Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Ventricular Premature Complexes Treatment & Management

  • Author: Jatin Dave, MD, MPH; Chief Editor: Jeffrey N Rottman, MD  more...
 
Updated: Dec 30, 2015
 

Medical Care

Deciding when to treat VPCs is difficult because not all patients with VPCs are at risk of sudden death and treatment is associated with risk. The approach to VPCs depends on the frequency of VPCs, attributable symptoms, the presence or absence of underlying structural heart disease, and the estimated risk of sudden cardiac death.[17]

Absence of significant structural heart disease (eg, normal ventricular function, no coronary or valvular heart disease)

Asymptomatic VPCs require no therapy.

For symptomatic VPCs, recommended treatment usually involves patient education and reassurance, avoidance of aggravating factors (eg, stress, caffeine-containing products), and anxiolytic drugs if education and avoidance of aggravating factors are ineffective. Beta-blockers and nondihydropyridine calcium channel blockers (eg, verapamil, diltiazem) can be used to treat symptomatic patients. Beta-blockers with intrinsic sympathomimetic activity may be particularly helpful.[18, 19]  The use of antiarrhythmic therapy is not typically recommended and best targeted to address limiting symptoms. The risk of the drug (including the risk of arrhythmic death from proarrhythmia) must be weighed against the benefits of VPC suppression.

In patients who are symptomatic on beta-blockers and/or calcium channel blockers, consider cautious use of amiodarone. Because interest in VPC supression decreased when it was shown to be typically deleterious in patients with coronary artery disease, this literature is not current, and specifically the role of newer class III antiarrhythmic like dofetilide and azimilide for VPCs is unclear at present.

Presence of underlying heart disease (eg, VPCs in patients post-MI)

Management in these patients Various strategies, both invasive and noninvasive, predict prognosis in patients with VPCs post-MI.

The most powerful combination of noninvasive prognostic variables that identify patients in whom invasive strategies are suitable includes the presence of 2 or more of the following variables, (1) LV EF less than 0.40, (2) ventricular late potentials (on signal-averaged ECG), and (3) repetitive VPCs.

Supportive management

Treatment should include limiting transient ischemia.

Optimal treatment for congestive heart failure (CHF), CAD, or both should be instituted.

Maintain electrolyte balance.

Blood pressure control should be obtained because LV hypertrophy is associated with increased VPCs.[20]

Ablation therapy

The 2006 ACC/AHA/ESC guideline recommends that ablation therapy should be considered in the following[16] :

  • Patients with frequent, symptomatic, and monomorphic VPCs refractory to medical therapy
  • Patients who choose to avoid long-term medical therapy
  • Patients with ventricular arrhythmia storm that is consistently provoked by VPBs of a similar morphology

Diet

Recommendations depend on the underlying cardiac disease; avoidance of caffeine, nicotine, and alcohol may reduce the frequency of VPCs.

Next

Surgical Care

Patients deemed to be at high risk of sudden cardiac death may benefit from implantable cardioverter defibrillator (ICD) implantation.

Previous
Next

Consultations

Consultation with a cardiac electrophysiologist may be beneficial. As described above, select patients with symptomatic idiopathic VPCs may benefit from catheter ablation. EPS may help define risk for sudden death in some patients with structural heart disease. ICD implantation is beneficial in patients at high risk of sudden cardiac death, which is typically assessed by the presence of any associated cardiovascular disease, rather than the presence of VPCs per se.

