Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Immunodysregulation Polyendocrinopathy Enteropathy X-Linked Syndrome (IPEX) Follow-up

  • Author: Satyen M Gada, MD; Chief Editor: Harumi Jyonouchi, MD  more...
 
Updated: Mar 25, 2014
 

Further Outpatient Care

Close medical follow-up and specialty care is required to monitor and manage the infections and autoimmune complications of IPEX syndrome.

Next

Further Inpatient Care

Patients who have immune dysfunction, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome and severe infections may require intravenous antimicrobial treatment.

Some immunosuppressive drugs may be only administered in an inpatient setting.

Diabetic patients presenting in diabetic ketoacidosis (DKA) may require inpatient monitoring of glucose in addition to fluid and electrolyte resuscitation.

Severe cytopenias may require treatment with intravenous steroids or blood products.

Severe malnutrition from enteropathy may require total parenteral nutrition.

Hospitalization for conditioning prior to hematopoietic stem cell transplantation (HSCT) may be required.

Previous
Next

Transfer

Patients with IPEX syndrome may require transfer to a center that provides multiple subspecialty care.

Care may be obtained at a center that specializes in the diagnosis and treatment of IPEX syndrome.

Transfer to a center that performs hematopoietic stem cell transplantation (HSCT) may be indicated.

Previous
Next

Deterrence/Prevention

Genetic testing and prenatal diagnosis may reduce the incidence of this condition. The possibility of prenatal diagnosis has been suggested by recent research.[29]

Early hematopoietic stem cell transplantation (HSCT) may prevent end-organ damage associated with this disease.

Previous
Next

Complications

Complications include the following:

  • Infection
  • Malnutrition
  • Complications of the associated endocrine abnormalities
  • Complications of the associated hematologic abnormalities
  • Complications of hematopoietic stem cell transplantation (HSCT)
Previous
Next

Prognosis

If untreated, death from complications of IPEX syndrome usually occurs within the first 2 years of life. Death is often attributable to metabolic abnormalities, malnutrition secondary to malabsorption, or severe sepsis.

The introduction of immunosuppressive treatments has improved survival in patients with IPEX syndrome. Successful hematopoietic stem cell transplantation (HSCT) with immune reconstitution has been reported and offers hope of a permanent cure.[6]

Previous
Next

Patient Education

Educate patients and families about IPEX syndrome and associated infectious and autoimmune complications. Patients should be able to recognize signs of infection, diabetes, thyroid disease, enteropathy, anemia, thrombocytopenia, or neutropenia and seek medical care.

Female carriers should receive appropriate genetic counseling.

Patients with IPEX syndrome should receive nutritional counseling.

Patients with diabetes should receive appropriate diabetic instruction.

Previous
 
Contributor Information and Disclosures
Author

Satyen M Gada, MD Assistant Professor, Department of Pediatrics and Medicine, Uniformed Services University of the Health Sciences; Staff, Department of Allergy and Immunology, Walter Reed Army Medical Center, Bethesda, MD

Satyen M Gada, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology

Disclosure: Nothing to disclose.

Coauthor(s)

Cecilia P Mikita, MD, MPH Associate Program Director, Allergy-Immunology Fellowship, Associate Professor of Pediatrics and Medicine, Uniformed Services University of the Health Sciences; Staff Allergist/Immunologist, Walter Reed National Military Medical Center

Cecilia P Mikita, MD, MPH is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American College of Allergy, Asthma and Immunology

Disclosure: Nothing to disclose.

Taylor Banks, MD Chief, Allergy/Immunology Clinic, Walter Reed National Military Medical Center; Assistant Professor of Pediatrics, Assistant Professor of Medicine, Uniformed Services University of the Health Sciences; Associate Program Director, NCC Allergy-Immunology Fellowship Program and NCC Transitional Year Internship Program

Taylor Banks, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology

Disclosure: Nothing to disclose.

Specialty Editor Board

Mary L Windle, PharmD Adjunct Associate Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Nothing to disclose.

Chief Editor

Harumi Jyonouchi, MD Faculty, Division of Allergy/Immunology and Infectious Diseases, Department of Pediatrics, Saint Peter's University Hospital

Harumi Jyonouchi, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, American Academy of Pediatrics, American Association of Immunologists, American Medical Association, Clinical Immunology Society, New York Academy of Sciences, Society for Experimental Biology and Medicine, Society for Pediatric Research, Society for Mucosal Immunology

Disclosure: Nothing to disclose.

Additional Contributors

C Lucy Park, MD Chief, Division of Allergy, Immunology, and Pulmonology, Associate Professor, Department of Pediatrics, University of Illinois at Chicago College of Medicine

C Lucy Park, MD is a member of the following medical societies: American Academy of Allergy Asthma and Immunology, Chicago Medical Society, American Medical Association, Clinical Immunology Society, Illinois State Medical Society

Disclosure: Nothing to disclose.

References
  1. Bennett CL, Ochs HD. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr. 2001 Dec. 13(6):533-8. [Medline].

  2. Torgerson TR, Ochs HD. Regulatory T cells in primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol. 2007 Dec. 7(6):515-21. [Medline].

  3. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002 Aug. 39(8):537-45. [Medline].

  4. Sharma R, Ju ST. Genetic control of the inflammatory T-cell response in regulatory T-cell deficient scurfy mice. Clin Immunol. 2010 Aug. 136(2):162-9. [Medline].

  5. Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007 Oct. 120(4):744-50; quiz 751-2. [Medline].

