Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Ischemic Stroke Workup

  • Author: Edward C Jauch, MD, MS, FAHA, FACEP; Chief Editor: Helmi L Lutsep, MD  more...
 
Updated: Nov 23, 2015
 

Approach Considerations

Imaging studies

Emergent brain imaging is essential for confirming the diagnosis of ischemic stroke. Noncontrast CT scanning is the most commonly used form of neuroimaging in the acute evaluation of patients with apparent acute stroke. A lumbar puncture is required to rule out meningitis or subarachnoid hemorrhage when the CT scan is negative but the clinical suspicion remains high.

MRI with magnetic resonance angiography (MRA) has been a major advance in the neuroimaging of stroke. MRI not only provides great structural detail but also can demonstrate early cerebral edema. In addition, MRI has proved to be sensitive for detection of acute intracranial hemorrhage. However, MRI is not as available as CT scanning is in emergencies, many patients have contraindications to MRI imaging (eg, pacemakers, implants), and interpretation of MRI scans may be more difficult.

Carotid duplex scanning is one of the most useful tests in evaluating patients with stroke. Increasingly, it is being performed earlier in the evaluation, not only to define the cause of the stroke but also to stratify patients for either medical management or carotid intervention if they have carotid stenoses.

Digital subtraction angiography is considered the definitive method for demonstrating vascular lesions, including occlusions, stenoses, dissections, and aneurysms.

For more information, see Cerebral Revascularization Imaging.

Laboratory studies

Extensive laboratory testing is not routinely required before decisions are made regarding fibrinolysis. Testing can often be limited to blood glucose, plus coagulation studies if the patient is on warfarin, heparin, or one of the newer antithrombotic agents (eg, dabigatran, rivaroxaban). A complete blood count (CBC) and basic chemistry panel can be useful baseline studies.

Additional laboratory tests are tailored to the individual patient and may include the following:

  • Cardiac biomarkers
  • Toxicology screen
  • Fasting lipid profile
  • Erythrocyte sedimentation rate
  • Pregnancy test
  • Antinuclear antibody (ANA)
  • Rheumatoid factor
  • Homocysteine level
  • Rapid plasma reagent (RPR)

A urine pregnancy test should be obtained for all women of childbearing age with stroke symptoms. The safety of the fibrinolytic agent recombinant tissue-type plasminogen activator (rt-PA) in pregnancy has not been studied in humans (ie, the agent is in the FDA pregnancy category C).

Next

Brain Imaging With CT Scanning and MRI

CT scanning

Imaging with CT scanning has multiple logistic advantages for patients with acute stroke. Image acquisition is faster with CT scanning than with MRI, allowing for assessment with an examination that includes noncontrast CT scanning, CT angiography (CTA), and CT perfusion scanning in a short amount of time. Expedient acquisition is of the utmost importance in acute stroke imaging because of the narrow window of time available for definitive ischemic stroke treatment with pharmacologic agents and mechanical devices.

CT scanning can also be performed in patients who are unable to tolerate an MR examination or who have contraindications to MRI, including implantable pacemakers, some aneurysm clips, or other ferromagnetic materials in their bodies. Additionally, CT scanning is more easily accessible for patients who require special equipment for monitoring and life support.[64, 65]

MRI

Conventional (spin echo) MRI may take hours to produce discernible findings in acute ischemic stroke. Diffusion-weighted imaging (DWI) is highly sensitive to early cellular edema, which correlates well with the presence of cerebral ischemia. For this reason, many centers include DWI in their standard brain MRI protocol. DWI MRI can detect ischemia much earlier than standard CT scanning or spin echo MRI can and provides useful data in patients with stroke or transient ischemic attack (TIA). (See the image below.)[1, 66, 67, 68]

Magnetic resonance imaging (MRI) scan in a 70-year Magnetic resonance imaging (MRI) scan in a 70-year-old woman with a history of left-sided weakness for several hours. An axial T2 fluid-attenuated inversion recovery (FLAIR) image (left) demonstrates high signal in the lentiform nucleus with mass effect. The axial diffusion-weighted image (middle) demonstrates high signal in the same area, with corresponding low signal on the apparent diffusion coefficient (ADC) maps, consistent with true restricted diffusion and an acute infarction. Maximum intensity projection from a 3-dimensional (3-D) time-of-flight magnetic resonance angiogram (MRA, right) demonstrates occlusion of the distal middle cerebral artery (MCA) trunk (red circle).