Previous
 
 
Contributor Information and Disclosures
Author

Jatin Dave, MD, MPH Part-Time Clinical Instructor, Department of Medicine, Harvard Medical School; Attending Physician, Division of Aging, Department of Medicine, Brigham and Women's Hospital; Medical Director of Geriatrics, Tufts Health Plan

Disclosure: Serve(d) as a director, officer, partner, employee, advisor, consultant or trustee for: Tufts Health Plan, a not for profit organization.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Brian Olshansky, MD Professor Emeritus of Medicine, Department of Internal Medicine, University of Iowa College of Medicine

Brian Olshansky, MD is a member of the following medical societies: American College of Cardiology, Heart Rhythm Society, Cardiac Electrophysiology Society, American Heart Association

Disclosure: Received honoraria from Guidant/Boston Scientific for speaking and teaching; Received honoraria from Medtronic for speaking and teaching; Received consulting fee from Guidant/Boston Scientific for consulting; Received consulting fee from BioControl for consulting; Received consulting fee from Boehringer Ingelheim for consulting; Received consulting fee from Amarin for review panel membership; Received consulting fee from sanofi aventis for review panel membership.

Chief Editor

Jeffrey N Rottman, MD Professor of Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine; Cardiologist/Electrophysiologist, University of Maryland Medical System and VA Maryland Health Care System

Jeffrey N Rottman, MD is a member of the following medical societies: American Heart Association, Heart Rhythm Society

Disclosure: Nothing to disclose.

Acknowledgements

The authors and editors of Medscape Drugs & Diseases gratefully acknowledge the contributions of previous authors John Michael Gaziano, MD, MPH; Revat Lakhia, MD; and Shivkumar H Jha, MD, to the development and writing of this article.

References
  1. Cantillon DJ. Evaluation and management of premature ventricular complexes. Cleve Clin J Med. 2013 Jun. 80(6):377-87. [Medline].

  2. Yokokawa M, Kim HM, Good E, et al. Impact of QRS duration of frequent premature ventricular complexes on the development of cardiomyopathy. Heart Rhythm. 2012 Sep. 9(9):1460-4. [Medline].

  3. Maggioni AP, Zuanetti G, Franzosi MG, et al. Prevalence and prognostic significance of ventricular arrhythmias after acute myocardial infarction in the fibrinolytic era. GISSI-2 results. Circulation. 1993 Feb. 87 (2):312-22. [Medline].

  4. Marino P, Nidasio G, Golia G, et al. Frequency of predischarge ventricular arrhythmias in postmyocardial infarction patients depends on residual left ventricular pump performance and is independent of the occurrence of acute reperfusion. The GISSI-2 Investigators. J Am Coll Cardiol. 1994 Feb. 23 (2):290-5. [Medline].

  5. Hwang JK, Park SJ, On YK, Kim JS, Park KM. Clinical characteristics and features of frequent idiopathic ventricular premature complexes in the Korean population. Korean Circ J. 2015 Sep. 45 (5):391-7. [Medline].

  6. Jouven X, Zureik M, Desnos M, Courbon D, Ducimetiere P. Long-term outcome in asymptomatic men with exercise-induced premature ventricular depolarizations. N Engl J Med. 2000 Sep 21. 343(12):826-33. [Medline].

  7. O'Neill JO, Young JB, Pothier CE, Lauer MS. Severe frequent ventricular ectopy after exercise as a predictor of death in patients with heart failure. J Am Coll Cardiol. 2004 Aug 18. 44(4):820-6. [Medline].

  8. Frolkis JP, Pothier CE, Blackstone EH, Lauer MS. Frequent ventricular ectopy after exercise as a predictor of death. N Engl J Med. 2003 Feb 27. 348 (9):781-90. [Medline]. [Full Text].

  9. Yokokawa M, Good E, Crawford T, et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm. 2013 Feb. 10(2):172-5. [Medline].

  10. Adams JC, Srivathsan K, Shen WK. Advances in management of premature ventricular contractions. J Interv Card Electrophysiol. 2012 Nov. 35(2):137-49. [Medline].

  11. Zang M, Zhang T, Mao J, Zhou S, He B. Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. 2014 May. 100(10):787-93. [Medline].

  12. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010 Jul. 7(7):865-869. [Medline].

