditis. Any form of pericardial inflammation can induce pericardial effusion. It is important to note that the pericardium may have a normal appearance in pericarditis, without evidence of fluid accumulation.

M-mode is used to evaluate pericardial fluid and timing during the cardiac cycle; it demonstrates persistence of the echo-free space between the parietal pericardium and the epicardium during this cycle. Fluid is distributed from the posterobasal left ventricle apically and anteriorly, then laterally and posteriorly to the left atrium. Fluid adjacent to the right atrium is an early indicator of an effusion. Other causes of echo-free space that must be considered include pleural effusion, pericardial masses, and epicardial fat.

To a limited extent, an echocardiogram can characterize the effusion. Very small effusions are located posterior and inferior to the left ventricle. Moderate effusions extend toward the apex of the heart, and large effusions circumscribe the heart. Weitzman criteria define a moderate effusion as an echo-free pericardial space (anterior plus posterior) of 10-20 mm during diastole and a large effusion as an echo-free space more than 20 mm.

A “swinging heart” may be present with large effusions. This is characterized as counterclockwise rotational movement, which occurs in addition to the triangular movement of the heart, producing a dancelike motion.

Thin fibrous strands within the pericardial space can be seen in acute effusive pericarditis. Shaggy exudate may indicate a potentially difficult pericardiocentesis, but this finding is not diagnostic.

Echocardiographic studies have noted pericardial effusions in 50% of patients with rheumatoid arthritis (RA) with nodules and in only 15% of patients with RA without nodules. In patients with sarcoidosis, this study shows that pericardial involvement is present in 20% of cases; however, patients may not have significant myocardial infiltration.

An example of a echocardiographic image is shown below.

This ultrasonogram demonstrates a normal subcostal This ultrasonogram demonstrates a normal subcostal 4-chamber view of the heart. The pericardium is brightly reflective (echogenic or white in appearance). LA = left atrium; LV = left ventricle; RA = right atrium; RV = right ventricle. Part B courtesy of Wikimedia Commons/Patrick J Lynch and C Carl Jaffe.

Cardiac tamponade

In the emergency department, there may be difficulty using the classic textbook ultrasonographic findings of tamponade, as the trauma patient is often tachycardic and the examination abbreviated. A dilated inferior vena cava (IVC) without inspiratory collapse (plethora) is highly suggestive of tamponade.

Previous
Next

Computed Tomography Scanning

Computed tomography (CT) scanning provides anatomic details of the entire pericardium due to its capacity in providing a wide field of view. The normal thickness of the pericardium as measured by CT scanning is less than 2 mm; pericardial thickening is suggestive of acute pericarditis.[29]

Effusions are easily detected through different radiographic coefficients of fluid and the pericardium. Similarly, the nature of the effusion may be surmised, given the different attenuation coefficients for blood, exudate, chyle, and serous fluid. However, hemopericardium may be difficult to assess without intravenous contrast, because blood has the same radiodensity as myocardium.

An advantage of CT scanning over other imaging modalities includes its capacity to detect pericardial calcifications. Magnetic resonance imaging (MRI) can miss significant calcium deposits. The presence of any calcification is important in patients suspected of having constrictive pericarditis. CT scanning is also less operator dependent than ultrasonography.

Limitations of CT scanning include the need for contrast administration, patient exposure to ionizing radiation, and difficulty in differentiating fluid from thickened pericardium.

Go to Imaging in Constrictive Pericarditis for complete information on this topic.

Previous
Next

Magnetic Resonance Imaging

MRI can provide anatomic details of the pericardium and heart without ionizing contrast or radiation. The normal pericardium can be up to 4-mm thick.

This imaging modality is sensitive for detecting pericardial effusion and loculated pericardial effusion and thickening. Additionally, delayed enhancement of thickened pericardium after administration of contrast medium usually suggests active inflammation characteristic of acute pericarditis.[30]

Limitations to use of MRI include the need to gate the image acquisition. In addition, a high-quality MRI may need more than 250 regular heartbeats; thus, the examination may be limited in patients with arrhythmias.

Go to Imaging in Constrictive Pericarditis for complete information on this topic.

