Medscape is available in 5 Language Editions – Choose your Edition here.


Tracheoesophageal Fistula Follow-up

  • Author: Sat Sharma, MD, FRCPC; Chief Editor: Julian Katz, MD  more...
Updated: Jan 03, 2016


Transfer infants and children with TEF to a pediatric center experienced with surgical repair of TEF. The center should be experienced with providing support of critically ill pediatric patients.

Adults who develop acquired TEF must be transferred to a facility with thoracic surgery support and other adequate support services.



Patients on prolonged ventilatory support are at risk of developing a TEF. The incidence of TEFs has decreased markedly following the introduction of endotracheal tube cuffs of high volume and low pressure. In critically ill patients, cuff pressure of 30-40 mm Hg may decrease capillary perfusion and result in tissue ischemia. Cuff pressures should be maintained below 25 mm Hg, even at the expense of a small leak. Optimal nutrition and use of flexible, small-caliber nasogastric feeding tubes may be of further help.



Congenital and acquired TEFs are associated with multiple complications, including recurrent pneumonia, acute lung injury, acute respiratory distress syndrome, lung abscess, poor nutrition, bronchiectasis from recurrent aspiration, respiratory failure, and death.

In patients with esophageal atresia and a TEF, abnormal esophageal motility is always present because of abnormal development and innervation of esophagus. Long-term follow-up studies have reported complications of esophagitis, Barrett esophagus, and hiatal hernia.

The major postoperative complications are tracheal stenosis and recurrent fistula. Tracheal stenosis occurs in patients who have extensive injury to the posterior tracheal wall. Surgical repair of tracheal stenosis may be performed at a later date. Recurrent fistulas develop in patients who require continued postoperative intubation. This generally occurs from breakdown of the repair, and the risk of infection spreading into the soft tissue planes, neck, and mediastinum is high.

Gastroesophageal reflux disease may later occur in half of patients who had repair for esophageal atresia and TEFs during the neonatal period. Treatment for reflux is antisecretory therapy. Rare complications of reflux are Barrett esophagus and esophageal carcinoma.

In children operated for esophageal atresia (EA) and/or TEFs, follow-up deglutitive and respiratory symptoms may occur and should be evaluated with videofluoroscopy.[9]

Vocal cord paresis/paralysis may occur more often in in patients treated for esophageal atresia (EA) with and without fistula with thorascopic repair compared with open repair.[10] This be due thoracoscopic dissection of the esophagus high into the thoracic inlet.[10]



The survival rate in healthy infants who undergo surgical repair for a congenital TEF may be 100%. In groups of infants who have comorbidities or who are not fit enough for early repair, the survival rate is 80-95%. In a series of 118 patients, overall survival was more than 90%.[11]


Patient Education

For excellent patient education resources, see eMedicineHealth's patient education article Bronchoscopy.

Contributor Information and Disclosures

Sat Sharma, MD, FRCPC Professor and Head, Division of Pulmonary Medicine, Department of Internal Medicine, University of Manitoba; Site Director, Respiratory Medicine, St Boniface General Hospital

Sat Sharma, MD, FRCPC is a member of the following medical societies: American Academy of Sleep Medicine, American College of Chest Physicians, American College of Physicians-American Society of Internal Medicine, American Thoracic Society, Canadian Medical Association, Royal College of Physicians and Surgeons of Canada, Royal Society of Medicine, Society of Critical Care Medicine, World Medical Association

Disclosure: Nothing to disclose.


Donald Duerksen, MD Assistant Professor, Department of Medicine, Section of Gastroenterology, University of Manitoba, Canada

Donald Duerksen, MD is a member of the following medical societies: American College of Gastroenterology, American Gastroenterological Association, American Society for Parenteral and Enteral Nutrition

Disclosure: Nothing to disclose.

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Noel Williams, MD, FRCPC FACP, MACG, Professor Emeritus, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Professor, Department of Internal Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada

Noel Williams, MD, FRCPC is a member of the following medical societies: Royal College of Physicians and Surgeons of Canada

Disclosure: Nothing to disclose.

Chief Editor

Julian Katz, MD Clinical Professor of Medicine, Drexel University College of Medicine

Julian Katz, MD is a member of the following medical societies: American College of Gastroenterology, American College of Physicians, American Gastroenterological Association, American Geriatrics Society, American Medical Association, American Society for Gastrointestinal Endoscopy, American Society of Law, Medicine & Ethics, American Trauma Society, Association of American Medical Colleges, Physicians for Social Responsibility

Disclosure: Nothing to disclose.

Additional Contributors

Marco G Patti, MD Professor of Surgery, Director, Center for Esophageal Diseases, University of Chicago Pritzker School of Medicine

Marco G Patti, MD is a member of the following medical societies: American Association for the Advancement of Science, American Surgical Association, American College of Surgeons, American Gastroenterological Association, American Medical Association, Association for Academic Surgery, Pan-Pacific Surgical Association, Society for Surgery of the Alimentary Tract, Society of American Gastrointestinal and Endoscopic Surgeons, Southwestern Surgical Congress, Western Surgical Association

Disclosure: Nothing to disclose.

  1. Harley HR. Ulcerative tracheo-oesophageal fistula during treatment by tracheostomy and intermittent positive pressure ventilation. Thorax. 1972 May. 27(3):338-52. [Medline].

  2. Burt M, Diehl W, Martini N et al. Malignant esophagorespiratory fistula: management options and survival. Ann Thorac Surg. 1991 Dec. 52(6):1222-8; discussion 1228-9. [Medline].

  3. Yau WP, Mitchell AA, Lin KJ, Werler MM, Hernández-Díaz S. Use of decongestants during pregnancy and the risk of birth defects. Am J Epidemiol. 2013 Jul 15. 178(2):198-208. [Medline]. [Full Text].

  4. Spigel DR, Hainsworth JD, Yardley DA, et al. Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol. 2010 Jan 1. 28(1):43-8. [Medline].

  5. Zhu H, Shen C, Xiao X, Dong K, Zheng S. Reoperation for anastomotic complications of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2015 Dec. 50 (12):2012-5. [Medline].

  6. Smith N. Oesophageal atresia and tracheo-oesophageal fistula. Early Hum Dev. 2014 Dec. 90 (12):947-50. [Medline].

  7. Wang B, Tashiro J, Allan BJ, et al. A nationwide analysis of clinical outcomes among newborns with esophageal atresia and tracheoesophageal fistulas in the United States. J Surg Res. 2014 Aug. 190 (2):604-12. [Medline].

  8. Zani A, Wolinska J, Cobellis G, Chiu PP, Pierro A. Outcome of esophageal atresia/tracheoesophageal fistula in extremely low birth weight neonates (<1000 grams). Pediatr Surg Int. 2015 Oct 30. [Medline].

  9. Yalcin S, Demir N, Serel S, Soyer T, Tanyel FC. The evaluation of deglutition with videofluoroscopy after repair of esophageal atresia and/or tracheoesophageal fistula. J Pediatr Surg. 2015 Nov. 50 (11):1823-7. [Medline].

  10. Woo S, Lau S, Yoo E, Shaul D, Sydorak R. Thoracoscopic versus open repair of tracheoesophageal fistulas and rates of vocal cord paresis. J Pediatr Surg. 2015 Dec. 50 (12):2016-8. [Medline].

  11. Holder TM, Ashcraft KW, Sharp RJ, Amoury RA. Care of infants with esophageal atresia, tracheoesophageal fistula, and associated anomalies. J Thorac Cardiovasc Surg. 1987 Dec. 94(6):828-35. [Medline].

  12. Ghali S, Chang EI, Rice DC, Walsh GL, Yu P. Microsurgical reconstruction of combined tracheal and total esophageal defects. J Thorac Cardiovasc Surg. 2015 Nov. 150 (5):1261-6. [Medline].

Tracheoesophageal fistula. During development of respiratory and digestive systems, a single primitive tube develops lung bud and tracheoesophageal septum forms by 4-6 weeks of gestational age. The septum separates the foregut and tracheobronchial tree by 6 weeks of gestational age.
Tracheoesophageal fistula. The cuff of endobronchial causes circumferential ischemia and injury to the trachea; the erosion leads to formation of tracheoesophageal fistula.
Tracheoesophageal fistula. H-type of tracheoesophageal fistula.
Tracheoesophageal fistula. Esophageal atresia with distal tracheoesophageal fistula.
Tracheoesophageal fistula. Isolated esophageal atresia without tracheoesophageal fistula.
Table. Classification of Congenital Tracheoesophageal Fistulas and Esophageal Atresia
Anatomic Characteristics Percent of Cases
Esophageal atresia with distal TEF 87
Isolated esophageal atresia without TEF 8
Isolated TEF 4
Esophageal atresia with proximal TEF 1
Esophageal atresia with proximal and distal TEF 1
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.