The most commonly used technique for perfusion MRI is dynamic susceptibility, which involves generating maps of brain perfusion by monitoring the first pass of a rapid bolus injection of contrast through the cerebral vasculature. Susceptibility-related T2 effects create signal loss in capillary blood vessels and parenchyma perfused by contrast.

For more information on MRI and MRA in this setting, see Magnetic Resonance Imaging in Acute Stroke.

Based on the central volume principle, dynamic brain perfusion data can be obtained. Cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) can be calculated using either perfusion MRI or CT scanning. (See the image below.)

Regions of interest are selected for arterial and Regions of interest are selected for arterial and venous input (image on left) for dynamic susceptibility-weighted perfusion magnetic resonance imaging (MRI). Signal-time curves (image on right) obtained from these regions of interest demonstrate transient signal drop following the administration of intravenous contrast. The information obtained from the dynamic parenchymal signal changes postcontrast is used to generate maps of different perfusion parameters.

An evidence-based guideline from the American Academy of Neurology advises that DWI is more useful than noncontrast CT scanning for the diagnosis of acute ischemic stroke within 12 hours of symptom onset and should be performed for the most accurate diagnosis of acute ischemic stroke (level A). No recommendations were made regarding the use of perfusion-weighted imaging (PWI) in diagnosing acute ischemic stroke, as evidence to support or refute its value in this setting is insufficient.[69]

Intra-arterial contrast enhancement may be seen secondary to slow flow during the first or second day after onset of infarction. This finding has been correlated with increased infarct volume size.[70]

Previous
Next

Other Imaging Studies in Ischemic Stroke

Transcranial Doppler ultrasonography is useful for evaluating more proximal vascular anatomy—including the middle cerebral artery (MCA), intracranial carotid artery, and vertebrobasilar artery—through the infratemporal fossa.[71] Echocardiography is obtained in all patients with acute ischemic stroke in whom cardiogenic embolism is suspected.

Chest radiography has potential utility for patients with acute stroke. However, obtaining a chest radiograph should not delay the administration of rt-PA, as radiographs have not been shown to alter the clinical course or decision-making in most cases.[72]

The use of single-photon emission CT (SPECT) scanning in stroke is still experimental and is available only at select institutions. Theoretically, it can define areas of altered regional blood flow.[73]

Conventional angiography is the gold standard in evaluating for cerebrovascular disease as well as for disease involving the aortic arch and great vessels in the neck. Conventional angiography can be performed to clarify equivocal findings or to confirm and treat disease seen on MRA, CTA, transcranial Doppler, or ultrasonography of the neck. (See the images below.)

A 48-year-old man presented with acute left-sided A 48-year-old man presented with acute left-sided hemiplegia, facial palsy, and right-sided gaze preference. Angiogram with selective injection of the right internal carotid artery demonstrates occlusion of the M1 segment of the right middle cerebral artery (MCA) and A2 segment of the right anterior cerebral artery (ACA; images courtesy of Concentric Medical).
Follow-up imaging after mechanical embolectomy in Follow-up imaging after mechanical embolectomy in 48-year-old man with acute left-sided hemiplegia, facial palsy, and right-sided gaze preference demonstrates complete recanalization of the right middle cerebral artery (MCA) and partial recanalization of the right A2 segment (images courtesy of Concentric Medical).
Cerebral angiogram performed approximately 4.5 hou Cerebral angiogram performed approximately 4.5 hours after symptom onset in a 31-year-old man demonstrates an occlusion of the distal basilar artery (images courtesy of Concentric Medical).
Image on the left demonstrates deployment of a clo Image on the left demonstrates deployment of a clot retrieval device in a 31-year-old man. Followup angiogram after embolectomy demonstrates recanalization of the distal basilar artery with filling of the superior cerebellar arteries and posterior cerebral arteries. The patient had complete resolution of symptoms following embolectomy (images courtesy of Concentric Medical).
Previous
Next

Blood Studies

A CBC serves as a baseline study and may reveal a cause for the stroke (eg, polycythemia, thrombocytosis, thrombocytopenia, leukemia) or provide evidence of concurrent illness (eg, anemia). The basic chemistry panel serves as a baseline study and may reveal a stroke mimic (eg, hypoglycemia, hyponatremia) or provide evidence of concurrent illness (eg, diabetes, renal insufficiency).