Previous
Next

Electrocardiography

ECG can be diagnostic in acute pericarditis and evolves in 4 stages. However, only 50% of patients with pericarditis experience all 4 stages.

An important ECG finding is PR-segment depression, which has been reported in as many as 80% of viral pericarditis cases. Electrical alternans is pathognomonic of cardiac tamponade and is characterized by alternating levels of ECG voltage of the P wave, QRS complex, and T waves. This is a result of the heart swinging in a large effusion.

Stage 1 ECG changes in pericarditis

Stage 1 accompanies the onset of acute pain and is the hallmark of acute pericarditis. ECG changes include diffuse concave upward ST elevation, except in leads aVR and V1 (usually depressed). T waves are upright in the leads with ST elevation, and the PR segment deviates opposite to P-wave polarity. See the image below.

Stage 1 electrocardiograph changes in a patient wi Stage 1 electrocardiograph changes in a patient with acute pericarditis.

Stage 2 ECG changes in pericarditis

Stage 2 occurs several days later with the return of the ST segment to baseline, followed by flattening of the T waves.

Stage 3 ECG changes in pericarditis

T waves become inverted in stage 3 but without Q-wave formation.

Stage 4 ECG changes in pericarditis

Finally, in stage 4, the ECG returns to the prepericarditis baseline weeks to months after the initial onset (see the following image). The T-wave inversion may persist indefinitely in the chronic inflammation observed with tuberculosis, uremia, or neoplasm.

Stage 4 electrocardiograph changes in the same pat Stage 4 electrocardiograph changes in the same patient as in the previous image, taken approximately 3 months after acute pericardial illness. The patient remained symptom free despite continued T-wave inversion.

Idiopathic pericarditis and ECG changes

ECGs often fail to demonstrate the diffuse ST- and T-wave elevations observed in idiopathic pericarditis because of the lack of penetration of inflammatory cells into the myocardium. In fact, the presence of these changes on ECG mandates a search for an alternative cause for pericarditis.

Inflammatory disorders and ECG changes

In patients with RA pericarditis, ECGs almost never demonstrate typical findings, possibly due to masking from RA medications. In contrast, lupus pericarditis findings on ECG usually demonstrate typical changes of pericarditis.

In uremic patients with pericarditis, ECG commonly does not show the typical ST-T segment changes due to lack of inflammation; in hypothyroidism, low ECG voltage is often observed.

Cardiovascular disorders and ECG changes

Regional ECG changes may be present in infarction-associated pericarditis. If the pericardial involvement is confined to the infarction zone, stage 1 ECG findings are often not seen. Positive T waves that last longer than 48 hours after an acute MI or premature reversal of inverted T waves may indicate pericardial involvement. An ST-segment–to–T-wave ratio of 0.25 or more in lead V6 helps distinguish acute pericarditis from early repolarization.

In Dressler syndrome, ECG findings may demonstrate diagnostic changes of acute pericarditis, especially if the ECG findings normalize after the infarction.

Previous
Next

Pericardiocentesis

Pericardiocentesis is relatively safe when guided by echocardiography, especially with large free anterior effusion. One study noted only 3 minor complications in 117 procedures with ultrasound guidance. Conversely, blind percutaneous pericardial puncture increases the risk of complication to 5-50% and should be performed only in an emergency. Complications include fatal cardiac laceration.

In a large study, diagnostic pericardiocentesis led to a diagnosis in only 6% of cases, versus 29% diagnosed with therapeutic pericardiocentesis. As such, pericardiocentesis should not be performed unless tamponade or suspected purulent pericarditis is present.

If a pericardiocentesis is performed for drainage, an indwelling catheter should be placed in the pericardial space for continued drainage over several days. If the catheter continues to drain a large amount, a more definitive procedure should be performed.

According to the ESC 2004 guideline on the diagnosis and management of pericardial disease, the diagnosis of viral pericarditis is impossible without the evaluation of pericardial effusion and/or pericardial/epicardial tissue, ideally by PCR or in-situ hybridization. Pericardial fluid obtained by percutaneous pericardiocentesis should undergo Gram, acid-fast, and fungal staining, and cultures of the pericardial and body fluids should be obtained.[24]

Traditional pericardiocentesis

The traditional approach is the subxiphoid technique. This technique avoids injury to the coronary arteries, as follows.

