Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Septic Shock Workup

  • Author: Andre Kalil, MD, MPH; Chief Editor: Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM  more...
 
Updated: May 17, 2016
 

Approach Considerations

Early recognition and management are key in patients with severe sepsis or septic shock. Cardiac monitoring, noninvasive blood pressure monitoring, and pulse oximetry are indicated in patients with septic shock. These measures are necessary because these patients often require admission to an intensive care unit (ICU) for invasive monitoring and support. Once patients are stabilized, clinicians can determine their approach to the diagnostic workup.

Investigative studies include laboratory tests and imaging modalities to detect a clinically suspected focal infection, the presence of a clinically occult focal infection, and complications of sepsis and septic shock.

Next

Initial Laboratory Studies

Complete blood count with differential

The white blood cell (WBC) count and the WBC differential can be somewhat helpful in predicting bacterial infection, though an elevated WBC count is not specific to infection. In the setting of fever without localizing signs of infection, a WBC count higher than 15,000/µL or a neutrophil band count higher than 1500/µL has about a 50% correlation with bacterial infection. WBC counts higher than 50,000/µL or lower than 300/µL are associated with significantly decreased survival rates.

Hemoglobin concentration dictates oxygen-carrying capacity in blood, which is crucial in shock to maintain adequate tissue perfusion. Although there is no specific hematocrit or hemoglobin target, keeping the hemoglobin concentration above 7 g/dL is usually practiced, and studies comparing this versus 9 g/dL have shown no increased survival benefit from either arm.

Platelets, as acute-phase reactants, usually increase at the onset of any serious stress and are typically elevated in the setting of inflammation. However, the platelet count will fall with persistent sepsis, and disseminated intravascular coagulation (DIC) may develop.

Coagulation studies

Coagulation status should be assessed by measuring the prothrombin time (PT) and the activated partial thromboplastin time (aPTT). Patients with clinical evidence of a coagulopathy require additional tests to detect the presence of DIC. The PT and the aPTT are elevated in DIC, fibrinogen levels are decreased, and fibrin split products are increased.

Blood chemistries

At regular intervals, metabolic assessment should be carried out by measuring serum levels of electrolytes, including magnesium, calcium, phosphate, and glucose. Sodium and chloride levels are abnormal in severe dehydration. Decreased bicarbonate can point to acute acidosis—however, sodium bicarbonate therapy is not recommended to improve hemodynamics or replace vasopressor requirements in patients with metabolic acidemia from hypoperfusion whose pH level is 7.15 or greater.[11, 60]

Glucose control is important in the management of sepsis: Hyperglycemia is associated with higher mortality.

Serum lactate is perhaps the best serum marker for tissue perfusion, in that it is elevated under conditions of anaerobic metabolism, which occurs when tissue oxygen demand exceeds supply. This can result from decreased arterial oxygen content (hypoxemia), decreased perfusion pressure (hypotension), maldistribution of flow, and decreased diffusion of oxygen across capillary membranes to target tissues, as well as decreased oxygen utilization on a cellular level.

There is also evidence that lactate can be elevated in sepsis in the absence of tissue hypoxia, as a consequence of mitochondrial dysfunction and downregulation of pyruvate dehydrogenase, which is the first step in oxidative phosphorylation.[61]

Lactate levels higher than 2.5 mmol/L are associated with an increase in mortality. The higher the serum lactate, the worse the degree of shock and the higher the mortality. Lactate levels higher than 4 mmol/L in patients with suspected infection have been shown to yield a 5-fold increase in the risk of death and are associated with a mortality approaching 30%.[62] It has been hypothesized that lactate clearance is a measure of tissue reperfusion and an indication of adequate therapy.[63, 64]

Renal and hepatic function should be assessed with the following chemistry studies:

  • Serum creatinine level
  • Blood urea nitrogen (BUN) level
  • Bilirubin level
  • Alkaline phosphatase (ALP) level
  • Alanine aminotransferase (ALT) level
  • Aspartate aminotransferase (AST) level
  • Albumin level

Liver function tests (LFTs) and levels of bilirubin, ALP, and lipase are important in evaluating multiorgan dysfunction or a potential causative source (eg, biliary disease, pancreatitis, or hepatitis). Increased BUN and creatinine levels can point to severe dehydration or renal failure.

In severely ill patients suspected of having adrenal insufficiency, a delta cortisol level below 9 µg/dL (after administration of 250 µg of cosyntropin) or a random total cortisol level below 10 µg/dL is diagnostic.[65] It should be kept in mind that the adrenocorticotropic hormone (ACTH) stimulation test is not recommended for identifying the subset of patients with septic shock or acute respiratory distress syndrome (ARDS) who should receive corticosteroid therapy.[65]

The American College of Critical Care Medicine (ACCCM) does not recommend the routine use of free cortisol measurements in critically ill patients.[65] There are no clear parameters for the normal range of free cortisol in such patients, and the free cortisol assay is not widely available, despite its advantages over the total serum cortisol assay.[65]

Previous
Next

Microbiology Studies

Blood cultures

Blood cultures should be obtained in patients with suspected sepsis to facilitate isolation of a specific organism and tailoring of antibiotic therapy. These cultures are the primary means of diagnosing intravascular infections (eg, endocarditis) and infections of indwelling intravascular devices. Individuals at high risk for endocarditis are intravenous (IV) drug abusers and patients with prosthetic heart valves.

Patients at risk for bacteremia include adults who are febrile with an elevated WBC or neutrophil band count, elderly patients who are febrile, and neutropenic patients who are febrile. These populations have a 20-30% incidence of bacteremia. The incidence of bacteremia increases to at least 50% in patients with sepsis and evidence of end-organ dysfunction.

The Surviving Sepsis Campaign recommends obtaining at least 2 blood cultures before antibiotics are administered, with 1 percutaneously drawn and the other(s) obtained through each vascular access (unless the device was inserted < 48 hours beforehand).[11, 60] Again, however, it must be remembered that blood cultures are positive in fewer than 50% of cases of sepsis.[3, 4, 5]

To optimize recovery of aerobic bacteria from patients with suspected intra-abdominal infection, 1-10 mL of fluid can be directly inoculated into an aerobic blood culture; an additional 0.5 mL of fluid should be sent for Gram staining and, if indicated, fungal cultures.[2] For anaerobic bacteria, 1-10 mL of fluid can also be directly inoculated into an anaerobic blood culture bottle.

Susceptibility testing for organisms that have a high risk for resistance (eg, Pseudomonas, Proteus, Acinetobacter, Staphylococcus aureus, and predominant [moderate to heavy growth] Enterobacteriaceae) should be performed.[2] Unfortunately, in patients with community-acquired intra-abdominal infection, blood cultures are not of much clinical utility; Gram staining of the infected material also is not generally useful in such cases.

Urinalysis and urine culture

Urinalysis and urine culture are indicated for every patient who is in a septic state. Urinary tract infection (UTI) is a common source for sepsis, especially in elderly individuals. Adults who are febrile without localizing symptoms or signs have a 10-15% incidence of occult UTI. Obtaining a culture is important for isolating a specified organism and tailoring antibiotic therapy.

Gram stain and culture of secretions and tissue

The Gram stain is the only immediately available test that can document the presence of bacterial infection and guide the choice of initial antibiotic therapy. Secretions or tissue for Gram stain and culture from the sites of potential infection (eg, cerebrospinal fluid [CSF], wounds, respiratory secretions, or other body fluids) may be are obtained as they are identified, preferably before administering antibiotic therapy.[11, 60]

At least 1 mL of fluid or tissue is needed for cultures.[2] For aerobic or anaerobic cultures, 0.5 mL of fluid or 0.5 g of tissue should be transported to the laboratory in the appropriate aerobic or anaerobic transport medium.[2]

If pneumonia is suspected, a sputum specimen should be obtained for Gram stain and culture, provided that the patient has a productive cough and that a good-quality specimen can be obtained.[66] Any abscess should be drained promptly and purulent material sent to the microbiology laboratory for analysis. If meningitis is suspected, a CSF specimen should be obtained.

Routine culture and susceptibility studies should be obtained in the following cases[2] :

  • Perforated appendicitis and other community-acquired intra-abdominal infections in which there is significant resistance of a common community isolate to an antimicrobial regimen in widespread use locally
  • Higher-risk patients who have a greater risk of harboring resistant pathogens, such as those with previous antibiotic exposure

Although Gram staining may be helpful for identifying healthcare-related infections (eg, presence of yeast), it has not proved to be of clinical value in community-acquired intra-abdominal infections.[2] Anaerobic cultures are not necessary for community-acquired intra-abdominal infections if empiric antimicrobial therapy against common anaerobic pathogens is administered.

Previous
Next

Plain Radiography

Chest

Because most patients who present with sepsis have pneumonia, and because the clinical examination is unreliable for the detection of pneumonia (especially in elderly patients), a chest radiograph is warranted. Chest radiography detects infiltrates in about 5% of febrile adults without localizing signs of infection; accordingly, it should be routine in adults who are febrile without localizing symptoms or signs and in patients who are febrile with neutropenia and without pulmonary symptoms.

Chest radiography is useful in detecting radiographic evidence of ARDS (see the images below), which carries a high mortality. The discovery of such evidence on a chest radiograph should prompt consideration of early intubation and mechanical ventilation, even if the patient has not yet shown signs of overt respiratory distress.

Acute respiratory distress syndrome (ARDS) in a pa Acute respiratory distress syndrome (ARDS) in a patient who developed septic shock secondary to toxic shock syndrome.
Bilateral airspace disease and acute respiratory f Bilateral airspace disease and acute respiratory failure in a patient with gram-negative septic shock. The source of the sepsis was urosepsis.
A 45-year-old woman was admitted to the intensive A 45-year-old woman was admitted to the intensive care unit with septic shock secondary to spontaneous biliary peritonitis. She subsequently developed acute respiratory distress syndrome (ARDS) and multiorgan failure.

In early ARDS, the chest radiograph may appear normal. The typical findings of noncardiogenic pulmonary edema are bilateral hazy, symmetric homogeneous opacities, which may demonstrate air bronchograms. The margins of pulmonary vessels become indistinct and obscured with disease progression.

The usual findings of metastatic pulmonary edema, such as Kerley A or B lines, are not usually observed; a perihilar distribution of opacities is also absent. Furthermore, other findings of cardiogenic pulmonary edema, such as cardiomegaly, vascular redistribution, and pleural effusions, are absent as well.

With disease progression, the ground-glass opacities change into heterogeneous linear or reticular infiltrates. Days to weeks later, either persistent chronic fibrosis may develop or the chest radiograph appearance becomes more normal. Periodic chest radiographs during the management of ARDS are particularly important for diagnosing barotrauma, confirming adequate positioning of an endotracheal tube or intravascular catheters, and detecting nosocomial pneumonia.

Abdomen

Supine and upright or lateral decubitus abdominal radiographs should be obtained; these may be useful when an intra-abdominal source of sepsis is suspected. Abdominal plain films should be obtained if clinical evidence of bowel obstruction or perforation exists. However, if obvious signs of diffuse peritonitis are present and immediate surgical intervention is planned, further diagnostic imaging is not required.[2]

In adult patients with suspected intra-abdominal infection who are not undergoing immediate laparotomy, computed tomography (CT) of the abdomen is preferable to abdominal radiography.[2]

Extremities

Plain radiographs of the extremities may be helpful when deep soft-tissue infection is suspected. These films can show evidence of soft-tissue gas formation; however, it is important to emphasize that necrotizing fasciitis is a clinical diagnosis (signaled, for example, by extreme pain, crepitus, bullae, hemorrhage, and foul-smelling exudates).

If clinical suspicion of necrotizing fasciitis is high, a surgical consultation should be obtained immediately, and the patient should be taken promptly to the operating room for intervention, often without the need for any imaging. CT and magnetic resonance imaging (MRI) cannot be relied on to make this diagnosis.

Plain radiographs can also show evidence of osteomyelitis. However, MRI is much more sensitive for making this diagnosis.

Previous
Next

Ultrasonography

Abdominal ultrasonography is indicated when patients have evidence of acute cholecystitis or ascending cholangitis exists[2] (eg, right upper quadrant abdominal tenderness, fever, vomiting, elevated LFT results, elevated bilirubin level, or elevated alkaline phosphatase level). Surgery or endoscopic retrograde cholangiopancreatography (ERCP) may be urgently necessary in the setting of sepsis with acute cholecystitis or ascending cholangitis.