Coagulation studies may reveal a coagulopathy and are useful when fibrinolytics or anticoagulants are to be used. In patients who are not taking anticoagulants or antithrombotics and in whom there is no suspicion for coagulation abnormality, administration of rt-PA should not be delayed while awaiting laboratory results.

Cardiac biomarkers are important because of the association of cerebral vascular disease and coronary artery disease. Additionally, several studies have indicated a link between elevations of cardiac enzyme levels and poor outcome in ischemic stroke.

Toxicology screening may be useful in selected patients in order to assist in identifying intoxicated patients with symptoms/behavior mimicking stroke syndromes. In patients with suspected hypoxemia, arterial blood gas studies define the severity of hypoxemia and may detect acid-base disturbances. However, arterial punctures should be avoided unless absolutely necessary in patients being considered for fibrinolytic therapy.

Previous
 
 
Contributor Information and Disclosures
Author

Edward C Jauch, MD, MS, FAHA, FACEP Professor, Director, Division of Emergency Medicine, Professor, Department of Neurosciences, Vice Chair of Research, Department of Medicine, Medical University of South Carolina College of Medicine; Adjunct Professor, Department of Bioengineering, Clemson University

Edward C Jauch, MD, MS, FAHA, FACEP is a member of the following medical societies: American College of Emergency Physicians, American Heart Association, American Medical Association, National Stroke Association, Society for Academic Emergency Medicine, South Carolina Medical Association

Disclosure: Received grant/research funds from Genentech for site pi.

Coauthor(s)

Brian Stettler, MD Assistant Professor, Program Director, Emergency Medicine Residency Program, Department of Emergency Medicine, and Faculty Greater Cincinnati/Northern Kentucky Stroke Team, University of Cincinnati

Disclosure: Nothing to disclose.

Chief Editor

Helmi L Lutsep, MD Professor and Vice Chair, Department of Neurology, Oregon Health and Science University School of Medicine; Associate Director, OHSU Stroke Center

Helmi L Lutsep, MD is a member of the following medical societies: American Academy of Neurology, American Stroke Association

Disclosure: Medscape Neurology Editorial Advisory Board for: Stroke Adjudication Committee, CREST2.

Acknowledgements

Jeffrey L Arnold, MD, FACEP Chairman, Department of Emergency Medicine, Santa Clara Valley Medical Center

Jeffrey L Arnold, MD, FACEP is a member of the following medical societies: American Academy of Emergency Medicine and American College of Physicians

Disclosure: Nothing to disclose.

Joseph U Becker, MD Fellow, Global Health and International Emergency Medicine, Stanford University School of Medicine

Joseph U Becker, MD is a member of the following medical societies: American College of Emergency Physicians, Emergency Medicine Residents Association, Phi Beta Kappa, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Salvador Cruz-Flores, MD, MPH, FAHA, FCCM Professor of Neurology and Epidemiology, Sidney W Souers Endowed Chair, Director of Souers Stroke Institute, Cerebrovascular and Neurointensive Care Section, Director, Vascular Neurology Fellowship Training Program, Interim Chairman, Department of Neurology and Psychiatry, St Louis University School of Medicine; Director, Neuroscience Intensive Care Unit (5ICU), St Louis University Hospital

Salvador Cruz-Flores, MD, MPH, FAHA, FCCM is a member of the following medical societies: American Academy of Hospice and Palliative Medicine, American Academy of Neurology, American College of Physicians, American Heart Association, American Society of Neuroimaging, American Stroke Association, National Stroke Association, Neurocritical Care Society, and Society of Critical Care Medicine

Disclosure: Axio inc Honoraria Review panel membership; Roche Honoraria Review panel membership; Lilly Honoraria Review panel membership; Biotronik Honoraria Review panel membership

J Stephen Huff, MD Associate Professor of Emergency Medicine and Neurology, Department of Emergency Medicine, University of Virginia School of Medicine

J Stephen Huff, MD is a member of the following medical societies: American Academy of Emergency Medicine, American Academy of Neurology, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Richard S Krause, MD Senior Clinical Faculty/Clinical Assistant Professor, Department of Emergency Medicine, University of Buffalo State University of New York School of Medicine and Biomedical Sciences

