Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Portal Hypertension Workup

  • Author: Jesus Carale, MD; Chief Editor: BS Anand, MD  more...
 
Updated: Nov 07, 2015
 

Approach Considerations

As noted under Physical Examination, rectal examination that reveals a black, soft, tarry stool on the gloved examining finger suggests upper gastrointestinal bleeding.

Ultrasonography is a safe, economical, and effective method of screening for portal hypertension. It can also demonstrate portal flow and helps in diagnosing cavernous transformation of the portal vein, portal vein thrombosis, and splenic vein thrombosis.[25] Ultrasonography of the upper abdomen may be indicated in patients with esophageal varices, especially if biliary obstruction or liver cancer is suspected. Computed tomography (CT) scanning and magnetic resonance imaging (MRI) can be used when ultrasonographic findings are inconclusive.

When bleeding is obscure and the source is unclear, a bleeding scan or angiography may be warranted; angiography can also provide therapeutic intervention in an acute bleeding episode. Selective angiography of the superior mesenteric artery or splenic artery with venous return phase can also be performed in patients with portal hypertension.

On liver biopsy, histologic findings are varied and depend not only on the cause of liver disease but also on the cause of portal hypertension. Zone 3 necrosis can be observed in portal hypertension secondary to congestive heart failure and Budd-Chiari syndrome. In cases of normal liver parenchyma, investigate for prehepatic causes of portal hypertension.

Next

Laboratory Studies

Laboratory studies are directed towards investigating the etiologies of cirrhosis, which is the most common cause of portal hypertension. The rate and volume of bleeding in the patient should be assessed.

Gain venous access and obtain blood for immediate hematocrit measurement. Obtain a type and cross-match for possible blood product transfusion. Measure the platelet count and prothrombin time (PT), send blood for renal and liver function tests (LFTs), and measure serum electrolyte levels.

Complete blood count (CBC)

The presence of anemia, leukopenia, and thrombocytopenia may be present in patients with cirrhosis. Anemia may be secondary to bleeding, nutritional deficiencies, or bone marrow suppression secondary to alcoholism. Pancytopenia can result from hypersplenism, a common complication in patients with portal hypertension. Serial monitoring of the hemoglobin and hematocrit value is useful in patients with suspected ongoing gastrointestinal bleeding.

Liver disease–associated tests

Abnormal liver function can be approached as a transaminitis (an elevation of the plasma activity of aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) or cholestasis (an elevation of bilirubin, especially conjugated bilirubin, with or without increased alkaline phosphatase [ALP] activity), both of which may occur in cirrhosis. However, normal liver function studies do not exclude liver disease, as a "burned out" liver (ie, one that loses features of disease activity) may not give rise to aminotransferase activity.

Type and cross-match

Transfusion with packed red blood cells (RBCs) and fresh frozen plasma (FFP) are usually required in patients with massive variceal bleeding.

Coagulation tests

Coagulation studies include PT, partial thromboplastin time (PTT), and international normalized ratio (INR). Because the synthetic function of the liver is impaired in cirrhotic patients, coagulopathy with prolonged PT and PTT is expected; INR is also used to assess the severity and prognosis of the liver disease through Model for End-Stage Liver Disease (MELD) score calculation (see the MELD Score calculator). Prolonged INR is suggestive of impaired hepatic synthetic function. See also the Medscape Reference articles Cirrhosis and Liver Transplantation.

Blood urea nitrogen, creatinine, and electrolytes

Blood urea nitrogen (BUN) and creatinine levels may be elevated in patients with esophageal bleeding; BUN is also used in calculating the Blatchford bleeding score in the initial evaluation, and serum creatinine results are used in calculating the MELD score.

Arterial blood gas (ABG) and pH measurements

A high anion gap may suggest hyperlactatemia or hyperammonemia.

Hepatic and viral hepatitis serologies

Obtain viral hepatitis serologies, particularly hepatitis B and C. These may help in assessing the cause of liver cirrhosis.

Other laboratory tests may include the following:

  • Albumin levels - Hypoalbuminemia is commonly found owing to the liver's impaired synthetic function
  • Antinuclear antibody, antimitochondrial antibody, antismooth muscle antibody
  • Iron indices
  • Alpha1-antitrypsin deficiency
  • Ceruloplasmin, 24-hour urinary copper - Consider this test only in individuals aged 3-40 years who have unexplained hepatic, neurologic, or psychiatric disease
Previous
Next

Duplex Doppler Ultrasonography

On duplex Doppler ultrasonography, features suggestive of hepatic cirrhosis with portal hypertension include the following:

  • Nodular liver surface - However, this finding is not specific for cirrhosis; it can also be observed with congenital hepatic fibrosis and nodular regenerative hyperplasia
  • Splenomegaly
  • Collateral circulation

Limitations of ultrasonography include the fact that the reproducibility of data is problematic and that many variables, such as circadian rhythm, meals, medications, and the sympathetic nervous system, affect portal hemodynamics. Moreover, significant interobserver and intraobserver variation exist in quantitative ultrasonographic measurement.

Previous
Next

CT Scanning and MRI

CT scanning

Computed tomography (CT) scanning is a useful qualitative study when ultrasonographic evaluations are inconclusive. CT scanning is not affected by the patient’s body habitus or the presence of bowel gas. With improvement of spiral CT scanning and 3-dimensional (3-D) angiographic reconstructive techniques, portal vasculature may be visualized more accurately. (See the image below.)

Computed tomography scan showing esophageal varice Computed tomography scan showing esophageal varices. Note the extensive collateralization within the abdomen adjacent to the spleen as a result of severe portal hypertension.

Findings suggestive of portal hypertension include collaterals arising from the portal system and dilatation of the inferior vena cava (IVC).

Limitations of CT scanning include the fact that it cannot demonstrate the venous and arterial flow profile and that intravenous contrast agents cannot be used in patients with renal failure or contrast allergy.

MRI

Magnetic resonance imaging (MRI) provides qualitative information similar to that from CT scanning when Doppler ultrasonographic findings are inconclusive. MRI angiography detects the presence of portosystemic collaterals and obstruction of portal vasculature. MRI also provides quantitative data on portal venous and azygos blood flow.

Liver-spleen scan

Liver-screen scanning is described for historical interest only, because this technique has been superseded by ultrasonography and CT scanning. Liver-spleen scans use technetium sulfur colloid, which is taken up by cells in the reticuloendothelial system. A colloidal shift from the liver to the spleen or bone marrow is suggestive of increased portal pressure.

Limitations of these scans include the fact that portal hypertension cannot be ruled out in the absence of this shift. In addition, liver-spleen scans lack spatial resolution.

Previous
Next

Hemodynamic Measurement of Portal Pressure

Direct portal measurements are usually not performed, due to their invasive nature, the risk of complications, and the interference of anesthetic agents with portal hemodynamics.

More commonly, measurement of the hepatic venous pressure gradient (HVPG) is performed; this is an indirect measurement that closely approximates portal venous pressure. Monitoring HVPG is useful in assessing the patient's response to treatment, progression of the disease, and prognosis. Reduction in HVPG of greater than 20% of baseline or to less than 12 mm Hg significantly reduces mortality and the risk of recurrent variceal hemorrhage.[12]

A fluid-filled balloon catheter is introduced into the femoral or internal jugular vein and advanced under fluoroscopy into a branch of the hepatic vein. Free hepatic venous pressure (FHVP) is then measured. The balloon is inflated until it is wedged inside the hepatic vein, occluding it completely and thus equalizing the pressure throughout the static column of blood. The occluded hepatic venous pressure (ie, wedged hepatic venous pressure) minus the unoccluded, or free, portal venous pressure (ie, FHVP) is the HVPG.

In cirrhotic patients, measurements of peripheral endothelin-1 (ET-1) and transforming growth factor-beta1 levels may be used as noninvasive markers of portal hypertension and liver insufficiency.[26]  Wereszczynka-Siemiatkowska et al found that peripheral levels of these mediators are strongly correlated with their hepatic levels. Among their findings were that patients with cirrhosis had significantly higher levels of peripheral ET-1 but decreased levels of transforming growth factor-beta1, as well as before and after treatment, peripheral and hepatic ET-1, transforming growth factor-beta1 and 2 levels correlated significantly with liver failure indicators (eg, laboratory parameters, Child-Pough and MELD scores) and pressure gradient values.[26]

Previous
Next

Upper Gastrointestinal Endoscopy

Endoscopy (esophagogastroduodenoscopy [EGD]) is an essential diagnostic and therapeutic tool at an early stage to formulate the management plan for patients with esophageal varices. If active variceal bleeding or an adherent clot is observed, variceal hemorrhage can be diagnosed confidently. The presence of any of the following risk factors warrants a screening endoscopy to search for varices[12] :

  • International normalized ratio (INR) level of 1.5 or greater
  • Hepatic venous pressure gradient (HVPG) measurement of 10 mm Hg or greater
  • Portal vein diameter of more than 13 mm
  • Presence of thrombocytopenia

The presence of variceal red color signs (eg, cherry red spots, red wale markings [longitudinal red streaks on varices], blue varices) and the "white nipple sign" (platelet fibrin plug overlying a varix, resembling a white nipple) indicates an increased risk of rebleeding.[12, 27, 28]

Perform upper endoscopy, as appropriate, to screen for varices in every patient with suggestive findings of portal hypertension. This procedure allows not only direct visual evaluation of the size, location, and bleeding stigmata of the lesion, but it can also provide prompt therapeutic intervention.

At the initial diagnosis of cirrhosis, all of these patients should be considered for the presence of varices; however, endoscopy may be omitted in patients who are already on a nonselective beta-blocker for other indications. Gastroesophageal varices confirm the diagnosis of portal hypertension; however, their absence does not rule it out. At times, gastroesophageal varices are incidental findings in patients undergoing upper endoscopy for other reasons (eg, dyspepsia refractory to medications, dysphagia, weight loss); these patients should undergo further investigations for etiologies of portal hypertension.

Various indirect indices, such as platelet count, spleen size, albumin, and Child-Pugh score, have been studied to help diagnose varices without endoscopy. A case review study, however, revealed that some of these predictors are unreliable. For the time being, endoscopy remains the criterion standard for screening patients with cirrhosis for varices.

Periodic surveillance endoscopy should be performed in patients with cirrhosis as follows[29] :

  • Compensated patients with no varices at screening endoscopy and with ongoing liver injury (eg, active drinking in alcoholics, lack of sustained virologic response [SVR] in those with hepatitis C [HCV] infection): Surveillance endoscopy should be repeated at 2 year intervals.
  • Compensated patients with small varices and with ongoing liver injury (eg, active drinking in alcoholics, lack of SVR in HCV patients): Surveillance endoscopy should be repeated at 1-year intervals.
  • Compensated patients with no varices at screening endoscopy in whom the etiologic factor has been removed (eg, long-lasting abstinence in alcoholics, achievement of SVR in HCV patients) and who have no cofactors (eg, obesity): Surveillance endoscopy should be repeated at 3-year intervals.
  • Compensated patients with small varices at screening endoscopy in whom the etiologic factor has been removed (eg, long-lasting abstinence in alcoholics, achievement of SVR in HCV patients), and who do not have cofactors (eg, obesity): Surveillance endoscopy should be repeated at 2-year intervals.

Transient elastography

Although measurement of hepatic venous pressure gradient (HVPG) and upper endoscopy are considered the criterion standards for assessment of portal hypertension, ultrasonography-based transient elastography is a novel noninvasive technology to detect clinically significant portal hypertension. Further studies are being conducted to validate this.[30]

Korean investigators have indicated that shear wave elastography is a reliable noninvasive study for predicting clinically significant and severe portal hypertension.[31]  In 92 patients with cirrhosis, real-time shear wave elastography measurement of liver stiffness appeared to be strongly correlated with HVPG regardless of the presence/absence of ascites.[31]

Previous
 
 
Contributor Information and Disclosures
Author

Jesus Carale, MD Consulting Gastroenterologist, Arkansas Valley Regional Medical Center, La Junta, Colorado

Jesus Carale, MD is a member of the following medical societies: American Gastroenterological Association

Disclosure: Nothing to disclose.

Coauthor(s)

Samy A Azer, MD, PhD, MPH Professor of Medical Education, Chair of Medical Education Research and Development Unit, Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Visiting Professor of Medical Education, Faculty of Medicine, University of Toyama, Japan; Former Senior Lecturer in Medical Education, Faculty Education Unit, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne and University of Sydney, Australia

Samy A Azer, MD, PhD, MPH is a member of the following medical societies: New York Academy of Sciences, Sigma Xi, Association for Psychological Science, Gastroenterological Society of Australia, American College of Gastroenterology, Royal Society of Medicine

Disclosure: Nothing to disclose.

Parit Mekaroonkamol, MD Resident Physician, Department of Internal Medicine, Albert Einstein Medical Center

Parit Mekaroonkamol, MD is a member of the following medical societies: American College of Physicians, American Gastroenterological Association, Pennsylvania Medical Society

Disclosure: Nothing to disclose.

Chief Editor

BS Anand, MD Professor, Department of Internal Medicine, Division of Gastroenterology, Baylor College of Medicine

BS Anand, MD is a member of the following medical societies: American Association for the Study of Liver Diseases, American College of Gastroenterology, American Gastroenterological Association, American Society for Gastrointestinal Endoscopy

Disclosure: Nothing to disclose.

Acknowledgements

Samy A Azer, MD, PhD, MPH Professor of Medical Education and Head of Curriculum Development Unit, King Saud University, Riyadh, Saudi Arabia; Visiting Professor of Medical Education, Faculty of Medicine, University of Toyama, Japan; former Professor of Medical Education, Chair of Medical Education Research and Development Unit, Faculty of Medicine, Universiti Teknologi MARA, Malaysia; former Consultant to the Victorian Postgraduate Medical Foundation, Melbourne, Australia; former Senior Lecturer in Medical Education, Faculty Education Unit, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne and University of Sydney, Australia

Samy A Azer, MD, PhD, MPH is a member of the following medical societies: American College of Gastroenterology, Association for Psychological Science, Gastroenterological Society of Australia, New York Academy of Sciences, Royal Society of Medicine, and Sigma Xi

Disclosure: Nothing to disclose.

Simmy Bank, MD Chair, Professor, Department of Internal Medicine, Division of Gastroenterology, Long Island Jewish Hospital, Albert Einstein College of Medicine

Disclosure: Nothing to disclose.

Sandeep Mukherjee, MB, BCh, MPH, FRCPC Associate Professor, Department of Internal Medicine, Section of Gastroenterology and Hepatology, University of Nebraska Medical Center; Consulting Staff, Section of Gastroenterology and Hepatology, Veteran Affairs Medical Center

Sandeep Mukherjee, MB, BCh, MPH, FRCPC is a member of the following medical societies: Royal College of Physicians and Surgeons of Canada

Disclosure: Merck Honoraria Speaking and teaching; Ikaria Pharmaceuticals Honoraria Board membership

Ann Ouyang, MBBS Professor, Department of Internal Medicine, Pennsylvania State University College of Medicine; Attending Physician, Division of Gastroenterology and Hepatology, Milton S Hershey Medical Center

Disclosure: Nothing to disclose.

Waqar A Qureshi, MD Associate Professor of Medicine, Chief of Endoscopy, Department of Internal Medicine, Division of Gastroenterology, Baylor College of Medicine and Veterans Affairs Medical Center

Waqar A Qureshi, MD is a member of the following medical societies: American College of Gastroenterology, American College of Physicians, American Gastroenterological Association, and American Society for Gastrointestinal Endoscopy

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Reference Salary Employment

Noel Williams, MD Professor Emeritus, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Professor, Department of Internal Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada

Noel Williams, MD is a member of the following medical societies: Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.

References
  1. Hou W, Sanyal AJ. Ascites: diagnosis and management. Med Clin North Am. 2009 Jul. 93(4):801-17, vii. [Medline].

  2. Khurana I. Essentials of Medical Physiology. Noida, Uttar Pradesh, India: Elsevier; 2008. 215.

  3. Lubel JS, Angus PW. Modern management of portal hypertension. Intern Med J. 2005 Jan. 35(1):45-9. [Medline].

  4. Obara K. Hemodynamic mechanism of esophageal varices. Dig Endosc. 2006 Jan. 18(1):6-9.

  5. Ravindra KV, Eng M, Marvin M. Current management of sinusoidal portal hypertension. Am Surg. 2008 Jan. 74(1):4-10. [Medline].

  6. Theodorakis NG, Wang YN, Wu JM, Maluccio MA, Sitzmann JV, Skill NJ. Role of endothelial nitric oxide synthase in the development of portal hypertension in the carbon tetrachloride-induced liver fibrosis model. Am J Physiol Gastrointest Liver Physiol. 2009 Oct. 297(4):G792-9. [Medline].

  7. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998 Oct. 28(4):926-31. [Medline].

  8. [Guideline] Garcia-Tsao G, Sanyal AJ, Grace ND, Carey WD, and the Practice Guidelines Committee of the American Association for the Study of Liver Diseases, the Practice Parameters Committee of the American College of Gastroenterology. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Am J Gastroenterol. 2007 Sep. 102(9):2086-102. [Medline].

  9. Bhathal PS, Grossman HJ. Reduction of the increased portal vascular resistance of the isolated perfused cirrhotic rat liver by vasodilators. J Hepatol. 1985. 1(4):325-37. [Medline].

  10. Chawla Y, Duseja A, Dhiman RK. Review article: the modern management of portal vein thrombosis. Aliment Pharmacol Ther. 2009 Nov 1. 30(9):881-94. [Medline].

  11. Seijo S, Reverter E, Miquel R, et al. Role of hepatic vein catheterisation and transient elastography in the diagnosis of idiopathic portal hypertension. Dig Liver Dis. 2012 Oct. 44(10):855-60. [Medline].

  12. [Guideline] Dite P, Labrecque D, Fried M, et al, for the World Gastroenterology Organisation (WGO). World Gastroenterology Organisation practice guideline: esophageal varices. Munich, Germany: World Gastroenterology Organisation; 2008. Available at http://guideline.gov/content.aspx?id=13000. Accessed: August 6, 2012.

  13. Thalheimer U, Leandro G, Samonakis DN, Triantos CK, Patch D, Burroughs AK. Assessment of the agreement between wedge hepatic vein pressure and portal vein pressure in cirrhotic patients. Dig Liver Dis. 2005 Aug. 37(8):601-8. [Medline].

  14. Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology. 2008 May. 134(6):1715-28. [Medline].

  15. [Guideline] Qureshi W, Adler DG, Davila R, et al, for the Standards of Practice Committee. ASGE Guideline: the role of endoscopy in the management of variceal hemorrhage, updated July 2005. Gastrointest Endosc. 2005 Nov. 62(5):651-5. [Medline].

  16. Heil T, Mattes P, Loeprecht H. Gastro-oesophageal reflux: an aetiological factor for bleeding in oesophageal varices?. Br J Surg. 1980 Jul. 67(7):467-8. [Medline].

  17. Eckardt VF, Grace ND. Gastroesophageal reflux and bleeding esophageal varices. Gastroenterology. 1979 Jan. 76(1):39-42. [Medline].

  18. Yoon Y, Yi H. Surveillance report no. 88: liver cirrhosis mortality in the United States, 1970-2007. National Institute on Alcohol Abuse and Alcoholism. Available at http://pubs.niaaa.nih.gov/publications/surveillance88/Cirr07.htm. Accessed: Jul 17 2012.

  19. Kim WR, Brown RS Jr, Terrault NA, El-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology. 2002 Jul. 36(1):227-42. [Medline].

  20. D'Amico G, Garcia-Pagan JC, Luca A, Bosch J. Hepatic vein pressure gradient reduction and prevention of variceal bleeding in cirrhosis: a systematic review. Gastroenterology. 2006 Nov. 131(5):1611-24. [Medline].

  21. Fussner LA, Iyer VN, Cartin-Ceba R, Lin G, Watt KD, Krowka MJ. Intrapulmonary vascular dilatations are common in portopulmonary hypertension and may be associated with decreased survival. Liver Transpl. 2015 Nov. 21 (11):1355-64. [Medline].

  22. Jutabha R, Jensen DM. Management of upper gastrointestinal bleeding in the patient with chronic liver disease. Med Clin North Am. 1996 Sep. 80(5):1035-68. [Medline].

  23. Boonpongmanee S, Fleischer DE, Pezzullo JC, et al. The frequency of peptic ulcer as a cause of upper-GI bleeding is exaggerated. Gastrointest Endosc. 2004 Jun. 59(7):788-94. [Medline].

  24. Enestvedt BK, Gralnek IM, Mattek N, Lieberman DA, Eisen G. An evaluation of endoscopic indications and findings related to nonvariceal upper-GI hemorrhage in a large multicenter consortium. Gastrointest Endosc. 2008 Mar. 67(3):422-9. [Medline].

  25. Singal AK, Ahmad M, Soloway RD. Duplex Doppler ultrasound examination of the portal venous system: an emerging novel technique for the estimation of portal vein pressure. Dig Dis Sci. 2010 May. 55(5):1230-40. [Medline].

  26. Wereszczynka-Siemiatkowska U, Swidnicka-Siergiejko A, Siemiatkowski A, et al. Endothelin 1 and transforming growth factor-β1 correlate with liver function and portal pressure in cirrhotic patients. Cytokine. 2015 Dec. 76 (2):144-51. [Medline].

  27. Beppu K, Inokuchi K, Koyanagi N, et al. Prediction of variceal hemorrhage by esophageal endoscopy. Gastrointest Endosc. 1981 Nov. 27(4):213-8. [Medline].

  28. Khan NM, Shapiro AB. The white nipple sign: please do not disturb. Case Rep Gastroenterol. 2011 May. 5(2):386-90. [Medline]. [Full Text].

  29. de Franchis R, Baveno VI Faculty. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015 Sep. 63(3):743-52. [Medline].

  30. Castera L, Pinzani M, Bosch J. Non invasive evaluation of portal hypertension using transient elastography. J Hepatol. 2012 Mar. 56(3):696-703. [Medline].

  31. Kim TY, Jeong WK, Sohn JH, Kim J, Kim MY, Kim Y. Evaluation of portal hypertension by real-time shear wave elastography in cirrhotic patients. Liver Int. 2015 Nov. 35 (11):2416-24. [Medline].

  32. Pollo-Flores P, Soldan M, Santos UC, et al. Three months of simvastatin therapy vs. placebo for severe portal hypertension in cirrhosis: A randomized controlled trial. Dig Liver Dis. 2015 Nov. 47 (11):957-63. [Medline].

  33. de Franchis R. Updating consensus in portal hypertension: report of the Baveno III Consensus Workshop on definitions, methodology and therapeutic strategies in portal hypertension. J Hepatol. 2000 Nov. 33(5):846-52. [Medline].

  34. Ferreira FG, Ribeiro MA, de Fatima Santos M, Assef JC, Szutan LA. Doppler ultrasound could predict varices progression and rebleeding after portal hypertension surgery: lessons from 146 EGDS and 10 years of follow-up. World J Surg. 2009 Oct. 33(10):2136-43. [Medline].

  35. Burger-Klepp U, Karatosic R, Thum M, et al. Transesophageal echocardiography during orthotopic liver transplantation in patients with esophagoastric varices. Transplantation. 2012 Jul 27. 94(2):192-6. [Medline].

  36. Bonnet S, Sauvanet A, Bruno O, et al. Long-term survival after portal vein arterialization for portal vein thrombosis in orthotopic liver transplantation. Gastroenterol Clin Biol. 2010 Jan. 34(1):23-8. [Medline].

  37. Lo GH, Lai KH, Cheng JS, et al. Endoscopic variceal ligation plus nadolol and sucralfate compared with ligation alone for the prevention of variceal rebleeding: a prospective, randomized trial. Hepatology. 2000 Sep. 32(3):461-5. [Medline].

  38. Lo GH, Chen WC, Chan HH, et al. A randomized, controlled trial of banding ligation plus drug therapy versus drug therapy alone in the prevention of esophageal variceal rebleeding. J Gastroenterol Hepatol. 2009 Jun. 24(6):982-7. [Medline].

  39. Kumar A, Jha SK, Sharma P, et al. Addition of propranolol and isosorbide mononitrate to endoscopic variceal ligation does not reduce variceal rebleeding incidence. Gastroenterology. 2009 Sep. 137(3):892-901, 901.e1. [Medline].

  40. de Franchis R. Evolving consensus in portal hypertension. Report of the Baveno IV consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol. 2005 Jul. 43(1):167-76. [Medline].

  41. Castaneda B, Morales J, Lionetti R, et al. Effects of blood volume restitution following a portal hypertensive-related bleeding in anesthetized cirrhotic rats. Hepatology. 2001 Apr. 33(4):821-5. [Medline].

  42. Sass DA, Chopra KB. Portal hypertension and variceal hemorrhage. Med Clin North Am. 2009 Jul. 93(4):837-53, vii-viii. [Medline].

  43. Rimola A, Garcia-Tsao G, Navasa M. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol. 2000 Jan. 32(1):142-53. [Medline].

  44. de Franchis R. Revising consensus in portal hypertension: report of the Baveno V consensus workshop on methodology of diagnosis and therapy in portal hypertension. J Hepatol. 2010 Oct. 53(4):762-8. [Medline].

  45. Chandramouli J, Jensen L. Vasopressin injection. [Updated October 16, 2012.] Alternative agents & management. Table 1. Alternatives to vasopressin in selected situations. American Society of Health-System Pharmacists. Available at https://www.ashp.org/DrugShortages/Current/bulletin.aspx?id=795. Accessed: November 20, 2012.

  46. Imperiale TF, Teran JC, McCullough AJ. A meta-analysis of somatostatin versus vasopressin in the management of acute esophageal variceal hemorrhage. Gastroenterology. 1995 Oct. 109(4):1289-94. [Medline].

  47. Baik SK, Jeong PH, Ji SW. Acute hemodynamic effects of octreotide and terlipressin in patients with cirrhosis: a randomized comparison. Am J Gastroenterol. 2005 Mar. 100(3):631-5. [Medline].

  48. D'Amico G, Pagliaro L, Pietrosi G, Tarantino I. Emergency sclerotherapy versus vasoactive drugs for bleeding oesophageal varices in cirrhotic patients. Cochrane Database Syst Rev. 2010 Mar 17. CD002233. [Medline].

  49. Bajaj JS, Sanyal AJ. Treatment of active variceal hemorrhage. UpToDate. Available at http://www.uptodate.com/contents/treatment-of-active-variceal-hemorrhage. Accessed: August 2, 2012.

  50. Garcia-Pagan JC, Bosch J. Endoscopic band ligation in the treatment of portal hypertension. Nat Clin Pract Gastroenterol Hepatol. 2005 Nov. 2(11):526-35. [Medline].

  51. Avgerinos A, Armonis A, Stefanidis G, et al. Sustained rise of portal pressure after sclerotherapy, but not band ligation, in acute variceal bleeding in cirrhosis. Hepatology. 2004 Jun. 39(6):1623-30. [Medline].

  52. Cheng LF, Wang ZQ, Li CZ, Lin W, Yeo AE, Jin B. Low incidence of complications from endoscopic gastric variceal obturation with butyl cyanoacrylate. Clin Gastroenterol Hepatol. 2010 Sep. 8(9):760-6. [Medline].

  53. Garcia-Pagan JC, Caca K, Bureau C, Laleman W, Appenrodt B, Luca A. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010 Jun 24. 362(25):2370-9. [Medline].

  54. Danziger J, Thummalakunta L, Nelson R, Faintuch S. The risk of acute kidney injury with transjugular intrahepatic portosystemic shunts. J Nephrol. 2015 Dec. 28 (6):725-8. [Medline].

  55. Samonakis DN, Triantos CK, Thalheimer U. Management of portal hypertension. Postgrad Med J. 2004 Nov. 80(949):634-41. [Medline].

  56. D'Amico G, Pagliaro L, Bosch J. Pharmacological treatment of portal hypertension: an evidence-based approach. Semin Liver Dis. 1999. 19(4):475-505. [Medline].

  57. Bosch J, Abraldes JG, Groszmann R. Current management of portal hypertension. J Hepatol. 2003. 38 Suppl 1:S54-68. [Medline].

  58. Chang YW. Indication of treatment for esophageal varices: who and when?. Dig Endosc. 2006 Jan. 18(1):10-5.

  59. Garcia-Tsao G, Sanyal AJ, Grace ND, Carey W. Prevention and management of gastroesophageal varices and variceal hemorrhage in cirrhosis. Hepatology. 2007 Sep. 46(3):922-38. [Medline].

  60. Merkel C, Marin R, Enzo E, et al. Randomised trial of nadolol alone or with isosorbide mononitrate for primary prophylaxis of variceal bleeding in cirrhosis. Gruppo-Triveneto per L'ipertensione portale (GTIP). Lancet. 1996 Dec 21-28. 348(9043):1677-81. [Medline].

  61. Garcia-Tsao G. Portal hypertension. Curr Opin Gastroenterol. 2000 May. 16(3):282-9. [Medline].

  62. Gluud LL, Klingenberg S, Nikolova D, Gluud C. Banding ligation versus beta-blockers as primary prophylaxis in esophageal varices: systematic review of randomized trials. Am J Gastroenterol. 2007 Dec. 102(12):2842-8; quiz 2841, 2849. [Medline].

  63. Lay CS, Tsai YT, Lee FY, et al. Endoscopic variceal ligation versus propranolol in prophylaxis of first variceal bleeding in patients with cirrhosis. J Gastroenterol Hepatol. 2006 Feb. 21(2):413-9. [Medline].

  64. Abraczinskas DR, Ookubo R, Grace ND. Propranolol for the prevention of first esophageal variceal hemorrhage: a lifetime commitment?. Hepatology. 2001 Dec. 34(6):1096-102. [Medline].

  65. Augustin S, Millan L, Gonzalez A, et al. Detection of early portal hypertension with routine data and liver stiffness in patients with asymptomatic liver disease: a prospective study. J Hepatol. 2014 Mar. 60(3):561-9. [Medline].

  66. Bhasin DK, Siyad I. Variceal bleeding and portal hypertension: new lights on old horizon. Endoscopy. 2004 Feb. 36(2):120-9. [Medline].

  67. Boggs W. Newborn health advocates propose acceleration of kangaroo mother care. Reuters Health Information. December 4, 2013. [Full Text].

  68. Boggs W. Simple strategy detects early portal hypertension in asymptomatic patients. Reuters Health Information. November 28, 2013. Available at http://www.medscape.com/viewarticle/815191. Accessed: December 10, 2013.

  69. Chalasani N, Imperiale TF, Ismail A. Predictors of large esophageal varices in patients with cirrhosis. Am J Gastroenterol. 1999 Nov. 94(11):3285-91. [Medline].

  70. Conn HO. Portal hypertension, varices, and transjugular intrahepatic portosystemic shunts. Clin Liver Dis. 2000 Feb. 4(1):133-50, vii. [Medline].

  71. de Franchis R, Primignani M. Why do varices bleed?. Gastroenterol Clin North Am. 1992 Mar. 21(1):85-101. [Medline].

  72. Feldman M, Scharschmidt B, Zorab R, eds. Sleisenger and Fordtran's Gastrointestinal and Liver Disease: Pathophysiology/Diagnosis/Management. 6th ed. Philadelphia, PA: WB Saunders; 1998.

  73. Garcia-Pagan JC, Bosch J. Medical treatment of portal hypertension. Baillieres Best Pract Res Clin Gastroenterol. 2000 Dec. 14(6):895-909. [Medline].

  74. Garcia-Tsao G. Current management of the complications of cirrhosis and portal hypertension: variceal hemorrhage, ascites, and spontaneous bacterial peritonitis. Gastroenterology. 2001 Feb. 120(3):726-48. [Medline].

  75. Goh SH, Tan WP, Lee SW. Clinical predictors of bleeding esophageal varices in the ED. Am J Emerg Med. 2005 Jul. 23(4):531-5. [Medline].

  76. Henderson JM. Surgical treatment of portal hypertension. Baillieres Best Pract Res Clin Gastroenterol. 2000 Dec. 14(6):911-25. [Medline].

  77. Krige JE, Beckingham IJ. ABC of diseases of liver, pancreas, and biliary system. Portal hypertension-1: varices. BMJ. 2001 Feb 10. 322(7282):348-51. [Medline].

  78. Krige JE, Shaw JM, Bornman PC. The evolving role of endoscopic treatment for bleeding esophageal varices. World J Surg. 2005. 29:966-73. [Medline].

  79. Lowe RC, Grace ND. Pharmacologic therapy for portal hypertension. Curr Gastroenterol Rep. 2001 Feb. 3(1):24-9. [Medline].

  80. Merkel C, Zoli M, Siringo S. Prognostic indicators of risk for first variceal bleeding in cirrhosis: a multicenter study in 711 patients to validate and improve the North Italian Endoscopic Club (NIEC) index. Am J Gastroenterol. 2000 Oct. 95(10):2915-20. [Medline].

  81. Pruvot FR, Quandalle P, Paris JC. [What's left for surgical treatment of portal hypertension in cirrhosis patients?]. Gastroenterol Clin Biol. 2003 Nov. 27(11):1013-20. [Medline].

  82. Russo MW, Brown RS Jr. Endoscopic treatment of patients with portal hypertension. Gastrointest Endosc Clin N Am. 2001 Jan. 11(1):1-14. [Medline].

  83. Sarin SK, Lahoti D, Saxena SP, Murthy NS, Makwana UK. Prevalence, classification and natural history of gastric varices: a long-term follow-up study in 568 portal hypertension patients. Hepatology. 1992 Dec. 16(6):1343-9. [Medline].

  84. Schiff ER, Sorrell MF, Maddrey WC, eds. Schiff's Diseases of the Liver. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999.

  85. Sherlock S, Dooley J, eds. Diseases of the Liver and Biliary System. 10th ed. Oxford, UK: Wiley-Blackwell; 1997.

  86. Soares-Weiser K, Brezis M, Tur-Kaspa R. Antibiotic prophylaxis of bacterial infections in cirrhotic inpatients: a meta-analysis of randomized controlled trials. Scand J Gastroenterol. 2003 Feb. 38(2):193-200. [Medline].

  87. Sterling RK, Sanyal AJ. Are TIPS tops in the treatment of portal hypertension? A review on the use and misuse of transjugular intrahepatic portosystemic shunts. Can J Gastroenterol. 2000 Nov. 14 Suppl D:122D-128D. [Medline].

  88. Wongcharatrawee S, Groszmann RJ. Diagnosing portal hypertension. Baillieres Best Pract Res Clin Gastroenterol. 2000 Dec. 14(6):881-94. [Medline].

 
Previous
Next
 
Large esophageal varices with red wale signs seen on endoscopy. Courtesy of Wikimedia Commons.
Uphill esophageal varices. Barium swallow demonstrates multiple serpiginous filling defects primarily involving the lower one third of the esophagus with striking prominence around the gastroesophageal junction. The patient had cirrhosis secondary to alcohol abuse.
Barium swallow demonstrating esophageal varices involving the entire length of the esophagus. This appearance may be seen in advanced uphill varices or downhill varices secondary to superior vena cava obstruction at or below the level of the azygous vein.
Computed tomography scan showing esophageal varices. Note the extensive collateralization within the abdomen adjacent to the spleen as a result of severe portal hypertension.
Normal venous flow through the portal and systemic circulation. IMC = inferior mesenteric vein; IVC = inferior vena cava; SVC = superior vena cava.
Redirection of flow through the left gastric vein secondary to portal hypertension or portal venous occlusion. Uphill varices develop in the distal one third of the esophagus. IMC = inferior mesenteric vein; IVC = inferior vena cava; SVC = superior vena cava.
Portal vein and associated anatomy.
Power Doppler sonogram through the spleen shows varices at the hilum of an enlarged spleen. The final diagnosis was hepatitis C cirrhosis, hepatocellular carcinoma of the left hepatic lobe (which had ruptured into the peritoneum), and portoarterial fistula (which had developed inside the ruptured tumor, giving rise to severe portal hypertension).
Duplex spectral Doppler sonogram of the portal vein (same patient as in the previous image) shows a bidirectional flow within the vein. The final diagnosis was hepatitis C cirrhosis, hepatocellular carcinoma of the left hepatic lobe (which had ruptured into the peritoneum), and portoarterial fistula (which had developed inside the ruptured tumor, giving rise to severe portal hypertension).
Digital subtraction selective common hepatic artery angiogram shows immediate filling of the portal venous radicles in the left lobe of the liver (straight arrow) and early filling of portal vein (curved arrow), suggestive of hepatic arterial-portal vein fistula. The final diagnosis was hepatitis C cirrhosis, hepatocellular carcinoma of the left hepatic lobe (which had ruptured into the peritoneum), and portoarterial fistula (which had developed inside the ruptured tumor, giving rise to severe portal hypertension).
Delayed venous phase of a selective common hepatic angiogram (same patient as in the previous image) shows the portal vein (P), with filling of the coronary vein caused by retrograde flow feeding gastric and lower esophageal varices (arrows). Retrograde flow in enlarged umbilical veins also is seen. The final diagnosis was hepatitis C cirrhosis, hepatocellular carcinoma of the left hepatic lobe (which had ruptured into the peritoneum), and portoarterial fistula (which had developed inside the ruptured tumor, giving rise to severe portal hypertension).
Digital subtraction venous phase of a superior mesenteric artery angiogram (same patient as in the previous 2 images) shows retrograde flow into the coronary vein (curved arrow) and the inferior mesenteric vein (straight arrow). Note the flow defect of the distal portal vein caused by retrograde flow (open arrowhead). The final diagnosis was hepatitis C cirrhosis, hepatocellular carcinoma of the left hepatic lobe (which had ruptured into the peritoneum), and portoarterial fistula (which had developed inside the ruptured tumor, giving rise to severe portal hypertension).
This video, captured via esophagoscopy, shows band ligation of esophageal varices. Video courtesy of Dan C Cohen, MD, and Dawn Sears, MD, Division of Gastroenterology, Scott & White Healthcare.
Table 1. Interpretation of Surrogate Portal Venous Pressure Measurements in the Differential Diagnosis of Portal Hypertension
Etiology of Portal Hypertension WHVP FHVP HVPG
Prehepatic Normal Normal Normal
Intrahepatic Presinusoidal Normal Normal Normal
Sinusoidal Increased Increased Increased
Postsinusoidal Increased Normal Increased
Posthepatic Budd-Chiari syndrome N/A Hepatic vein cannot be cannulated N/A
Other posthepatic causes Increased Increased Normal
FHVP = free hepatic venous pressure; HVPG = hepatic venous pressure gradient; N/A = not applicable; WHVP = wedged hepatic venous pressure.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.