  • The chest is prepared with Betadine and a 16-gauge to 18-gauge catheter is introduced between the xiphoid and the left subcostal margin.
  • The catheter is directed toward the inferior tip of the left scapula with slow advancement and with negative pressure.
  • If fluid is found, the catheter is advanced and the needle is withdrawn. Fluid is removed via the catheter.
  • The catheter may be sutured in place for subsequent use. Alternatively, a 16-gauge to 18-gauge spinal needle may be used for one-time drainage.

Echocardiographically guided pericardiocentesis

Echocardiographically guided pericardiocentesis has evolved over the past 20 years and is now considered the procedure of choice for removal of pericardial fluid. This technique differs from traditional blind pericardiocentesis primarily in the site of needle entry, in which the left chest wall has become the preferred location for needle entry. The intended needle trajectory is investigated with echocardiography to confirm the optimal direction and depth for needle advancement. A 16-gauge needle (with poly-Teflon sheath) is advanced in a straight line without side-to-side manipulation. Needle position can be established via echocardiography while agitated sterile saline is injected.

Thus, the step-by-step approach for echocardiographically-guided pericardiocentesis is as follows:

  • Assess the size, distribution, and ideal needle entry site and trajectory with a 2.5-MHz to 5-MHz ultrasound transducer placed approximately 3-5 cm from the parasternal border. Locate the point where the effusion is closest to the transducer as well as an area of maximal pericardial fluid accumulation.
  • Assess or measure the distance from the skin to the pericardial space. The needle trajectory is established by the angle of the transducer. Keep this trajectory in mind during the procedure.
  • Use a sterile skin preparation such as povidone-iodine and, if readily available, a transparent sterile plastic sheet (one author recommends a 1030 Baxter drape) to allow imaging and a sterile field.
  • Place a sterile 16-gauge catheter on the predetermined location on the chest wall, avoiding the inferior rib margin. Advance in the predetermined direction, angle, and depth. Advance 2 mm further once fluid is obtained. Consider leaving the catheter in place after removing the needle. If needed, a guidewire can be advanced through the catheter.
Previous
Next

Pericardial Fluid Analysis

The pericardial fluid should be analyzed for red blood cells (RBCs), total protein level, LDH level, adenosine deaminase activity, and culture (ordinary and Loewenstein media). Directly investigate for tuberculous bacilli and perform a cytologic study.

The fluid in purulent or suppurative pericarditis from is usually 400-500 mL in volume and shows a thin to creamy pus.

Findings in inflammatory disorders

The fluid in RA and SLE pericarditis demonstrates few polymorphonuclear neutrophils, lymphocytes, or histiocytes. The usual volume is 50-200 mL and accumulates slowly. Also found in SLE pericardial fluid is a high protein level, low-to-normal glucose level, low complement, and, possibly, a pH level of less than 7. In addition, fluid analysis reveals positive autoantibodies, such as ANA or anti–double-stranded DNA.

Pericardial fluid in scleroderma has a protein value greater than 5 g/dL and a low cell count, but it does not demonstrate the antibodies found in RA and SLE.

Findings in metabolic disorders

In uremic pericarditis, adhesions are present between the pericardial membranes, which are thickened, which frequently result in bloody effusions. In hypothyroidism, pericardial fluid is often clear with high protein and cholesterol levels and with few cells.

Previous
Next

Other Procedures

If tamponade recurs after pericardiocentesis, perform a pericardial biopsy with histologic and bacteriologic examinations of the pericardium. If significant clinical activity persists for 3 weeks after admission and without an etiologic diagnosis, some authors recommend pericardial biopsy.

Cardiac catherization is used for assessing pericarditis and tamponade. This procedure can evaluate constrictive pericarditis versus restrictive cardiomyopathy.

Previous
 
 
Contributor Information and Disclosures
Author

Sean Spangler, MD Cardiologist, William Beaumont Army Medical Center

Sean Spangler, MD is a member of the following medical societies: American College of Cardiology, American College of Physicians

Disclosure: Nothing to disclose.

Coauthor(s)

Philip J Gentlesk, MD Director, Cardiac Electrophysiology, Section of Cardiovascular Disease, Brooke Army Medical Center

Philip J Gentlesk, MD is a member of the following medical societies: American College of Cardiology, Christian Medical and Dental Associations

Disclosure: Nothing to disclose.

Chief Editor

Richard A Lange, MD, MBA President, Texas Tech University Health Sciences Center, Dean, Paul L Foster School of Medicine

Richard A Lange, MD, MBA is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, American Heart Association, Association of Subspecialty Professors

Disclosure: Nothing to disclose.

Acknowledgements

George R Aronoff, MD Director, Professor, Departments of Internal Medicine and Pharmacology, Section of Nephrology, Kidney Disease Program, University of Louisville School of Medicine

George R Aronoff, MD is a member of the following medical societies: American Federation for Medical Research, American Society of Nephrology, Kentucky Medical Association, and National Kidney Foundation

Disclosure: Nothing to disclose.

Vecihi Batuman, MD, FACP, FASN Professor of Medicine, Section of Nephrology-Hypertension, Tulane University School of Medicine; Chief, Medicine Service, Southeast Louisiana Veterans Health Care System

Vecihi Batuman, MD, FACP, FASN is a member of the following medical societies: American College of Physicians, American Society of Hypertension, American Society of Nephrology, and International Society of Nephrology

Disclosure: Nothing to disclose.

David FM Brown, MD Associate Professor, Division of Emergency Medicine, Harvard Medical School; Vice Chair, Department of Emergency Medicine, Massachusetts General Hospital

David FM Brown, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Steven J Compton, MD, FACC, FACP Director of Cardiac Electrophysiology, Alaska Heart Institute, Providence and Alaska Regional Hospitals

Steven J Compton, MD, FACC, FACP is a member of the following medical societies: Alaska State Medical Association, American College of Cardiology, American College of Physicians, American Heart Association, American Medical Association, and Heart Rhythm Society

Disclosure: Nothing to disclose.

Christopher A Fly, MD Assistant Professor, Department of Emergency Medicine, Medical College of Georgia

Christopher A Fly, MD is a member of the following medical societies: American College of Emergency Physicians

Disclosure: Nothing to disclose.

Anupama Gowda, MBBS, MD Consulting Staff, Atlanta Nephrology Associates, PC

Disclosure: Nothing to disclose.

Eric L Legome, MD Chief, Department of Emergency Medicine, Kings County Hospital Center; Associate Professor, Department of Emergency Medicine, New York Medical College

Eric L Legome, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Emergency Physicians, Council of Emergency Medicine Residency Directors, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

James W Lohr, MD Professor, Department of Internal Medicine, Division of Nephrology, Fellowship Program Director, University of Buffalo State University of New York School of Medicine and Biomedical Sciences

James W Lohr, MD is a member of the following medical societies: American College of Physicians, American Heart Association, American Society of Nephrology, and Central Society for Clinical Research

Disclosure: Genzyme Honoraria Speaking and teaching

G Shawn Lynchard, MD Consulting Cardiologist, Medical Director of Cardiac Care Unit, Congestive Heart Failure Clinic, and ECG and Stress Testing Clinic, Brooke Army Medical Center

G Shawn Lynchard, MD is a member of the following medical societies: American College of Cardiology and American College of Physicians

Disclosure: Nothing to disclose.

Chike Magnus Nzerue, MD Associate Dean for Clinical Affairs, Vice-Chairman of Internal Medicine, Meharry Medical College

Chike Magnus Nzerue, MD is a member of the following medical societies: American Association for the Advancement of Science, American College of Physicians, American College of Physicians-American Society of Internal Medicine, American Society of Nephrology, and National Kidney Foundation

Disclosure: Nothing to disclose.

David A Peak, MD Assistant Residency Director of Harvard Affiliated Emergency Medicine Residency, Attending Physician, Massachusetts General Hospital; Consulting Staff, Department of Hyperbaric Medicine, Massachusetts Eye and Ear Infirmary

David A Peak, MD is a member of the following medical societies: American College of Emergency Physicians, American Medical Association, Society for Academic Emergency Medicine, and Undersea and Hyperbaric Medical Society

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Verena T Valley, MD Associate Professor, Director of Ultrasound, Department of Emergency Medicine, University of Mississippi School of Medicine; Consulting Staff, Department of Emergency Medicine, Singing River Hospital System, Singing River Hospital, and Ocean Springs Hospital

Verena T Valley, MD is a member of the following medical societies: American College of Emergency Physicians

Disclosure: Nothing to disclose.