Richard S Krause, MD is a member of the following medical societies: Alpha Omega Alpha, American Academy of Emergency Medicine, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

Charles R Wira III, MD Assistant Professor, Section of Emergency Medicine, Yale University School of Medicine; DEM Liaison and Attending Physician, Yale Acute Stroke Service, Department of Neurology, Yale-New Haven Hospital

Charles R Wira III, MD is a member of the following medical societies: American College of Emergency Physicians, American Heart Association, American Stroke Association, Neurocritical Care Society, Society for Academic Emergency Medicine, and Society of Critical Care Medicine

Disclosure: Nothing to disclose.

References
  1. [Guideline] Adams HP Jr, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007 May. 38(5):1655-711. [Medline].

  2. Adams HP Jr, Davis PH, Leira EC, Chang KC, Bendixen BH, Clarke WR, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999 Jul 13. 53(1):126-31. [Medline].

  3. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995 Dec 14. 333(24):1581-7. [Medline].

  4. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015 Jan 27. 131 (4):e29-322. [Medline].

  5. Ovbiagele B, Goldstein LB, Higashida RT, Howard VJ, Johnston SC, Khavjou OA, et al. Forecasting the future of stroke in the United States: a policy statement from the American Heart Association and American Stroke Association. Stroke. 2013 Aug. 44 (8):2361-75. [Medline].

  6. Sacco RL, Shi T, Zamanillo MC, Kargman DE. Predictors of mortality and recurrence after hospitalized cerebral infarction in an urban community: the Northern Manhattan Stroke Study. Neurology. 1994 Apr. 44(4):626-34. [Medline].

  7. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008 May 10. 371(9624):1612-23. [Medline].

  8. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999 Sep. 22(9):391-7. [Medline].

  9. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000 Oct 12. 407(6805):802-9. [Medline].

  10. Latchaw RE, Yonas H, Hunter GJ, Yuh WT, Ueda T, Sorensen AG, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003 Apr. 34(4):1084-104. [Medline].

  11. Kasner SE, Grotta JC. Emergency identification and treatment of acute ischemic stroke. Ann Emerg Med. 1997 Nov. 30(5):642-53. [Medline].

  12. Gotoh O, Asano T, Koide T, Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke. 1985 Jan-Feb. 16(1):101-9. [Medline].

  13. Bell BA, Symon L, Branston NM. CBF and time thresholds for the formation of ischemic cerebral edema, and effect of reperfusion in baboons. J Neurosurg. 1985 Jan. 62(1):31-41. [Medline].

  14. Mullins ME, Lev MH, Schellingerhout D, Gonzalez RG, Schaefer PW. Intracranial hemorrhage complicating acute stroke: how common is hemorrhagic stroke on initial head CT scan and how often is initial clinical diagnosis of acute stroke eventually confirmed?. AJNR Am J Neuroradiol. 2005 Oct. 26(9):2207-12. [Medline].

  15. Lyden PD, Zivin JA. Hemorrhagic transformation after cerebral ischemia: mechanisms and incidence. Cerebrovasc Brain Metab Rev. 1993 Spring. 5(1):1-16. [Medline].

  16. Nighoghossian N, Hermier M, Adeleine P, Blanc-Lasserre K, Derex L, Honnorat J, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke. 2002 Mar. 33(3):735-42. [Medline].

  17. González RG. Imaging-guided acute ischemic stroke therapy: From "time is brain" to "physiology is brain". AJNR Am J Neuroradiol. 2006 Apr. 27(4):728-35. [Medline].

  18. Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004 Sep. 126(3 Suppl):483S-512S. [Medline].

  19. Dubey N, Bakshi R, Wasay M, Dmochowski J. Early computed tomography hypodensity predicts hemorrhage after intravenous tissue plasminogen activator in acute ischemic stroke. J Neuroimaging. 2001 Apr. 11(2):184-8. [Medline].

  20. Brooks M. Migraine Linked to Double Risk for Silent Stroke. Medscape Medical News. Available at http://www.medscape.com/viewarticle/825451. Accessed: May 27, 2014.