  6. van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007. 2007:89017. [Medline]. [Full Text].

  7. Su MA, Anderson MS. Monogenic autoimmune diseases: insights into self-tolerance. Pediatr Res. 2009 May. 65(5 Pt 2):20R-25R. [Medline]. [Full Text].

  8. Otsubo, K, H Kanegane, Y Kamachi, I Kobayashi, I Tsuge, et al. Identification of FOXP3-negative regulatory T-like (CD4+CD25+CD127low) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clinical Immunology. 2011. 141:111-120.

  9. Passerini L, Di Nunzio S, Gregori S, et al. Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome. Eur J Immunol. 2011 Apr. 41(4):1120-31. [Medline]. [Full Text].

  10. d'Hennezel E, Bin Dhuban K, Torgerson T, Piccirillo CA, Piccirillo C. The immunogenetics of immune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2012 May. 49(5):291-302. [Medline].

  11. Kinnunen T, Chamberlain N, Morbach H, Choi J, Kim S, Craft J. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood. 2013 Feb 28. 121(9):1595-603. [Medline].

  12. Moraes-Vasconcelos D, Costa-Carvalho BT, Torgerson TR, Ochs HD. Primary immune deficiency disorders presenting as autoimmune diseases: IPEX and APECED. J Clin Immunol. 2008 May. 28 Suppl 1:S11-9. [Medline].

  13. Patey-Mariaud de Serre N, Canioni D, Ganousse S, Rieux-Laucat F, Goulet O, Ruemmele F, et al. Digestive histopathological presentation of IPEX syndrome. Mod Pathol. 2009 Jan. 22(1):95-102. [Medline].

  14. Nieves DS, Phipps RP, Pollock SJ, Ochs HD, Zhu Q, Scott GA, et al. Dermatologic and immunologic findings in the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Arch Dermatol. 2004 Apr. 140(4):466-72. [Medline].

  15. Myers AK, Perroni L, Costigan C, Reardon W. Clinical and molecular findings in IPEX syndrome. Arch Dis Child. 2006 Jan. 91(1):63-4. [Medline]. [Full Text].

  16. Gambineri E, Perroni L, Passerini L, Bianchi L, Doglioni C, Meschi F, et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between forkhead box protein 3 expression and disease severity. J Allergy Clin Immunol. 2008 Dec. 122(6):1105-1112.e1. [Medline].

  17. Barzaghi F, Passerini L, Gambineri E, Ciullini Mannurita S, Cornu T, Kang ES, et al. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J Autoimmun. 2012 Feb. 38(1):49-58. [Medline]. [Full Text].

  18. Ochs HD, Gambineri E, Torgerson TR. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol Res. 2007. 38(1-3):112-21. [Medline].

  19. Verbsky JW, Chatila TA. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr. 2013 Dec. 25(6):708-14. [Medline].

  20. Lampasona V, Passerini L, Barzaghi F, Lombardoni C, Bazzigaluppi E, Brigatti C, et al. Autoantibodies to harmonin and villin are diagnostic markers in children with IPEX syndrome. PLoS One. 2013. 8(11):e78664. [Medline]. [Full Text].

  21. Le Bras S, Geha RS. IPEX and the role of Foxp3 in the development and function of human Tregs. J Clin Invest. 2006 Jun. 116(6):1473-5. [Medline]. [Full Text].

  22. Halabi-Tawil M, Ruemmele FM, Fraitag S, Rieux-Laucat F, Neven B, Brousse N, et al. Cutaneous manifestations of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Br J Dermatol. 2009 Mar. 160(3):645-51. [Medline].

  23. Zennaro D, Scala E, Pomponi D, Caprini E, Arcelli D, Gambineri E, et al. Proteomics plus genomics approaches in primary immunodeficiency: the case of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Clin Exp Immunol. 2012 Jan. 167(1):120-8. [Medline]. [Full Text].

  24. Bae KW, Kim BE, Choi JH, Lee JH, Park YS, Kim GH, et al. A novel mutation and unusual clinical features in a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Eur J Pediatr. 2011 Dec. 170(12):1611-5. [Medline].

  25. Kasow KA, Morales-Tirado VM, Wichlan D, Shurtleff SA, Abraham A, Persons DA, et al. Therapeutic in vivo selection of thymic-derived natural T regulatory cells following non-myeloablative hematopoietic stem cell transplant for IPEX. Clin Immunol. 2011 Nov. 141(2):169-76. [Medline]. [Full Text].

  26. Rao A, Kamani N, Filipovich A, Lee SM, Davies SM, Dalal J, et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood. 2007 Jan 1. 109(1):383-5. [Medline].

  27. Passerini L, Mel ER, Sartirana C, Fousteri G, Bondanza A, Naldini L, et al. CD4+ T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer. Sci Transl Med. 2013 Dec 11. 5(215):215ra174. [Medline].

  28. Gambarara M, Bracci F, Diamanti A, Ambrosini MI, Pietrobattista A, Knafelz D, et al. Long-term parenteral nutrition in pediatric autoimmune enteropathies. Transplant Proc. 2005 Jun. 37(5):2270-1. [Medline].

  29. Harbuz R, Lespinasse J, Boulet S, Francannet C, Creveaux I, Benkhelifa M, et al. Identification of new FOXP3 mutations and prenatal diagnosis of IPEX syndrome. Prenat Diagn. 2010 Nov. 30(11):1072-8. [Medline].

Previous
Next
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.