References
  1. Bhardwaj R, Berzingi C, Miller C, Hobbs G, Gharib W, Beto RJ, et al. Differential diagnosis of acute pericarditis from normal variant early repolarization and left ventricular hypertrophy with early repolarization: an electrocardiographic study. Am J Med Sci. 2013 Jan. 345(1):28-32. [Medline].

  2. Markel G, Imazio M, Brucato A, et al. Prevention of recurrent pericarditis with colchicine in 2012. Clin Cardiol. 2013 Mar. 36(3):125-8. [Medline].

  3. Alabed S, Cabello JB, Irving GJ, et al. Colchicine for pericarditis. Cochrane Database Syst Rev. 2014 Aug 28. 8:CD010652. [Medline].

  4. Tseng JR, Lee MJ, Yen KC, Weng CH, Liang CC, Wang IK, et al. Course and outcome of dialysis pericarditis in diabetic patients treated with maintenance hemodialysis. Kidney Blood Press Res. 2009. 32(1):17-23. [Medline].

  5. Imazio M, Brucato A, Maestroni S, et al. Risk of constrictive pericarditis after acute pericarditis. Circulation. 2011 Sep 13. 124(11):1270-5. [Medline].

  6. Chraibi S, Ibnabdeljalil H, Habbal R, Bennis A, Tahiri A, Chraibi N. Pericardial tamponade as the first manifestation of dermatopolymyositis. Ann Med Interne (Paris). 1998 Nov. 149(7):464-6. [Medline].

  7. Soler-Soler J, Permanyer-Miralda G, Sagristà-Sauleda J. A systematic diagnostic approach to primary acute pericardial disease. The Barcelona experience. Cardiol Clin. 1990 Nov. 8(4):609-20. [Medline].

  8. Friman G, Fohlman J. The epidemiology of viral heart disease. Scand J Infect Dis Suppl. 1993. 88:7-10. [Medline].

  9. Silva-Cardoso J, Moura B, Martins L, Mota-Miranda A, Rocha-Gonçalves F, Lecour H. Pericardial involvement in human immunodeficiency virus infection. Chest. 1999 Feb. 115(2):418-22. [Medline].

  10. Feinstein Y, Falup-Pecurariu O, Mitrica M, Berezin EN, Sini R, Krimko H, et al. Acute pericarditis caused by Streptococcus pneumoniae in young infants and children: three case reports and a literature review. Int J Infect Dis. 2010 Feb. 14(2):e175-8. [Medline].

  11. Mastroianni A, Coronado O, Chiodo F. Tuberculous pericarditis and AIDS: case reports and review. Eur J Epidemiol. 1997 Oct. 13(7):755-9. [Medline].

  12. Imazio M, Negro A, Belli R, Beqaraj F, Forno D, Giammaria M, et al. Frequency and prognostic significance of pericarditis following acute myocardial infarction treated by primary percutaneous coronary intervention. Am J Cardiol. 2009 Jun 1. 103(11):1525-9. [Medline].

  13. Salisbury AC, Olalla-Gómez C, Rihal CS, Bell MR, Ting HH, Casaclang-Verzosa G, et al. Frequency and predictors of urgent coronary angiography in patients with acute pericarditis. Mayo Clin Proc. 2009. 84(1):11-5. [Medline]. [Full Text].

  14. Eckart RE, Love SS, Atwood JE, Arness MK, Cassimatis DC, Campbell CL, et al. Incidence and follow-up of inflammatory cardiac complications after smallpox vaccination. J Am Coll Cardiol. 2004 Jul 7. 44(1):201-5. [Medline].

  15. Lin AH, Phan HA, Barthel RV, Maisel AS, Crum-Cianflone NF, Maves RC, et al. Myopericarditis and pericarditis in the deployed military member: a retrospective series. Mil Med. 2013 Jan. 178(1):18-20. [Medline].

  16. Murthy SC, Rozas MS, Adelstein DJ, Mason DP, Calhoun R, Rybicki LA, et al. Induction chemoradiotherapy increases pleural and pericardial complications after esophagectomy for cancer. J Thorac Oncol. 2009 Mar. 4(3):395-403. [Medline].

  17. Lorell BH. Pericardial diseases. Braunwald E, ed. Heart Disease: A Textbook of Cardiovascular Medicine. 5th. Philadelphia, Pa: WB Saunders; 1997. 1478-534.

  18. Brady WJ, Perron AD, Martin ML, Beagle C, Aufderheide TP. Cause of ST segment abnormality in ED chest pain patients. Am J Emerg Med. 2001 Jan. 19(1):25-8. [Medline].

  19. Mercé J, Sagristà Sauleda J, Permanyer Miralda G, Carballo J, Olona M, Soler Soler J. [Pericardial effusion in the elderly: A different disease?]. Rev Esp Cardiol. 2000 Nov. 53(11):1432-6. [Medline].

  20. Sagristà-Sauleda J, Barrabés JA, Permanyer-Miralda G, Soler-Soler J. Purulent pericarditis: review of a 20-year experience in a general hospital. J Am Coll Cardiol. 1993 Nov 15. 22(6):1661-5. [Medline].

  21. Imazio M, Brucato A, Adler Y, Brambilla G, Artom G, Cecchi E, et al. Prognosis of idiopathic recurrent pericarditis as determined from previously published reports. Am J Cardiol. 2007 Sep 15. 100(6):1026-8. [Medline].

  22. Estok L, Wallach F. Cardiac tamponade in a patient with AIDS: a review of pericardial disease in patients with HIV infection. Mt Sinai J Med. 1998 Jan. 65(1):33-9. [Medline].

  23. Rossello X, Wiegerinck RF, Alguersuari J, et al. New electrocardiographic criteria to differentiate acute pericarditis and myocardial infarction. Am J Med. 2014 Mar. 127(3):233-9. [Medline].

  24. [Guideline] Maisch B, Seferovic PM, Ristic AD, Erbel R, Rienmüller R, Adler Y, et al. Guidelines on the diagnosis and management of pericardial diseases executive summary; The Task force on the diagnosis and management of pericardial diseases of the European society of cardiology. Eur Heart J. 2004 Apr. 25(7):587-610. [Medline].

  25. Imazio M, Brucato A, Maestroni S, Cumetti D, Dominelli A, Natale G, et al. Prevalence of C-reactive protein elevation and time course of normalization in acute pericarditis: implications for the diagnosis, therapy, and prognosis of pericarditis. Circulation. 2011 Mar 15. 123(10):1092-7. [Medline].

  26. Imazio M, Demichelis B, Cecchi E, Belli R, Ghisio A, Bobbio M, et al. Cardiac troponin I in acute pericarditis. J Am Coll Cardiol. 2003 Dec 17. 42(12):2144-8. [Medline].

  27. Machado S, Roubille F, Gahide G, Vernhet-Kovacsik H, Cornillet L, Cung TT, et al. Can troponin elevation predict worse prognosis in patients with acute pericarditis?. Ann Cardiol Angeiol (Paris). 2010 Feb. 59(1):1-7. [Medline].

  28. Kim SH, Song JM, Jung IH, Kim MJ, Kang DH, Song JK. Initial echocardiographic characteristics of pericardial effusion determine the pericardial complications. Int J Cardiol. 2009 Aug 14. 136(2):151-5. [Medline].

  29. Hammer MM, Raptis CA, Javidan-Nejad C, et al. Accuracy of computed tomography findings in acute pericarditis. Acta Radiol. 2013 Dec 10. [Medline].

  30. Yared K, Baggish AL, Picard MH, Hoffmann U, Hung J. Multimodality imaging of pericardial diseases. JACC Cardiovasc Imaging. 2010 Jun. 3(6):650-60. [Medline].

  31. Imazio M, Demichelis B, Parrini I, Giuggia M, Cecchi E, Gaschino G, et al. Day-hospital treatment of acute pericarditis: a management program for outpatient therapy. J Am Coll Cardiol. 2004 Mar 17. 43(6):1042-6. [Medline].

  32. Imazio M, Brucato A, Mayosi BM, Derosa FG, Lestuzzi C, Macor A, et al. Medical therapy of pericardial diseases: part I: idiopathic and infectious pericarditis. J Cardiovasc Med (Hagerstown). 2010 Oct. 11(10):712-22. [Medline].

  33. Iyoda M, Ajiro Y, Sato K. A case of refractory uremic pleuropericarditis--successful corticosteroid treatment. Clin Nephrol. Apr 2006. 65(4):290-3. [Full Text].

  34. Inanç M, Akpek M, Inanç MT, Kaya MG. Acute pericarditis during 5-fluorouracil, docetaxel and cisplatin therapy. Turk Kardiyol Dern Ars. 2012 Oct. 40(6):532-5. [Medline].

  35. Imazio M, Trinchero R, Brucato A, Rovere ME, Gandino A, Cemin R, et al. COlchicine for the Prevention of the Post-pericardiotomy Syndrome (COPPS): a multicentre, randomized, double-blind, placebo-controlled trial. Eur Heart J. 2010 Nov. 31(22):2749-54. [Medline].

  36. Nakayama Y, Ohtani Y, Kobayakawa N, Kobayashi J, Kaneko Y, Aoyagi T. A case of early phase dialysis associated effusive constrictive pericarditis with distinct surgical findings. Int Heart J. 2009 Sep. 50(5):685-91. [Medline].

  37. Thompson JL, Burkhart HM, Dearani JA, Cetta F, Oh JK, Schaff HV. Pericardiectomy for pericarditis in the pediatric population. Ann Thorac Surg. 2009 Nov. 88(5):1546-50. [Medline].

  38. Bennett JA, Haramati LB. CT of bronchopericardial fistula: an unusual complication of multidrug-resistant tuberculosis in HIV infection. AJR Am J Roentgenol. 2000 Sep. 175(3):819-20. [Medline].

  39. Adler Y, Finkelstein Y, Guindo J, Rodriguez de la Serna A, Shoenfeld Y, Bayes-Genis A, et al. Colchicine treatment for recurrent pericarditis. A decade of experience. Circulation. 1998 Jun 2. 97(21):2183-5. [Medline].

  40. Adler Y, Guindo J, Finkelstein Y, Khouri A, Assali A, Bayes-Genis A, et al. Colchicine for large pericardial effusion. Clin Cardiol. 1998 Feb. 21(2):143-4. [Medline].

  41. Kuo I, Pearson GJ, Koshman SL. Colchicine for the primary and secondary prevention of pericarditis: an update. Ann Pharmacother. 2009 Dec. 43(12):2075-81. [Medline].

  42. Imazio M, Brucato A, Cemin R, et al. Colchicine for Recurrent Pericarditis (CORP) A Randomized Trial. Ann Intern Med. 2011 Oct 4. 155(7):409-414. [Medline].

 
Previous
Next
 
Stage 1 electrocardiograph changes in a patient with acute pericarditis.
Stage 4 electrocardiograph changes in the same patient as in the previous image, taken approximately 3 months after acute pericardial illness. The patient remained symptom free despite continued T-wave inversion.
Chest radiographs revealing markedly enlarged cardiac silhouette and normal-appearing lung parenchyma in prepericardiocentesis (A) and postpericardiocentesis (B). Courtesy of Zhi Zhou, MD.
Recording of aortic pressure showing pulsus paradoxus. During inspiration, systolic pressure declines 20 mm Hg. Courtesy of Zhi Zhou, MD.
This ultrasonogram demonstrates a normal subcostal 4-chamber view of the heart. The pericardium is brightly reflective (echogenic or white in appearance). LA = left atrium; LV = left ventricle; RA = right atrium; RV = right ventricle. Part B courtesy of Wikimedia Commons/Patrick J Lynch and C Carl Jaffe.
H&E stain, medium power magnification showing a rheumatoid nodule in rheumatoid pericarditis, composed of histiocytes and scattered multinucleated giant cells (lower right) surrounding necroinflammatory debris (upper left).
Pap stain, high power magnification of adenocarcinoma metastatic to the pericardium on pericardiocentesis with the red arrow showing a normal mesothelial cell and the black arrowhead showing adenocarcinoma.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.