  21. Anderson P. Migraine with aura 'major' contributor to all stroke types. Medscape Medical News. June 27, 2013. [Full Text].

  22. [Guideline] Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011 Feb. 42(2):517-84. [Medline]. [Full Text].

  23. Kurl S, Laukkanen JA, Rauramaa R, Lakka TA, Sivenius J, Salonen JT. Cardiorespiratory fitness and the risk for stroke in men. Arch Intern Med. 2003 Jul 28. 163(14):1682-8. [Medline].

  24. Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL, et al. Guidelines for the Prevention of Stroke in Women: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2014 Feb 6. [Medline].

  25. Hughes S. First AHA/ASA Guidelines to Reduce Stroke Risk in Women. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/820277. Accessed: February 11, 2014.

  26. Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, et al. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15. 268(23):17478-88. [Medline].

  27. Miller DK, Gillard JW, Vickers PJ, Sadowski S, Léveillé C, Mancini JA, et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990 Jan 18. 343(6255):278-81. [Medline].

  28. Kubo M, Hata J, Ninomiya T, Matsuda K, Yonemoto K, Nakano T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet. 2007 Feb. 39(2):212-7. [Medline].

  29. Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985 Jan. 37(1):1-31. [Medline]. [Full Text].

  30. Testai FD, Gorelick PB. Inherited metabolic disorders and stroke part 2: homocystinuria, organic acidurias, and urea cycle disorders. Arch Neurol. 2010 Feb. 67(2):148-53. [Medline].

  31. Jensson O, Gudmundsson G, Arnason A, Blöndal H, Petursdottir I, Thorsteinsson L, et al. Hereditary cystatin C (gamma-trace) amyloid angiopathy of the CNS causing cerebral hemorrhage. Acta Neurol Scand. 1987 Aug. 76(2):102-14. [Medline].

  32. Oberstein SA. Diagnostic strategies in CADASIL. Neurology. 2003 Jun 24. 60(12):2020; author reply 2020. [Medline].

  33. Dichgans M. Cognition in CADASIL. Stroke. 2009 Mar. 40(3 Suppl):S45-7. [Medline].

  34. Cheng YC, O'Connell JR, Cole JW, Stine OC, Dueker N, McArdle PF, et al. Genome-wide association analysis of ischemic stroke in young adults. G3 (Bethesda). 2011 Nov. 1(6):505-14. [Medline]. [Full Text].

  35. The International Stroke Genetics Consortium (ISGC); the Wellcome Trust Case Control Consortium 2 (WTCCC2), Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, et al. Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012 Feb 5. 44(3):328-33. [Medline]. [Full Text].

  36. Arregui M, Fisher E, Knüppel S, Buijsse B, di Giuseppe R, Fritsche A, et al. Significant associations of the rs2943634 (2q36.3) genetic polymorphism with adiponectin, high density lipoprotein cholesterol and ischemic stroke. Gene. 2012 Feb 25. 494(2):190-5. [Medline].

  37. Ikram MA, Seshadri S, Bis JC, Fornage M, DeStefano AL, Aulchenko YS, et al. Genomewide association studies of stroke. N Engl J Med. 2009 Apr 23. 360(17):1718-28. [Medline]. [Full Text].

  38. Arboix A, Alio J. Acute cardioembolic cerebral infarction: answers to clinical questions. Curr Cardiol Rev. 2012 Feb. 8(1):54-67. [Medline]. [Full Text].

  39. Witt BJ, Ballman KV, Brown RD Jr, Meverden RA, Jacobsen SJ, Roger VL. The incidence of stroke after myocardial infarction: a meta-analysis. Am J Med. 2006 Apr. 119(4):354.e1-9. [Medline].

  40. Wessels T, Wessels C, Ellsiepen A, Reuter I, Trittmacher S, Stolz E. Contribution of diffusion-weighted imaging in determination of stroke etiology. AJNR Am J Neuroradiol. 2006 Jan. 27(1):35-9. [Medline].

  41. Roh JK, Kang DW, Lee SH, Yoon BW, Chang KH. Significance of acute multiple brain infarction on diffusion-weighted imaging. Stroke. 2000 Mar. 31(3):688-94. [Medline].

  42. Adams H, Adams R, Del Zoppo G, Goldstein LB. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke. 2005 Apr. 36(4):916-23. [Medline].

  43. