Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Clostridium Difficile Colitis Workup

  • Author: Faten N Aberra, MD; Chief Editor: BS Anand, MD  more...
 
Updated: Oct 13, 2015
 

Approach Considerations

Leukocytosis is common in C difficile infection (CDI) and the white blood cell (WBC) count levels may be quite elevated, a finding that portends a worse prognosis. Patients with C difficile are also prone to acute kidney injury. Therefore, white blood cell counts and serum creatinine should be measured in patients with C difficile. Because the presence of leukocytosis and renal impairment are indicators of severe infection, patients with these findings should be treated initially with oral vancomycin instead of metronidazole.[5]

In severe disease, electrolyte imbalances, dehydration, hypoalbuminemia, and anasarca may occur, and patients should be monitored periodically. If surgical intervention is being considered, serum lactate levels and white blood cell counts may aid clinicians in their decision making.

The Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) indicate that testing for C difficile and its toxins in symptomatic patients should be performed only on diarrheal stool, unless there is suspicion of ileus due to C difficile.[5] When individuals are asymptomatic, stool testing is not recommended unless for epidemiologic studies, in which case stool cultures are the most sensitive studies.[5]

C difficile testing is not recommended in asymptomatic patients due to the difficulty in distinguishing asymptomatic carriage from infection in this setting. In addition, repeat testing for C difficile is not recommended following successful treatment in a patient recently treated for CDI.[5]

Next

Stool Examination and Stool Assays

In symptomatic patients, stool testing for C difficile should be performed only on diarrheal samples,[5] unless there is suspicion for ileus due to this organism. Stool testing is not recommended for asymptomatic patients, as the results are not clinically useful; if such testing is used for epidemiologic purposes, stool culture is required.[5]

Stool may be positive for blood in the presence of severe colitis, but grossly bloody stools are unusual. Fecal leukocytes are present in about half of the C difficile colitis cases.

Stool cultures are the most sensitive tests for detecting C difficile and its toxins.[5] Moreover, results of the stool cultures followed by the identification of a toxigenic culture from an experienced laboratory are the standard used for comparison with other diagnostic testing.[5] However, despite their role as the gold standard test in patients with suspected C difficile infection (CDI), stool cultures have a long turnaround time and are resource intensive. Such factors make them too slow for practical clinical decision making (to treat or not to treat) in affected patients. Consequently, in clinical practice, enzyme immunoassay (EIA) for C difficile toxin A and B is used more often.

However, although EIA is a rapid test for C difficile toxin A and B, it is not an ideal alternative test for diagnosing CDI, due to it having a lesser sensitivity than the cell cytotoxin assay (see below). Nonetheless, the poor sensitivity of EIA can be overcome by obtaining repeat stool specimens or by combining EIA with polymerase chain reaction (PCR) assay or C difficile antigen (glutamate dehydrogenase [GDH]) EIA.

The following are stool assays for C difficile, from the most sensitive to the least sensitive:

  • Stool culture is the most sensitive (sensitivity 90-100% and specificity 84-100%), but results are slow and may lead to delay in diagnosis if used alone
  • GDH EIA is very sensitive (sensitivity 85-100% and specificity 87-98%); this test detects the presence of GDH produced by C difficile; positive test results need to be rerun by another assay to verify
  • Real-time PCR assay may be used to detect C difficile gene toxin as an alternative “gold standard” to stool culture, with some studies demonstrating excellent sensitivity and specificity, as well as test-retest reliability [3, 37] ; in a study that used toxigenic culture as the gold standard, the sensitivity was 86%, the specificity was 97%, the positive predictive value (PPV) was 90%, and the negative predictive value (NPV) was 96%, for C difficile [3] (the PCR test is also inexpensive and has a fast turnaround time)
  • The stool cytotoxin test has a sensitivity of 70-100% and a specificity of 90-100%; diarrheal stool is filtered and then added to cultured fibroblasts; a positive test result is the demonstration of a cytopathic effect that is neutralized by specific antiserum; however, this test result is reported only as positive or negative, it is expensive, and it requires overnight incubation and a tissue culture facility
  • EIA for detecting toxins A and B is used in most laboratories; it has moderate sensitivity (79-80%) but excellent specificity (98%); repeat testing is needed if the initial test is negative; EIA for toxin A is available, but it has come to be used less frequently because of the availability of EIA for toxins A and B
  • Latex agglutination technique can also be used to detect GDH; however, the sensitivity of this test is poor (48-59%), although the specificity is 95-96%

Toxin testing has the most important clinical relevance, but its lack of sensitivity is an issue. The Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA) suggest an interim strategy; ie, a 2-step method that has the potential to overcome the sensitivity concern.[5] It would be carried out as follows:

  • For the initial screening, use EIA detection of GDH
  • This would be followed by a confirmatory test only for GDH-positive stool specimens by cell cytotoxic assay or toxigenic culture

In addition, the SHEA and IDSA note that although PCR assay testing appears to be rapid, sensitive, and specific, further research is needed before it can be recommended for routine testing in cases of suspected CDI.[5]

Biomarkers

A study by El Feghaly et al indicated that fecal inflammatory cytokines may be useful as biomarkers for distinguishing between C difficile colonization and actual disease. They may also be helpful in determining whether a child with C difficile infection is at high risk for prolonged diarrhea. The study involved 65 children who were known to be C difficile positive, as well as symptomatic and asymptomatic controls. Results included the following[38] :

  • Fecal cytokines: Elevated in symptomatic children (cases and controls); also elevated at diagnosis in patients with a significantly greater time to resolution of diarrhea (TTROD)
  • Fecal chemokine ligand (CXCL)–5 messenger ribonucleic acid (mRNA): Correlation found between abundance at diagnosis and persistent diarrhea
  • Phosphorylated p38: Lacks sensitivity, although specific for C difficile infection
Previous
Next

Endoscopy

Although endoscopy is not routinely recommended for the diagnosis or management of C difficile infection (CDI), this procedure may demonstrate the presence of raised, yellowish white, 2- to 10-mm plaques overlying an erythematous, edematous mucosa. These plaques are termed pseudomembranes (see the following images). Pseudomembranes are observed in 14-25% of patients with mild C difficile disease and 87% of patients with fulminant disease.

Gross pathology specimen from a case of pseudomemb Gross pathology specimen from a case of pseudomembranous colitis revealing the characteristic yellowish plaques.
Gross pathology specimen from a case of pseudomemb Gross pathology specimen from a case of pseudomembranous colitis, again demonstrating the characteristic yellowish plaques.
Colonic pseudomembranes of pseudomembranous coliti Colonic pseudomembranes of pseudomembranous colitis. Photographs courtesy of Eric M. Osgard, MD.

Histologic findings

Biopsy of pseudomembranous plaques reveals an inflammatory exudate composed of mucinous debris, fibrin, necrotic epithelial cells and polymorphonuclear cells. The underlying crypts show disruption by mucous and inflammatory debris. The intervening mucosa shows edema but is otherwise unremarkable.

Things to consider

Most patients have disease throughout the colon. However, sigmoidoscopy alone may not reveal any abnormality if the disease is confined to the right colon. Typical pseudomembranes are beyond the limit of flexible sigmoidoscopy in 10% of patients. Therefore, colonoscopy is more useful.

Endoscopic examination findings may be normal in patients with mild disease or may demonstrate nonspecific colitis in moderate cases. Endoscopy is the least sensitive means of diagnosing C difficile relative to stool assays.

Sigmoidoscopy and colonoscopy in patients with fulminant colitis may be contraindicated because of the risk of perforation. Limited proctoscopy, with minimal air insufflation, may be a useful diagnostic tool in case of a diagnostic dilemma.

Previous
Next

Computed Tomography Scanning

The American College of Radiology (ACR) recommends abdominal computed tomography (CT) scanning as the imaging modality of choice for C difficile colitis when pseudomembranous colitis, other complications of C difficile infection (CDI), or other intra-abdominal pathology is suspected.[4] Marked colonic wall thickening is the most common finding (see the following images). Other features may include ascites, irregularity of the bowel wall, and pericolonic stranding. In patients with sepsis due to suspected megacolon, abdominal radiography may be performed instead of CT scanning to establish the presence of megacolon in a timely manner.

Axial computed tomography scan of pseudomembranous Axial computed tomography scan of pseudomembranous colitis.
Computed tomography scan of pseudomembranous colit Computed tomography scan of pseudomembranous colitis.
Previous
 
 
Contributor Information and Disclosures
Author

Faten N Aberra, MD MSCE, Assistant Professor Of Medicine, Division of Gastroenterology, Hospital of the University of Pennsylvania, University of Pennsylvania School of Medicine

Faten N Aberra, MD is a member of the following medical societies: American College of Gastroenterology, American Gastroenterological Association, Sigma Xi, Crohn's and Colitis Foundation of America

Disclosure: Nothing to disclose.

Coauthor(s)

Jennifer A Curry, MD, MPH Attending Physician, Infectious Disease Clinic, Naval Medical Center Portsmouth; Assistant Professor of Medicine, Uniformed Services University of the Health Sciences

Jennifer A Curry, MD, MPH is a member of the following medical societies: American College of Physicians, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Chief Editor

BS Anand, MD Professor, Department of Internal Medicine, Division of Gastroenterology, Baylor College of Medicine

BS Anand, MD is a member of the following medical societies: American Association for the Study of Liver Diseases, American College of Gastroenterology, American Gastroenterological Association, American Society for Gastrointestinal Endoscopy

Disclosure: Nothing to disclose.

Acknowledgements

Acknowledgments

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the US government.

LCDR Jennifer Curry is a military service member. This work was prepared as part of official duties. Title 17 U.S.C. §105 provides that ‘Copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the US Government as part of that person’s official duties.

Additional Contributors

Burke A Cunha, MD Professor of Medicine, State University of New York School of Medicine at Stony Brook; Chief, Infectious Disease Division, Winthrop-University Hospital

Burke A Cunha, MD is a member of the following medical societies: American College of Chest Physicians, American College of Physicians, and Infectious Diseases Society of America

Disclosure: Nothing to disclose.

Gary L Gorby, MD Associate Professor, Departments of Internal Medicine and Medical Microbiology and Immunology, Division of Infectious Diseases, Creighton University School of Medicine; Associate Professor of Medicine, University of Nebraska Medical Center; Associate Chair, Omaha Veterans Affairs Medical Center

Gary L Gorby, MD is a member of the following medical societies: Alpha Omega Alpha, American Medical Association, American Society for Microbiology, Infectious Diseases Society of America, and New York Academy of Sciences

Disclosure: Nothing to disclose.

Craig A Gronczewski, MD Clinical Assistant Professor, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey; Consulting Staff, Princeton Medical Center; Consulting Staff, Robert Wood Johnson University Hospital

Craig A Gronczewski, MD is a member of the following medical societies: Alpha Omega Alpha and American College of Emergency Physicians

Disclosure: Nothing to disclose.

Braden R Hale, MD, MPH Assistant Clinical Professor, Department of Internal Medicine, University of California at San Diego; Consulting Staff, Department of Internal Medicine, Division of Infectious Diseases, Naval Medical Center at San Diego

Disclosure: Nothing to disclose.

Duane R Hospenthal, MD, PhD, FACP, FIDSA Adjunct Professor of Medicine, Department of Medicine, University of Texas Health Science Center at San Antonio

Duane R Hospenthal, MD, PhD, FACP, FIDSA is a member of the following medical societies: Alpha Omega Alpha, American College of Physicians, American Medical Association, American Society for Microbiology, American Society of Tropical Medicine and Hygiene, Armed Forces Infectious Diseases Society, Association of Military Surgeons of the US, Infectious Diseases Society of America, International Society for Human and Animal Mycology, International Society for Infectious Diseases,International Society of Travel Medicine, and Medical Mycology Society of the Americas

Disclosure: Nothing to disclose.

Joseph F John Jr, MD, FACP, FIDSA, FSHEA Clinical Professor of Medicine, Molecular Genetics and Microbiology, Medical University of South Carolina College of Medicine; Associate Chief of Staff for Education, Ralph H Johnson Veterans Affairs Medical Center

Disclosure: Nothing to disclose.

Jonathan P Katz, MD Assistant Professor of Medicine, Department of Medicine, University of Pennsylvania School of Medicine

Jonathan P Katz, MD is a member of the following medical societies: American Gastroenterological Association and American Society for Gastrointestinal Endoscopy

Disclosure: Nothing to disclose.

Joseph Lee, MD Staff Physician, Department of Medicine, Walter Reed Army Medical Center

Disclosure: Nothing to disclose.

Waqar A Qureshi, MD Associate Professor of Medicine, Chief of Endoscopy, Department of Internal Medicine, Division of Gastroenterology, Baylor College of Medicine and Veterans Affairs Medical Center

Waqar A Qureshi, MD is a member of the following medical societies: American College of Gastroenterology, American College of Physicians, American Gastroenterological Association, and American Society for Gastrointestinal Endoscopy

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. McDonald LC, Coignard B, Dubberke E, Song X, Horan T, Kutty PK. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007 Feb. 28(2):140-5. [Medline].

  2. Khanna S, Pardi DS, Aronson SL, et al. The epidemiology of community-acquired Clostridium difficile infection: a population-based study. Am J Gastroenterol. 2012 Jan. 107(1):89-95. [Medline]. [Full Text].

  3. Sloan LM, Duresko BJ, Gustafson DR, Rosenblatt JE. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008 Jun. 46(6):1996-2001. [Medline]. [Full Text].

  4. Grant TH, Rosen MP, Fidler JL, et al, for the Expert Panel on Gastrointestinal Imaging. ACR Appropriateness Criteria: acute abdominal pain and fever or suspected abdominal abscess. [online publication]. Reston, Va: American College of Radiology (ACR); 2008.

  5. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010 May. 31(5):431-55. [Medline].

  6. Brandt LJ, Aroniadis OC, Mellow M, et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012 Jul. 107(7):1079-87. [Medline].

  7. Laidman J. Fecal transfer proves potent clostridium difficile treatment. [serial online]. Medscape Medical News. Available at http://www.medscape.com/viewarticle/777772. 2013 Jan 16; Accessed: July 23, 2013.

  8. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013 Jan 31. 368(5):407-15. [Medline].

  9. Ananthakrishnan AN. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol. 2011 Jan. 8(1):17-26. [Medline].

  10. Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol. 2011. 65:501-21. [Medline].

  11. Pant C, Sferra TJ, Deshpande A, Minocha A. Clinical approach to severe Clostridium difficile infection: update for the hospital practitioner. Eur J Intern Med. 2011 Dec. 22(6):561-8. [Medline].

  12. Bingley PJ, Harding GM. Clostridium difficile colitis following treatment with metronidazole and vancomycin. Postgrad Med J. 1987 Nov. 63(745):993-4. [Medline]. [Full Text].

  13. US Food and Drug Administration. FDA Drug Safety Communication: Clostridium difficile-associated diarrhea can be associated with stomach acid drugs known as proton pump inhibitors (PPIs). Available at http://www.fda.gov/Drugs/DrugSafety/ucm290510.htm. 2013 Feb 15; Accessed: July 23, 2013.

  14. Lowry F. Antidepressants linked to doubling of C difficile risk. Medscape Medical News. Available at http://www.medscape.com/viewarticle/803712. 2013 May 7; Accessed: July 23, 2013.

  15. Rogers MA, Greene MT, Young VB, et al. Depression, antidepressant medications, and risk of Clostridium difficile infection. BMC Med. 2013 May 7. 11:121. [Medline]. [Full Text].

  16. Ananthakrishnan AN, Issa M, Binion DG. Clostridium difficile and inflammatory bowel disease. Gastroenterol Clin North Am. 2009 Dec. 38(4):711-28. [Medline].

  17. Garey KW, Jiang ZD, Ghantoji S, Tam VH, Arora V, Dupont HL. A common polymorphism in the interleukin-8 gene promoter is associated with an increased risk for recurrent Clostridium difficile infection. Clin Infect Dis. 2010 Dec 15. 51(12):1406-10. [Medline].

  18. Jiang ZD, DuPont HL, Garey K, et al. A common polymorphism in the interleukin 8 gene promoter is associated with Clostridium difficile diarrhea. Am J Gastroenterol. 2006 May. 101(5):1112-6. [Medline].

  19. Granlund Av, Beisvag V, Torp SH, et al. Activation of REG family proteins in colitis. Scand J Gastroenterol. 2011 Nov. 46(11):1316-23. [Medline]. [Full Text].

  20. Castagliuolo I, Riegler M, Pasha A, et al. Neurokinin-1 (NK-1) receptor is required in Clostridium difficile- induced enteritis. J Clin Invest. 1998 Apr 15. 101(8):1547-50. [Medline]. [Full Text].

  21. Na X, Kim H, Moyer MP, Pothoulakis C, LaMont JT. gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect Immun. 2008 Jul. 76(7):2862-71. [Medline]. [Full Text].

  22. Hasegawa M, Yamazaki T, Kamada N, et al. Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J Immunol. 2011 Apr 15. 186(8):4872-80. [Medline].

  23. Centers for Disease Control and Prevention. CDC vital signs: making health care safer. Stopping C. difficile infections. Available at http://www.cdc.gov/VitalSigns/Hai/StoppingCdifficile/. 2012 Mar 6; Accessed: July 23, 2013.

  24. Centers for Disease Control and Prevention. Vital signs: preventing Clostridium difficile infections. MMWR Morb Mortal Wkly Rep. 2012 Mar 9. 61(9):157-62. [Medline].

  25. Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008 Aug. 62(2):388-96. [Medline].

  26. Dumyati G, Stevens V, Hannett GE, et al. Community-associated Clostridium difficile infections, Monroe County, New York, USA. Emerg Infect Dis. 2012 Mar. 18(3):392-400. [Medline]. [Full Text].

  27. Bauer MP, Notermans DW, van Benthem BH, et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011 Jan 1. 377(9759):63-73. [Medline].

  28. Khanna S, Pardi DS. The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Rev Gastroenterol Hepatol. 2010 Aug. 4(4):409-16. [Medline].

  29. Nylund CM, Goudie A, Garza JM, Fairbrother G, Cohen MB. Clostridium difficile infection in hospitalized children in the United States. Arch Pediatr Adolesc Med. 2011 May. 165(5):451-7. [Medline].

  30. Johnson S. Recurrent Clostridium difficile infection: a review of risk factors, treatments, and outcomes. J Infect. 2009 Jun. 58(6):403-10. [Medline].

  31. Khanna S, Pardi DS, Aronson SL, Kammer PP, Baddour LM. Outcomes in community-acquired Clostridium difficile infection. Aliment Pharmacol Ther. 2012 Mar. 35(5):613-8. [Medline]. [Full Text].

  32. Loo VG, Poirier L, Miller MA, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med. 2005 Dec 8. 353(23):2442-9. [Medline].

  33. Ananthakrishnan AN, Guzman-Perez R, Gainer V, et al. Predictors of severe outcomes associated with Clostridium difficile infection in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2012 Apr. 35(7):789-95. [Medline]. [Full Text].

  34. Navaneethan U, Mukewar S, Venkatesh PG, Lopez R, Shen B. Clostridium difficile infection is associated with worse long term outcome in patients with ulcerative colitis. J Crohns Colitis. 2012 Apr. 6(3):330-6. [Medline].

  35. Sailhamer EA, Carson K, Chang Y, et al. Fulminant Clostridium difficile colitis: patterns of care and predictors of mortality. Arch Surg. 2009 May. 144(5):433-9; discussion 439-40. [Medline].

  36. Miller AT, Tabrizian P, Greenstein AJ, Dikman A, Byrn J, Divino C. Long-term follow-up of patients with fulminant Clostridium difficile colitis. J Gastrointest Surg. 2009 May. 13(5):956-9. [Medline].

  37. Khanna S, Pardi DS, Rosenblatt JE, Patel R, Kammer PP, Baddour LM. An evaluation of repeat stool testing for Clostridium difficile infection by polymerase chain reaction. J Clin Gastroenterol. 2012 Nov-Dec. 46(10):846-9. [Medline].

  38. El Feghaly RE, Stauber JL, Tarr PI, Haslam DB. Intestinal inflammatory biomarkers and outcome in pediatric Clostridium difficile infections. J Pediatr. 2013 Dec. 163(6):1697-1704.e2. [Medline].

  39. Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): update of the treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2013 Oct 5. [Medline].

  40. Barclay L. Guidelines: Antibiotics for all but very mild C difficile. Medscape Medical News. Available at http://www.medscape.com/viewarticle/813521. 2013 Oct 30; Accessed: November 4, 2013.

  41. Fridkin S, Baggs J, Fagan R, et al. Vital signs: improving antibiotic use among hospitalized patients. MMWR Morb Mortal Wkly Rep. 2014 Mar 7. 63(9):194-200. [Medline]. [Full Text].

  42. Lowes R. CDC urges doctors to improve antibiotic prescribing. Medscape Medical News. March 4, 2014. [Full Text].

  43. Kling J. Low-dose vancomycin effective against C difficile. Medscape Medical News. Available at http://www.medscape.com/viewarticle/811555. 2013 Sep 24; Accessed: October 21, 2013.

  44. Videlock EJ, Cremonini F. Meta-analysis: probiotics in antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2012 Jun. 35(12):1355-69. [Medline].

  45. Bakken JS, Borody T, Brandt LJ, et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol. 2011 Dec. 9(12):1044-9. [Medline]. [Full Text].

  46. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012 May. 107(5):761-7. [Medline].

  47. Kassam Z, Hundal R, Marshall JK, Lee CH. Fecal transplant via retention enema for refractory or recurrent Clostridium difficile infection. Arch Intern Med. 2012 Jan 23. 172(2):191-3. [Medline].

  48. Kling J. Fecal transplant an option even in the immunocompromised. Medscape Medical News. Available at http://www.medscape.com/viewarticle/812685. 2013 Oct 16; Accessed: October 21, 2013.

  49. Gough E, Shaikh H, Manges AR. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis. 2011 Nov. 53(10):994-1002. [Medline].

  50. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011 Feb 3. 364(5):422-31. [Medline].

  51. Drekonja DM, Butler M, MacDonald R, et al. Comparative effectiveness of Clostridium difficile treatments: a systematic review. Ann Intern Med. 2011 Dec 20. 155(12):839-47. [Medline].

  52. Venuto C, Butler M, Ashley ED, Brown J. Alternative therapies for Clostridium difficile infections. Pharmacotherapy. 2010 Dec. 30(12):1266-78. [Medline].

  53. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012 Apr. 12(4):281-9. [Medline].

  54. Reuters Health. Fidaxomicin effective for C. difficile in cancer patients. Medscape Medical News. Available at http://www.medscape.com/viewarticle/805062. 2013 May 30; Accessed: July 23, 2013.

  55. Cornely OA, Miller MA, Fantin B, Mullane K, Kean Y, Gorbach S. Resolution of Clostridium difficile-associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J Clin Oncol. 2013 Jul 1. 31(19):2493-9. [Medline].

  56. Abougergi MS, Broor A, Cui W, Jaar BG. Intravenous immunoglobulin for the treatment of severe Clostridium difficile colitis: an observational study and review of the literature. J Hosp Med. 2010 Jan. 5(1):E1-9. [Medline].

  57. Bartlett JG. Pseudomembranous enterocolitis and antibiotic-associated colitis. Feldman M, Scharschmidt BF, Sleisenger MH, eds. Sleisenger and Fordtran's Gastrointestinal and Liver Disease. 6th ed. Philadelphia, Pa: WB Saunders Co; 1998. 1633-47.

  58. Cleary RK. Clostridium difficile-associated diarrhea and colitis: clinical manifestations, diagnosis, and treatment. Dis Colon Rectum. 1998 Nov. 41(11):1435-49. [Medline].

  59. Fekety R. Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhea and colitis. American College of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol. 1997 May. 92(5):739-50. [Medline].

  60. Gilbert DN, Moellering RC, Sande MA. Antimicrobial Therapy. The Sanford Guide to Antimicrobial Therapy. 30th ed. Hyde Park, Vt: 2000. 12.

  61. Guerrero DM, Chou C, Jury LA, Nerandzic MM, Cadnum JC, Donskey CJ. Clinical and infection control implications of Clostridium difficile infection with negative enzyme immunoassay for toxin. Clin Infect Dis. 2011 Aug 1. 53(3):287-90. [Medline].

  62. Johnson S, Gerding DN. Clostridium difficile--associated diarrhea. Clin Infect Dis. 1998 May. 26(5):1027-34; quiz 1035-6. [Medline].

  63. Jones EM, Kirkpatrick BL, Feeney R, Reeves DS, MacGowan AP. Hospital-acquired Clostridium difficile diarrhoea. Lancet. 1997 Apr 19. 349(9059):1176-7. [Medline].

  64. Kelly CP, LaMont JT. Clostridium difficile infection. Annu Rev Med. 1998. 49:375-90. [Medline].

  65. Kelly CP, LaMont JT. Clostridium difficile--more difficult than ever. N Engl J Med. 2008 Oct 30. 359(18):1932-40. [Medline].

  66. Kelly CP, Pothoulakis C, LaMont JT. Clostridium difficile colitis. N Engl J Med. 1994 Jan 27. 330(4):257-62. [Medline].

  67. Kolling GL, Wu M, Warren CA, et al. Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes. 2012 Nov-Dec. 3(6):523-9. [Medline]. [Full Text].

  68. Lyerly DM, Wilkins TD. Clostridium difficile. Infections of the Gastrointestinal Tract. 1995. 867-891.

  69. McDonald CL, Gerding DN, Johnson S. "Clostridium difficile: Changing Diagnosis, Epidemiology, and Treatment" The content of this virtual lecture is derived from a satellite symposium presented on April 7, 2008, during the 18th Annual SHEA Scientific Meeting. Philadelphia, Pa:. Available at http://www.rmei.com/CDI010/.

  70. McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989 Jan 26. 320(4):204-10. [Medline].

  71. Schneeweiss S, Korzenik J, Solomon DH, Canning C, Lee J, Bressler B. Infliximab and other immunomodulating drugs in patients with inflammatory bowel disease and the risk of serious bacterial infections. Aliment Pharmacol Ther. 2009 Aug. 30(3):253-64. [Medline].

  72. Sonnenberg A. Similar geographic variations of mortality and hospitalization associated with IBD and Clostridium difficile colitis. Inflamm Bowel Dis. 2010 Mar. 16(3):487-93. [Medline].

  73. Starr J. Clostridium difficile associated diarrhoea: diagnosis and treatment. BMJ. 2005 Sep 3. 331(7515):498-501. [Medline]. [Full Text].

 
Previous
Next
 
Endoscopic visualization of pseudomembranous colitis, a characteristic manifestation of full-blown Clostridium difficile colitis. Classic pseudomembranes are visible as raised, yellow plaques ranging from 2 to 10 mm in diameter and scattered over the colorectal mucosa. Courtesy of Gregory Ginsberg, MD, University of Pennsylvania.
Colonic pseudomembranes of pseudomembranous colitis. Photographs courtesy of Eric M. Osgard, MD.
Gross pathology specimen from a case of pseudomembranous colitis revealing the characteristic yellowish plaques.
Gross pathology specimen from a case of pseudomembranous colitis, again demonstrating the characteristic yellowish plaques.
Frontal abdominal radiograph in a patient with proved pseudomembranous colitis. Note the nodular haustral thickening, most pronounced in the transverse colon.
Barium enema demonstrating the typical serrated appearance of the barium column (resulting from trapped barium between the edematous mucosal folds and the plaquelike membranes of pseudomembranous colitis).
Axial computed tomography scan of pseudomembranous colitis.
Computed tomography scan of pseudomembranous colitis.
Ultrasonographic image of pseudomembranous colitis.
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.