Echocardiography has a number of uses in assessing patients with septic shock and may be considered.[67] This imaging modality can provide a comprehensive cardiac evaluation in patients with hemodynamic instability and can be helpful for guiding fluid therapy and monitoring treatment effects. Other conditions that can be assessed include sepsis-induced myocardial dysfunction, right heart failure, dynamic left ventricular obstruction, and tamponade.[67]

Previous
Next

CT and MRI

CT is the imaging modality of choice for excluding an intra-abdominal abscess or a retroperitoneal source of infection. Obesity or the presence of excessive intestinal gas markedly interferes with abdominal imaging by ultrasonography; therefore, CT is preferred in this setting.

Obtain an abdominal CT scan if the patient has abdominal or flank tenderness in the setting of sepsis. Certain abdominal processes (eg, diverticular abscess, ischemic bowel, appendicitis, perinephric abscess) may necessitate urgent operative intervention.

When clinical evidence of a deep soft tissue infection exists, such as crepitus, bullae, hemorrhage, or foul-smelling exudate, obtain a plain radiograph. The presence of soft-tissue gas often dictates surgical exploration.

Although either CT or MRI may reveal evidence of subcutaneous and deep-tissue inflammation, neither modality is sensitive or specific in the setting of necrotizing deep-tissue infection, and neither should be relied upon to make this diagnosis. MRI is much more sensitive for osteomyelitis than plain radiography is.

If there is evidence of increased intracranial pressure (eg, papilledema) or focal mass lesions (focal defects, preceding sinusitis or otitis, or recent intracranial surgery), antibiotic therapy should be initiated, and a head CT scan should be obtained. Antibiotics will not begin to affect CSF cultures for at least several hours; therefore, proper antibiotic administration should not be delayed by the procedure if there is a high suspicion for meningitis.

If bacterial meningitis is strongly suspected, a lumbar puncture (LP) should be performed promptly, without any delay to obtain a CT scan.

Previous
Next

Lumbar Puncture

An LP is indicated when there is clinical evidence or suspicion of meningitis or encephalitis. If the opening pressure is elevated, only as much CSF as is needed for culture should be obtained. Broad-spectrum antibiotics to cover meningitis should be administered before the start of the procedure. In patients with an acute fulminant presentation, rapid onset of septic shock, and severely impaired mental status, this procedure is used to rule out bacterial meningitis.

Previous
 
 
Contributor Information and Disclosures
Author

Andre Kalil, MD, MPH Professor of Medicine, Department of Medicine, Section of Infectious Diseases, University of Nebraska College of Medicine; Director, Transplant ID Program, University of Nebraska Medical Center

Disclosure: Received research grant from: Received grant/research funds from Spectral Diagnostics; Received grant/research funds from Asahi Kasei; Received grant/research funds from Ferring.

Coauthor(s)

Kristina L Bailey, MD Assistant Professor, Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center

Kristina L Bailey, MD is a member of the following medical societies: American College of Chest Physicians, American Thoracic Society, Research Society on Alcoholism

Disclosure: Nothing to disclose.

Chief Editor

Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM Professor of Critical Care Medicine, Bioengineering, Cardiovascular Disease, Clinical and Translational Science and Anesthesiology, Vice-Chair of Academic Affairs, Department of Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine

Michael R Pinsky, MD, CM, Dr(HC), FCCP, MCCM is a member of the following medical societies: American College of Chest Physicians, Association of University Anesthetists, European Society of Intensive Care Medicine, American College of Critical Care Medicine, American Heart Association, American Thoracic Society, Shock Society, Society of Critical Care Medicine

Disclosure: Received income in an amount equal to or greater than $250 from: Masimo<br/>Received honoraria from LiDCO Ltd for consulting; Received intellectual property rights from iNTELOMED for board membership; Received honoraria from Edwards Lifesciences for consulting; Received honoraria from Masimo, Inc for board membership.

Acknowledgements

Fatima Al Faresi, MD Dermatologist, Tawam Hospital, Al Ain, UAE

Disclosure: Nothing to disclose.

Barry E Brenner, MD, PhD, FACEP Professor of Emergency Medicine, Professor of Internal Medicine, Program Director, Emergency Medicine, Case Medical Center, University Hospitals, Case Western Reserve University School of Medicine

Barry E Brenner, MD, PhD, FACEP is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Chest Physicians, American College of Emergency Physicians, American College of Physicians, American Heart Association, American Thoracic Society, Arkansas Medical Society, New York Academy of Medicine, New York Academy ofSciences,and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

John L Brusch, MD, FACP Assistant Professor of Medicine, Harvard Medical School; Consulting Staff, Department of Medicine and Infectious Disease Service, Cambridge Health Alliance

John L Brusch, MD, FACP is a member of the following medical societies: American College of Physicians and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Ismail Cinel, MD, PhD Visiting Associate Professor, Division of Critical Care Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey

Disclosure: Nothing to disclose.

Clara-Dina Cokonis, MD Staff Physician, Department of Medicine, Division of Dermatology, Cooper Hospital University Medical Center

Disclosure: Nothing to disclose.

R Phillip Dellinger, MD Professor of Medicine, Program Director, Critical Care Medicine Fellowship Program, Robert Wood Johnson School of Medicine, University of Medicine and Dentistry of New Jersey; Head, Division of Critical Care Medicine, Medical Director, Medical/Surgical/Cardiovascular Surgical Intensive Care Unit, Cooper University Hospital

Disclosure: Wyeth Consulting fee Consulting; BRAHMS Grant/research funds Other Clinical Trial; Artisan Grant/research funds Other Clinical Trial; Agenix Grant/research funds Other Clinical Trial

Daniel J Dire, MD, FACEP, FAAP, FAAEM Clinical Professor, Department of Emergency Medicine, University of Texas Medical School at Houston; Clinical Professor, Department of Pediatrics, University of Texas Health Sciences Center San Antonio

Daniel J Dire, MD, FACEP, FAAP, FAAEM is a member of the following medical societies: American Academy of Clinical Toxicology, American Academy of Emergency Medicine, American Academy of Pediatrics, American College of Emergency Physicians, and Association of Military Surgeons of the US

Disclosure: Nothing to disclose.

Dirk M Elston, MD Director, Ackerman Academy of Dermatopathology, New York

Dirk M Elston, MD is a member of the following medical societies: American Academy of Dermatology

Disclosure: Nothing to disclose.

Michael R Filbin, MD Clinical Instructor, Department of Emergency Medicine, Massachusetts General Hospital

Michael R Filbin, MD is a member of the following medical societies: American College of Emergency Physicians, Massachusetts Medical Society, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Franklin Flowers, MD Chief, Division of Dermatology, Professor, Department of Medicine and Otolaryngology, Affiliate Associate Professor of Pediatrics and Pathology, University of Florida College of Medicine

Franklin Flowers, MD, is a member of the following medical societies: American College of Mohs Micrographic Surgery and Cutaneous Oncology

Disclosure: Nothing to disclose.

Cory Franklin, MD Professor, Department of Medicine, Rosalind Franklin University of Medicine and Science; Director, Division of Critical Care Medicine, Cook County Hospital

Cory Franklin, MD is a member of the following medical societies: New York Academy of Sciences and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

Theodore J Gaeta, DO, MPH, FACEP Clinical Associate Professor, Department of Emergency Medicine, Weill Cornell Medical College; Vice Chairman and Program Director of Emergency Medicine Residency Program, Department of Emergency Medicine, New York Methodist Hospital; Academic Chair, Adjunct Professor, Department of Emergency Medicine, St George's University School of Medicine

Theodore J Gaeta, DO, MPH, FACEP is a member of the following medical societies: Alliance for Clinical Education, American College of Emergency Physicians, Clerkship Directors in Emergency Medicine, Council of Emergency Medicine Residency Directors, New York Academy of Medicine, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Hassan I Galadari, MD Assistant Professor of Dermatology, Faculty of Medicine and Health Sciences, United Arab Emirates University

Hassan I Galadari, MD is a member of the following medical societies: American Academy of Dermatology, American Medical Association, American Medical Student Association/Foundation, and American Society for Dermatologic Surgery

Disclosure: Nothing to disclose.

William D James, MD Paul R Gross Professor of Dermatology, Vice-Chairman, Residency Program Director, Department of Dermatology, University of Pennsylvania School of Medicine

William D James, MD is a member of the following medical societies: American Academy of Dermatology and Society for Investigative Dermatology

Disclosure: Elsevier Royalty Other

Paul Krusinski, MD Director of Dermatology, Fletcher Allen Health Care; Professor, Department of Internal Medicine, University of Vermont College of Medicine

Paul Krusinski, MD is a member of the following medical societies: American Academy of Dermatology, American College of Physicians, and Society for Investigative Dermatology

Disclosure: Nothing to disclose.

Steven M Manders, MD Clinical Assistant Professor, Department of Dermatology, University of Pennsylvania; Associate Professor, Department of Internal Medicine, Division of Dermatology, University of Medicine and Dentistry of New Jersey

Disclosure: Nothing to disclose.

Steven Mink, MD Head, Section of Pulmonary Medicine, Department of Internal Medicine, St Boniface Hospital; Professor of Medicine, University of Manitoba, Canada

Steven Mink, MD is a member of the following medical societies: Alpha Omega Alpha

Disclosure: Nothing to disclose.

Mark L Plaster, MD, JD Executive Editor, Emergency Physicians Monthly

Mark L Plaster, MD, JD is a member of the following medical societies: American Academy of Emergency Medicine and American College of Emergency Physicians

Disclosure: M L Plaster Publishing Co LLC Ownership interest Management position

Sat Sharma, MD, FRCPC Professor and Head, Division of Pulmonary Medicine, Department of Internal Medicine, University of Manitoba; Site Director, Respiratory Medicine, St Boniface General Hospital

Sat Sharma, MD, FRCPC is a member of the following medical societies: American Academy of Sleep Medicine, American College of Chest Physicians, American College of Physicians-American Society of Internal Medicine, American Thoracic Society, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada, Royal Society of Medicine, Society of Critical Care Medicine, and World Medical Association

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Vicken Y Totten, MD, MS, FACEP, FAAFP Assistant Professor, Case Western Reserve University School of Medicine; Director of Research, Department of Emergency Medicine, University Hospitals, Case Medical Center

Vicken Y Totten, MD, MS, FACEP, FAAFP is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Richard P Vinson, MD Assistant Clinical Professor, Department of Dermatology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine; Consulting Staff, Mountain View Dermatology, PA

Richard P Vinson, MD is a member of the following medical societies: American Academy of Dermatology, Association of Military Dermatologists, Texas Dermatological Society, and Texas Medical Association

Disclosure: Nothing to disclose.

Eric L Weiss, MD, DTM&H Medical Director, Office of Service Continuity and Disaster Planning, Fellowship Director, Stanford University Medical Center Disaster Medicine Fellowship, Chairman, SUMC and LPCH Bioterrorism and Emergency Preparedness Task Force, Clinical Associate Progressor, Department of Surgery (Emergency Medicine), Stanford University Medical Center

Eric L Weiss, MD, DTM&H is a member of the following medical societies: American College of Emergency Physicians, American College of Occupational and Environmental Medicine, American Medical Association, American Society of Tropical Medicine and Hygiene, Physicians for Social Responsibility, Southeastern Surgical Congress, Southern Association for Oncology, Southern Clinical Neurological Society, and Wilderness Medical Society

Disclosure: Nothing to disclose.

References
  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23. 315 (8):801-10. [Medline].

  2. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis. 2010 Jan 15. 50(2):133-64. [Medline].

  3. Brun-Buisson C, Doyon F, Carlet J, et al. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA. 1995 Sep 27. 274(12):968-74. [Medline].

  4. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA. 1997 Jul 16. 278(3):234-40. [Medline].

  5. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun. 34(6):1589-96. [Medline].

  6. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992 Jun. 101(6):1644-55. [Medline].

  7. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992 Jun. 20(6):864-74. [Medline].

  8. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003 Apr. 31(4):1250-6. [Medline].

  9. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994 Mar. 149(3 Pt 1):818-24. [Medline].

  10. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012 Jun 20. 307(23):2526-33. [Medline].

  11. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013 Feb. 41(2):580-637. [Medline].

  12. Sallisalmi M, Tenhunen J, Yang R, Oksala N, Pettilä V. Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiol Scand. 2012 Mar. 56(3):316-22. [Medline].

  13. Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med. 2009 Jan. 37(1):291-304. [Medline].

  14. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999 Jan 21. 340(3):207-14. [Medline].

  15. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003 Jan 9. 348(2):138-50. [Medline].

  16. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006 Jul. 48(1):28-54. [Medline].

  17. Kothari N, Bogra J, Kohli M, Malik A, Kothari D, Srivastava S, et al. Role of active nitrogen molecules in progression of septic shock. Acta Anaesthesiol Scand. 2012 Mar. 56(3):307-15. [Medline].

  18. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004 Sep. 4(5-6):729-41. [Medline].

  19. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013 Mar. 13(3):260-8. [Medline]. [Full Text].

  20. Kalil AC, Florescu DF. Prevalence and mortality associated with cytomegalovirus infection in nonimmunosuppressed patients in the intensive care unit. Crit Care Med. 2009 Aug. 37(8):2350-8. [Medline].

  21. Lorente JA, Landín L, De Pablo R, Renes E, Rodríguez-Díaz R, Liste D. Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med. 1993 Sep. 21(9):1312-8. [Medline].

  22. Schuetz P, Jones AE, Aird WC, Shapiro NI. Endothelial cell activation in emergency department patients with sepsis-related and non-sepsis-related hypotension. Shock. 2011 Aug. 36(2):104-8. [Medline]. [Full Text].

  23. Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993 Aug 25. 270(8):975-9. [Medline].

  24. Mammen EF. Antithrombin III and sepsis. Intensive Care Med. 1998 Jul. 24(7):649-50. [Medline].

  25. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005. 9 Suppl 4:S20-6. [Medline].

  26. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001 Aug 23. 345(8):588-95. [Medline].

  27. Katzenstein AL, Myers JL, Mazur MT. Acute interstitial pneumonia. A clinicopathologic, ultrastructural, and cell kinetic study. Am J Surg Pathol. 1986 Apr. 10(4):256-67. [Medline].

  28. Cetinbas F, Yelken B, Gulbas Z. Role of glutamine administration on cellular immunity after total parenteral nutrition enriched with glutamine in patients with systemic inflammatory response syndrome. J Crit Care. 2010 Dec. 25(4):661.e1-6. [Medline].

  29. Hamzaoui O, Carlet J. Organ dysfunctions during severe sepsis and septic-like syndromes: epidemiology, classification, and mechanism. Cavaillon J-M, Adrie C, eds. Sepsis and Non-infectious Systemic Inflammation: From Biology to Critical Care. .Weinheim, Germany: Wiley-VCH Verlag GmbH; 2009. 57-77.

  30. Baluch A, Janoo A, Lam K, Hoover J, Kaye A. Septic shock: review and anesthetic considerations. Middle East J Anesthesiol. 2007 Feb. 19(1):71-86. [Medline].

  31. Kotb M. Diseases due to encapsulated bacteria. Kaslow RA, McNicholl JM, Hill AVS, Kotb M, eds. Genetic Susceptibility to Infectious Diseases. New York, NY: Oxford University Press; 2008. 351-71.

  32. Kramnik I. Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene. Curr Top Microbiol Immunol. 2008. 321:123-48. [Medline].

  33. Blackwell JM, Jamieson SE, Burgner D. HLA and infectious diseases. Clin Microbiol Rev. 2009 Apr. 22(2):370-85, Table of Contents. [Medline]. [Full Text].

  34. Kotb M, Norrby-Teglund A, McGeer A, El-Sherbini H, Dorak MT, Khurshid A, et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat Med. 2002 Dec. 8(12):1398-404. [Medline].

  35. Nooh MM, Nookala S, Kansal R, Kotb M. Individual genetic variations directly effect polarization of cytokine responses to superantigens associated with streptococcal sepsis: implications for customized patient care. J Immunol. 2011 Mar 1. 186(5):3156-63. [Medline].

  36. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008 Jan 10. 358(2):111-24. [Medline].

  37. Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012 May 31. 366(22):2055-64. [Medline].

  38. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012 Dec. 12(12):919-24. [Medline].

  39. Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013 Mar 20. 309(11):1154-62. [Medline].

  40. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 Jul. 29(7):1303-10. [Medline].

  41. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003 Apr 17. 348(16):1546-54. [Medline].

  42. Wang HE, Shapiro NI, Angus DC, Yealy DM. National estimates of severe sepsis in United States emergency departments. Crit Care Med. 2007 Aug. 35(8):1928-36. [Medline].

  43. Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011 Jun. 1-8. [Medline].

  44. Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013 May. 41(5):1167-74. [Medline].

  45. Shapiro N, Howell MD, Bates DW, Angus DC, Ngo L, Talmor D. The association of sepsis syndrome and organ dysfunction with mortality in emergency department patients with suspected infection. Ann Emerg Med. 2006 Nov. 48(5):583-90, 590.e1. [Medline].

  46. Mayr FB, Yende S, Linde-Zwirble WT, Peck-Palmer OM, Barnato AE, Weissfeld LA, et al. Infection Rate and Acute Organ Dysfunction Risk as Explanations for Racial Differences in Severe Sepsis. JAMA. Jun 2010. 303(24):2495-2503.

  47. Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014 Apr 2. 311(13):1308-16. [Medline].

  48. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA. 1995 Jan 11. 273(2):117-23. [Medline].

  49. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med. 2000. 26 Suppl 1:S64-74. [Medline].

  50. Jung B, Nougaret S, Chanques G, et al. The Absence of Adrenal Gland Enlargement during Septic Shock Predicts Mortality: A Computed Tomography Study of 239 Patients. Anesthesiology. 2011 Aug. 115(2):334-343. [Medline].

  51. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006 Jun. 34(6):1589-96. [Medline].

  52. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010 Oct 27. 304(16):1787-94. [Medline].

  53. Dennen P, Douglas IS, Anderson R. Acute kidney injury in the intensive care unit: an update and primer for the intensivist. Crit Care Med. 2010 Jan. 38(1):261-75. [Medline].

  54. Sepsis syndrome in urology (urosepsis). Grabe M, Bjerklund-Johansen TE, et al, eds. Guidelines on urological infections. Arnhem, The Netherlands: European Association of Urology (EAU); 2011. 33-9. [Full Text].

  55. Rangel-Frausto MS, Pittet D, Hwang T, Woolson RF, Wenzel RP. The dynamics of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents. Clin Infect Dis. 1998 Jul. 27(1):185-90. [Medline].

  56. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B. Current epidemiology of septic shock: the CUB-Réa Network. Am J Respir Crit Care Med. 2003 Jul 15. 168(2):165-72. [Medline].

  57. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014 May 1. 370(18):1683-93. [Medline]. [Full Text].

  58. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 Oct 16. 371(16):1496-506. [Medline].

  59. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015 Apr 2. 372(14):1301-11. [Medline].

  60. [Guideline] Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008 Jan. 36(1):296-327. [Medline].

  61. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet. 2005 Mar 5-11. 365(9462):871-5. [Medline].

  62. Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, et al. Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med. 2005 May. 45(5):524-8. [Medline].

  63. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004 Aug. 32(8):1637-42. [Medline].

  64. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010 Feb 24. 303(8):739-46. [Medline]. [Full Text].

  65. Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med. 2008 Jun. 36(6):1937-49. [Medline].

  66. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007 Mar 1. 44 Suppl 2:S27-72. [Medline].

  67. Griffee MJ, Merkel MJ, Wei KS. The role of echocardiography in hemodynamic assessment of septic shock. Crit Care Clin. 2010 Apr. 26(2):365-82, table of contents. [Medline].

  68. Kalil AC. Wanted: early goal-directed therapy for septic shock--dead or alive, but not critically ill!. Intensive Care Med. 2010 Jan. 36(1):1-3. [Medline].

  69. NIH Press Release. Sepsis study comparing three treatment methods shows same survival rate. National Institutes of Health. Available at http://www.nih.gov/news/health/mar2014/nigms-18.htm. Accessed: March 24, 2014.

  70. A Randomized Trial of Protocol-Based Care for Early Septic Shock. N Engl J Med. 2014 Mar 18. [Medline].

  71. Sevransky JE, Levy MM, Marini JJ. Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S548-53. [Medline].

  72. Dellinger RP, Carlet JM, Masur H. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004 Mar. 32(3):858-73. [Medline].

  73. Royal College of Obstetricians and Gynaecologists (RCOG). Maternal collapse in pregnancy and the puerperium. 2011.

  74. Vallet B, Pinsky MR, Cecconi M. Resuscitation of patients with septic shock: please "mind the gap"!. Intensive Care Med. 2013 Sep. 39(9):1653-5. [Medline]. [Full Text].

  75. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013 Jun. 41(6):1412-20. [Medline].

  76. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008 Jul. 134(1):172-8. [Medline].

  77. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010 Mar. 55(3):290-5. [Medline].

  78. Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014 Apr 24. 370(17):1583-93. [Medline].

  79. Vincent JL, Gerlach H. Fluid resuscitation in severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S451-4. [Medline].

  80. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011 Feb. 39(2):386-91. [Medline].

  81. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004 May 27. 350(22):2247-56. [Medline].

  82. Lira A, Pinsky MR. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014. 4:38. [Medline]. [Full Text].

  83. Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012 May 15. 185(10):1088-95. [Medline].

  84. Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014 Jun 4. 311(21):2181-90. [Medline].

  85. Vasu TS, Cavallazzi R, Hirani A, et al. Norephinephrine or Dopamine for Septic Shock: A Systematic Review of Randomized Clinical Trials. J Intensive Care Med. 2011 Mar 24. [Medline].

  86. De Backer D, Aldecoa C, Njimi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. 2012 Mar. 40(3):725-30. [Medline].

  87. Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S455-65. [Medline].

  88. Russell JA. Vasopressin in septic shock. Crit Care Med. 2007 Sep. 35(9 Suppl):S609-15. [Medline].

  89. Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008 Feb 28. 358(9):877-87. [Medline].

  90. Hayes MA, Timmins AC, Yau EH, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994 Jun 16. 330(24):1717-22. [Medline].

  91. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008 Mar. 8(3):159-66. [Medline].

  92. Bochud PY, Bonten M, Marchetti O, Calandra T. Antimicrobial therapy for patients with severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004 Nov. 32(11 Suppl):S495-512. [Medline].

  93. Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003 Feb 20. 348(8):727-34. [Medline].

  94. Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Lansang MA, et al. Corticosteroid treatment for sepsis: a critical appraisal and meta-analysis of the literature. Crit Care Med. 1995 Aug. 23(8):1430-9. [Medline].

  95. Kalil AC, Sun J. Low-dose steroids for septic shock and severe sepsis: the use of Bayesian statistics to resolve clinical trial controversies. Intensive Care Med. 2011 Mar. 37(3):420-9. [Medline].

  96. Briegel J, Forst H, Haller M. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999 Apr. 27(4):723-32. [Medline].

  97. Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002 Aug 21. 288(7):862-71. [Medline].

  98. Annane D, Bellissant E, Bollaert PE, Briegel J, Confalonieri M, De Gaudio R, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA. 2009 Jun 10. 301(22):2362-75. [Medline].

  99. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008 Jan 10. 358(2):111-24. [Medline].

  100. Moreno R, Sprung CL, Annane D, Chevret S, Briegel J, Keh D, et al. Time course of organ failure in patients with septic shock treated with hydrocortisone: results of the Corticus study. Intensive Care Med. 2011 Nov. 37(11):1765-72. [Medline].

  101. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001 Nov 8. 345(19):1359-67. [Medline].

  102. Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, et al. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008 Dec. 36(12):3190-7. [Medline].

  103. Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009 Oct. 35(10):1738-48. [Medline].

  104. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 Mar 26. 360(13):1283-97. [Medline].

  105. Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, McArthur C, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012 Sep 20. 367(12):1108-18. [Medline].

  106. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008 Jan 10. 358(2):125-39. [Medline].

  107. Kalfon P, Giraudeau B, Ichai C, Guerrini A, Brechot N, Cinotti R, et al. Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial. Intensive Care Med. 2014 Feb. 40(2):171-81. [Medline].

  108. Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009 Apr. 145(1):24-33. [Medline].

  109. Meduri GU, Headley AS, Golden E, et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998 Jul 8. 280(2):159-65. [Medline].

  110. Nathens AB, Rotstein OD. Selective decontamination of the digestive tract in acute severe pancreatitis--an indication whose time has come. Clin Infect Dis. 1997 Oct. 25(4):817-8. [Medline].

  111. Crea F, Biasucci LM. Innate immune inflammatory response to danger: when, how, and why does a friend become a foe?. Eur Heart J. 2012 Jun. 33(12):1434-7. [Medline].

  112. Moore DJ, Greystoke A, Butt F, Wurthner J, Growcott J, Hughes A, et al. A pilot study assessing the prognostic value of CK18 and nDNA biomarkers in severe sepsis patients. Clin Drug Investig. 2012 Mar 1. 32(3):179-87. [Medline].

 
Previous
Next
 
Strawberry tongue in a child with staphylococcal toxic shock syndrome. Reproduced with permission from Drage, LE. Life-threatening rashes: dermatologic signs of four infectious diseases. Mayo Clin Proc. 1999;74:68-72.
Venn diagram showing the overlap of infection, bacteremia, sepsis, systemic inflammatory response syndrome (SIRS), and multiorgan dysfunction.
A 26-year-old woman developed rapidly progressive shock associated with purpura and signs of meningitis. Her blood culture results confirmed the presence of Neisseria meningitidis. The skin manifestation seen in this image is characteristic of severe meningococcal infection and is called purpura fulminans.
Gram stain of blood showing the presence of Neisseria meningitidis.
Acute respiratory distress syndrome (ARDS), commonly observed in septic shock as a part of multiorgan failure syndrome, results in pathologically diffuse alveolar damage (DAD). This photomicrograph shows early stage (exudative stage) DAD.
Acute respiratory distress syndrome (ARDS), commonly observed in septic shock as a part of multiorgan failure syndrome, results in pathologically diffuse alveolar damage (DAD). This is a high-powered photomicrograph of early stage (exudative stage) DAD.
Photomicrograph showing delayed stage (proliferative or organizing stage) of diffuse alveolar damage (DAD). Proliferation of type II pneumocytes has occurred; hyaline membranes as well as collagen and fibroblasts are present.
Photomicrograph showing delayed stage (proliferative or organizing stage) of diffuse alveolar damage (DAD). Fibrin stain depicts collagenous tissue, which may develop into fibrotic stage of DAD.
Acute respiratory distress syndrome (ARDS) in a patient who developed septic shock secondary to toxic shock syndrome.
Bilateral airspace disease and acute respiratory failure in a patient with gram-negative septic shock. The source of the sepsis was urosepsis.
A 45-year-old woman was admitted to the intensive care unit with septic shock secondary to spontaneous biliary peritonitis. She subsequently developed acute respiratory distress syndrome (ARDS) and multiorgan failure.
An 8-year-old boy developed septic shock secondary to Blastomycosis pneumonia. Fungal infections are rare causes of septic shock.
A 28-year-old woman who was a former intravenous drug user (human immunodeficiency virus [HIV] status: negative) developed septic shock secondary to bilateral pneumococcal pneumonia.
Diagram depicting the pathogenesis of sepsis and multiorgan failure. DIC = disseminated intravascular coagulation; IL = interleukin.
Soft-tissue infection secondary to group A streptococci, leading to toxic shock syndrome.
Necrotizing cellulitis of toxic shock syndrome.
Necrosis of the little toe of the right foot and cellulitis of the foot secondary to group A streptococcal infection.
Group A streptococci cause beta hemolysis on blood agar.
Gram stain of blood showing group A streptococci that was isolated from a patient who developed toxic shock syndrome. Image courtesy of T. Matthews.
A 46-year-old man presented with nonnecrotizing cellulitis and streptococcal toxic shock syndrome. The leg was incised to exclude underlying necrotizing infection. Image courtesy of Rob Green, MD.
A 46-year-old man presented with nonnecrotizing cellulitis and streptococcal toxic shock syndrome (same patient as in previous image). This patient also had streptococcal pharyngitis. Image courtesy of Rob Green, MD.
A 46-year-old man presented with nonnecrotizing cellulitis and streptococcal toxic shock syndrome (same patient as in previous image). The patient had diffuse erythroderma, a characteristic feature of the syndrome. Image courtesy of Rob Green, MD.
A 46-year-old man presented with nonnecrotizing cellulitis and streptococcal toxic shock syndrome (same patient as in previous image). The patient had diffuse erythroderma, a characteristic feature of the syndrome. He improved with antibiotics and intravenous gammaglobulin therapy. Several days later, a characteristic desquamation of the skin occurred over his palms and soles. Image courtesy of Rob Green, MD.
Progression of soft-tissue swelling to vesicle or bullous formation is an ominous sign and suggests streptococcal shock syndrome. Image courtesy of S. Manocha.
Extensive debridement of necrotizing fasciitis of the hand.
Healing of the hand after aggressive surgical debridement of necrotizing fasciitis (same patient as in previous image).
A 58-year-old patient presented in septic shock. On physical examination, progressive swelling of the right groin was observed. On exploration, necrotizing cellulitis, but not fasciitis, was present. The wound cultures grew group A streptococci. The patient developed severe shock (toxic shock syndrome). Computed tomography (CT) scanning helped to evaluate the extent of the infection and to exclude other pathologies (eg, psoas abscess, osteomyelitis, inguinal hernia).
Computed tomography (CT) scan from a 58-year-old patient who presented in septic shock (same patient as in previous image). Progressive swelling of the right groin was noted, and necrotizing cellulitis, but not fasciitis, was present. The wound cultures grew group A streptococci. The patient developed severe shock (toxic shock syndrome). CT scanning helped in the evaluation of the extent of the infection and in the exclusion of other pathologies (eg, psoas abscess, osteomyelitis, inguinal hernia).
Computed tomography (CT) scan from a 58-year-old patient who presented in septic shock (same patient as in previous image). Progressive swelling of the right groin was noted, and necrotizing cellulitis, but not fasciitis, was present. The wound cultures grew group A streptococci. The patient developed severe shock (toxic shock syndrome). CT scanning helped in the evaluation of the extent of the infection and in the exclusion of other pathologies (eg, psoas abscess, osteomyelitis, inguinal hernia).
Space-occupying lesion correlating with left temporoparietal metastatic infiltration associated with peritumoral edema.
Space-occupying lesion correlating with left temporoparietal metastatic infiltration associated with peritumoral edema (same lesion as shown in previous computed tomography image).
Table 1. Sepsis-Related SOFA Score (adapted froom Singer et al)
System 0 Points 1 Point 2 Points 3 Points 4 Points
Respiration



