Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Lown-Ganong-Levine Syndrome Workup

  • Author: Daniel M Beyerbach, MD, PhD; Chief Editor: Jeffrey N Rottman, MD  more...
 
Updated: Dec 30, 2015
 

Laboratory Studies

Workup is directed at determining the cause of tachycardia. LGL is an outdated diagnosis, and as such no workup is directed at making this diagnosis. However, identification of a short PR interval during sinus rhythm in a patient with paroxysmal supraventricular tachycardia (PSVT) should raise suspicion of a possible underlying bypass tract (ie, WPW). In the case of isolated short PR interval with no history of tachycardia or symptoms suggestive of paroxysms of tachycardia, no further workup is indicated.

Patients may present in an acute episode of tachycardia or with a history of symptoms suggestive of paroxysms of tachycardia.

In the acute setting, institute a standard workup for tachycardia, including an ECG to document the rhythm, serum electrolytes, calcium, magnesium levels, and serum thyroid-stimulating hormone (TSH) levels.

For a history suggestive of recurrent paroxysms of tachycardia, a Holter monitor or event recorder may prove useful for documenting the rhythm during acute symptomatic episodes. Less commonly, particularly when paroxysms of tachycardia are more rare, an implantable loop recorder may prove helpful.

In the case of shortness of breath, posteroanterior and lateral chest films are indicated.

Next

Other Tests

To meet criteria for LGL, the 12-lead ECG taken during a period of normal sinus rhythm must demonstrate a PR interval less than or equal to 0.12 second and a normal QRS upstroke and duration, as in the image below.

ECG demonstrating a short PR interval of approxima ECG demonstrating a short PR interval of approximately 100 ms and normal QRS.

One of the most useful diagnostic tools is a 12-lead ECG recorded during a paroxysm of tachycardia. Such documentation satisfies the LGL criterion of tachycardia.

A delta wave on the QRS complex precludes the diagnosis of LGL, because one of the criteria for LGL is a normal QRS complex. A delta wave suggests the presence of an accessory pathway; occurrence of supraventricular tachycardia in the presence of an accessory pathway suggests WPW, another preexcitation syndrome, as in the image below.

Noninvasive mapping of cardiac arrhythmias is also possible with a 252-lead ECG and computed-tomography scan–based three-dimensional electroimaging.[28]

ECG demonstrating ventricular preexcitation. A del ECG demonstrating ventricular preexcitation. A delta wave, which corresponds to initial myocardial depolarization via a bypass tract, appears at the beginning of each QRS complex.

 

Previous
Next

Procedures

If tachycardia is present, diagnostic workup to determine the cause may include Valsalva maneuvers.

If the blood pressure is stable, the patient has no angina, is not presyncopal, and no carotid bruits are present, carotid massage may provide diagnostic information. Ideally, carotid massage should be performed during continuous 12-lead rhythm strip monitoring. The result of carotid massage may be termination of the tachycardia, or transient AV block that may provide a ventricular pause long enough to reveal an underlying atrial arrhythmia.

If these maneuvers fail to terminate the tachycardia, a trial of intravenous adenosine administration, again with simultaneous rhythm strip recording, may reveal the rhythm. Adenosine should not be administered if there is any indication of pre-excitation on the surface ECG.

In cases of recurrent tachycardia, an invasive electrophysiology study is warranted. This is particularly true when symptoms become intolerable, medical therapy is failing to prevent episodes of tachycardia, or when a ventricular arrhythmia is suspected.

Previous
 
 
Contributor Information and Disclosures
Author

Daniel M Beyerbach, MD, PhD Medical Director, Cardiac Rhythm Program, The Christ Hospital; Affiliate Clinical Assistant Professor of Biomedical Science, Florida Atlantic University

Daniel M Beyerbach, MD, PhD is a member of the following medical societies: American College of Cardiology

Disclosure: Nothing to disclose.