  13. Shah A, Hocini M, Haissaguerre M, Jaïs P. Non-invasive mapping of cardiac arrhythmias. Curr Cardiol Rep. 2015 Aug. 17 (8):60. [Medline].

  14. Dow J, Bhandari A, Simkhovich BZ, Hale SL, Kloner RA. The effect of acute versus delayed remote ischemic preconditioning on reperfusion induced ventricular arrhythmias. J Cardiovasc Electrophysiol. 2012 Dec. 23(12):1374-83. [Medline].

  15. [Guideline] Buxton AE, Calkins H, Callans DJ, et al. ACC/AHA/HRS 2006 key data elements and definitions for electrophysiological studies and procedures: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (ACC/AHA/HRS Writing Committee to Develop Data Standards on Electrophysiology). J Am Coll Cardiol. 2006 Dec 5. 48(11):2360-96. [Medline].

  16. [Guideline] Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol. 2006 Sep 5. 48(5):e247-346. [Medline].

  17. Latchamsetty R, Bogun F. Premature ventricular complexes and premature ventricular complex induced cardiomyopathy. Curr Probl Cardiol. 2015 Sep. 40 (9):379-422. [Medline].

  18. Hamer A, Mandel WJ. Treatment with digitalis and beta blockers. In: Surawicz B, Reddy CP, Prystowsky EN, eds. Tachycardias. Hingham, MA: Kluwer Academic Publishers; 1984. chapter 23.

  19. Wang Y, Patel D, Wang DW, et al. β1-Adrenoceptor blocker aggravated ventricular arrhythmia. Pacing Clin Electrophysiol. 2013 Nov. 36 (11):1348-56. [Medline].

  20. Haemers P, Sutherland G, Cikes M, et al. Further insights into blood pressure induced premature beats: Transient depolarizations are associated with fast myocardial deformation upon pressure decline. Heart Rhythm. 2015 Nov. 12 (11):2305-15. [Medline].

  21. Richards DA, Byth K, Ross DL, Uther JB. What is the best predictor of spontaneous ventricular tachycardia and sudden death after myocardial infarction?. Circulation. 1991 Mar. 83(3):756-63. [Medline].

  22. Stec S, Sikorska A, Zaborska B, Krynski T, Szymot J, Kułakowski P. Benign symptomatic premature ventricular complexes: short- and long-term efficacy of antiarrhythmic drugs and radiofrequency ablation. Kardiol Pol. 2012. 70(4):351-8. [Medline].

  23. Huang ZJ, Li T, Yang MQ, Wu YL, Li YL. [Efficacy and safety of amiodarone and metoprolol in the treatment of ventricular premature beats: a meta-analysis] [Chinese]. Nan Fang Yi Ke Da Xue Xue Bao. 2010 Nov. 30 (11):2577-80. [Medline].

  24. Chen YH, Lin JF. Catheter ablation of idiopathic epicardial ventricular arrhythmias originating from the vicinity of the coronary sinus system. J Cardiovasc Electrophysiol. 2015 Oct. 26 (10):1160-7. [Medline].

  25. Baldinger SH, Kumar S, Barbhaiya CR, Mahida S, Epstein LM, Michaud GF, et al. Epicardial radiofrequency ablation failure during ablation procedures for ventricular arrhythmias: reasons and implications for outcomes. Circ Arrhythm Electrophysiol. 2015 Dec. 8 (6):1422-32. [Medline].

 
Previous
Next
 
Ventricular premature complexes (VPCs). Ventricular trigeminy is present. Note that the VPCs are unimorphic and that a compensatory pause follows each VPC. This patient has asymptomatic idiopathic VPCs originating from the right ventricular outflow tract.
Table 1. Lown Classification
Class Arrhythmia
0 None
1 Unifocal; < 30/h
2 Unifocal; ≥ 30/h
3 Multiform
4A 2 consecutive
4B ≥ 3 consecutive
5 R-on-T phenomenon
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.