PaO2a/FiO2b



 



≥400 mm Hg



 



<400 mm Hg



 



<300 mm Hg



 



<200 mm Hg



(with respiratory support)



 



<100 mm Hg



(with respiratory support)



Coagulation



Platelet count



 



≥150 x 103/µL



 



<150 x 103/µL



 



<100 x 103/µL



 



<50 x 103/µL



 



<20 x 103/µL



Liver



Bilirubin level



 



<1.2 mg/dL



 



1.2-1.9 mg/dL



 



2-5.9 mg/dL



 



6-11.9 mg/dL



 



>12 mg/dL



Cardiovascular MAPc ≥70 mm Hg MAP >70 mm Hg Dopamine <5 or



dobutamine (any dose)e



Dopamine 5.1-15 or



epinephrine ≤0.1 or



norepinephrine ≤0.1e



Dopamine >15 or



epinephrine >0.1 or



norepinephrine >0.1e



Central nervous system



GCSd score



 



15



 



13-14



 



10-12



 



6-9



 



<6



Renal



Creatinine



Urine output



<1.2 mg/dL 1.2-1.9 mg/dL 2-3.4 mg/dL  



3.5-4.9 mg/dL



<500 mL/day



 



>5 mg/dL



<200 mL/day



aPaO2=Partial pressure of oxygen.



bFiO2=Fraction of inspired oxygen.



cMAP=Mean arterial pressure.



dGCS=Glasgow Coma Scale (range, 3-15, with higher indicating better function).



eCatecholamine doses administered as µg/kg/min for ≥1 hour.



Table 2. Surviving Sepsis Guidelines Criteria for Organ Dysfunction
Organ System Sepsis Criteria Severe Sepsis Criteria
Pulmonary Arterial hypoxemia: PaO2/FIO2 < 300 Arterial hypoxemia: PaO2/FIO2 < 250 in absence of pneumonia and < 200 in presence of pneumonia
Hepatic Hyperbilirubinemia: Plasma total bilirubin >4 mg/dL or 70 µmol/L Hyperbilirubinemia: Plasma total bilirubin >2 mg/dL or 34.2 µmol/L
Renal Creatinine increase >0.5 mg/dL or 44.2 µmol/L



Acute oliguria: Urine output < 0.5 mL/kg/hr for ≥2 hr despite adequate fluid resuscitation



Creatinine >2 mg/dL or 176.8 µmol/L



Acute oliguria: Urine output < 0.5mL/kg/hr for ≥2 hr despite adequate fluid resuscitation



Gastrointestinal Ileus: Absent bowel sounds  
Hematologic INR >1.5, aPTT >60 s, or platelets < 100,000/µL INR >1.5 or platelets < 100,000/µL
Cardiovascular Hyperlactatemia >1 mmol/L; decreased capillary refill or mottling



Hemodynamic status: SBP < 90 mm Hg, MAP < 70 mm Hg, or SBP decrease >40 mm Hg



Hyperlactatemia: Above upper limits of laboratory normal



Hemodynamic status: SBP < 90 mm Hg, MAP < 70 mm Hg, or SBP decrease >40 mm Hg



Central nervous system Confusion, lethargy, coma  
     
aPTT = activated partial thromboplastin time; FIO2 = fraction of inspired oxygen; INR = international normalized ratio; MAP = mean arterial pressure; PaO2 = partial pressure of oxygen; PEEP = positive end-expiratory pressure; PT = prothrombin time; SBP = systolic blood pressure.



Source: Dellinger RP, Levy MM, Rhodes A, et al, for the Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013 Feb;41(2):580-637.[11]



Table 3. Mediators of Sepsis
Type Mediator Activity
Cellular mediators LPS Activation of macrophages, neutrophils, platelets, and endothelium releases various cytokines and other mediators
Lipoteichoic acid
Peptidoglycan
Superantigens
Endotoxin
Humoral mediators Cytokines Activate inflammatory pathways
  • TNF-α and IL-1β
Potent proinflammatory effect
  • IL-6
Acts as pyrogen, stimulates B- and T-cell proliferation
  • IL-8
Neutrophil chemotactic factor, activation and degranulation of neutrophils
  • IL-10
Inhibits cytokine production, induces immunosuppression
  • MIF
Activates macrophages and T cells
  • G-CSF
Promotes neutrophil and macrophage, platelet activation
Complement Promotes neutrophil and macrophage, platelet activation and chemotaxis, other proinflammatory effects
Nitric oxide Involved in hemodynamic alterations of septic shock; cytotoxic, augments vascular permeability, contributes to shock  
Lipid mediators Enhance vascular permeability and contribute to lung injury  
  • Phospholipase A2
   
  • PAF
   
  • Eicosanoids
   
Arachidonic acid metabolites Augment vascular permeability  
Adhesion molecules Enhance neutrophil-endothelial cell interaction, regulate leukocyte migration and adhesion, and play a role in pathogenesis of sepsis; increased levels of VAP-1 activity and anchor protein SDC-1 content have been found in critically ill patients with septic shock[12]  
  • Selectins
   
  • Leukocyte integrins
   
  • High mobility box–1
Late mediator of endotoxin-induced lethality and tissue repair  
G-CSF = granulocyte colony-stimulating factor; IL = interleukin; LPS = lipopolysaccharide; MIF = macrophage inhibitory factor; PAF = platelet-activating factor; SDC-1 = syndecan-1; TNF = tumor necrosis factor; VAP-1 = vascular adhesion protein–1.



Source:  Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med. 2009 Jan;37(1):291-304.[13]



 
 
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.