Coauthor(s)

Christopher Cadman, MD Decatur Memorial Hospital Heart and Lung Institute

Christopher Cadman, MD is a member of the following medical societies: American College of Cardiology

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Frank M Sheridan, MD 

Frank M Sheridan, MD is a member of the following medical societies: American College of Cardiology, American Heart Association, Society for Cardiovascular Angiography and Interventions

Disclosure: Nothing to disclose.

Chief Editor

Jeffrey N Rottman, MD Professor of Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine; Cardiologist/Electrophysiologist, University of Maryland Medical System and VA Maryland Health Care System

Jeffrey N Rottman, MD is a member of the following medical societies: American Heart Association, Heart Rhythm Society

Disclosure: Nothing to disclose.

Additional Contributors

Justin D Pearlman, MD, ME, PhD, FACC, MA Chief, Division of Cardiology, Director of Cardiology Consultative Service, Director of Cardiology Clinic Service, Director of Cardiology Non-Invasive Laboratory, Chair of Institutional Review Board, University of California, Los Angeles, David Geffen School of Medicine

Justin D Pearlman, MD, ME, PhD, FACC, MA is a member of the following medical societies: American College of Cardiology, International Society for Magnetic Resonance in Medicine, American College of Physicians, American Federation for Medical Research, Radiological Society of North America

Disclosure: Nothing to disclose.

Acknowledgements

Christopher Cadman, MD, contributed to the original version of this article.

References
  1. Derejko P, Szumowski LJ, Sanders P, et al. Atrial fibrillation in patients with Wolff-Parkinson-White syndrome: role of pulmonary veins. J Cardiovasc Electrophysiol. 2012 Mar. 23(3):280-6. [Medline].

  2. Clerc A, Levy R, Critesco C. A propos du raccourcissement permanent de l'espace P-R de l'electrocardiogramme sans deformation du complex ventriculaire. Arch Mal Coeur. 1938. 31:569.

  3. Lown B, Ganong WF, Levine SA. The syndrome of short P-R interval, normal QRS complex and paroxysmal rapid heart action. Circulation. 1952 May. 5(5):693-706. [Medline].

  4. Burch GE, Kimball JL. Notes on the similarity of QRS complex configurations in the Wolff-Parkinson-White syndrome. Am Heart J. 1946 Nov. 32(5):560-70. [Medline].

  5. James TN. Morphology of the human atrioventricular node, with remarks pertinent to its electrophysiology. Am Heart J. 1961 Dec. 62:756-71. [Medline].

  6. Brechenmacher C, Laham J, Iris L, et al. [Histological study of abnormal conduction pathways in the Wolff-Parkinson-White syndrome and Lown-Ganong-Levine syndrome]. Arch Mal Coeur Vaiss. 1974 May. 67(5):507-19. [Medline].

  7. Josephson ME, Kastor JA. Supraventricular tachycardia in Lown-Ganong-Levine syndrome: atrionodal versus intranodal reentry. Am J Cardiol. 1977 Oct. 40(4):521-7. [Medline].

  8. Shabanian R, Kiani A, Rad EM, Eslamiyeh H. Lown-Ganong-Levine syndrome in a 3-month-old infant with isolated left ventricular noncompaction. Pediatr Cardiol. 2010 Feb. 31(2):274-6. [Medline].

  9. Chou TC. Wolff-Parkinson-White syndrome and its variants. Chou TC, ed. Electrocardiography in Clinical Practice, Adult and Pediatric. 4th ed. Philadelphia: WB Saunders Co; 1996. .:

  10. Moller P. Letter: Criteria for the LGL syndrome. Am Heart J. 1976 Apr. 91(4):539-41. [Medline].

  11. Jackman WM, Prystowsky EN, Naccarelli GV, et al. Reevaluation of enhanced atrioventricular nodal conduction: evidence to suggest a continuum of normal atrioventricular nodal physiology. Circulation. 1983 Feb. 67(2):441-8. [Medline].

  12. Ward DE, Camm AJ, Spurrell RA. Re-entrant tachycardia using two bypass tracts and excluding AV node in short PR interval, normal QRS syndrome. Br Heart J. 1978 Oct. 40(10):1127-33. [Medline].

  13. Zipes DP, DeJoseph RL, Rothbaum DA. Unusual properties of accessory pathways. Circulation. 1974 Jun. 49(6):1200-11. [Medline].

  14. Ward DE, Camm AJ, Spurrell RAJ. Dual AH pathways in patients with and without the Lown-Ganong-Levine syndrome. Br Heart J. 1981. 45:356.

  15. Benditt DG, Pritchett LC, Smith WM, Wallace AG, Gallagher JJ. Characteristics of atrioventricular conduction and the spectrum of arrhythmias in Lown-Ganong-Levine syndrome. Circulation. 1978 Mar. 57(3):454-65. [Medline].

  16. Denes P, Wu D, Dhingra RC, et al. Demonstration of dual A-V nodal pathways in patients with paroxysmal supraventricular tachycardia. Circulation. 1973 Sep. 48(3):549-55. [Medline].

  17. Mandel WJ, Danzig R, Hayakawa H. Lown-Ganong-Levine syndrome. A study using His bundle electrograms. Circulation. 1971 Oct. 44(4):696-708. [Medline].

  18. Douglas JE, Mandel WJ, Danzig R, Hayakawa H. Lown-Ganong-Levine syndrome. Circulation. 1972 May. 45(5):1143-4. [Medline].

  19. Durrer D, Schuilenburg RM, Wellens HJ. Pre-excitation revisited. Am J Cardiol. 1970 Jun. 25(6):690-7. [Medline].

  20. Mahaim I. Kent's fibers and the A-V paraspecific conduction through the upper connections of the bundle of His-Tawara. Am Heart J. 1947 May. 33(5):651-3. [Medline].

  21. Ometto R, Thiene G, Corrado D, et al. Enhanced A-V nodal conduction (Lown-Ganong-Levine syndrome) by congenitally hypoplastic A-V node. Eur Heart J. 1992 Nov. 13(11):1579-84. [Medline].

  22. Caracta AR, Damato AN, Gallagher JJ, et al. Electrophysiologic studies in the syndrome of short P-R interval, normal QRS complex. Am J Cardiol. 1973 Feb. 31(2):245-53. [Medline].

  23. Wiener I. Syndromes of Lown-Ganong-Levine and enhanced atrioventricular nodal conduction. Am J Cardiol. 1983 Sep 1. 52(5):637-9. [Medline].

  24. Bauernfeind RA, Ayres BF, Wyndham CC, et al. Cycle length in atrioventricular nodal reentrant paroxysmal tachycardia with observations on the Lown-Ganong-Levine syndrome. Am J Cardiol. 1980 Jun. 45(6):1148-53. [Medline].

  25. Bauernfeind RA, Swiryn S, Strasberg B, et al. Analysis of anterograde and retrograde fast pathway properties in patients with dual atrioventricular nodal pathways: observations regarding the pathophysiology of the Lown-Ganong-Levine syndrome. Am J Cardiol. 1982 Feb 1. 49(2):283-90. [Medline].

  26. Ward DE, Camm J. Mechanisms of junctional tachycardias in the Lown-Ganong-Levine syndrome. Am Heart J. 1983 Jan. 105(1):169-75. [Medline].

  27. Hattori T, Makiyama T, Akao M, et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc Res. 2012 Mar 15. 93(4):666-73. [Medline].

  28. Shah A, Hocini M, Haissaguerre M, Jaïs P. Non-invasive mapping of cardiac arrhythmias. Curr Cardiol Rep. 2015 Aug. 17 (8):60. [Medline].

 
Previous
Next
 
ECG demonstrating a short PR interval of approximately 100 ms and normal QRS.
ECG demonstrating ventricular preexcitation. A delta wave, which corresponds to initial myocardial depolarization via a bypass tract, appears at the beginning of each QRS complex.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.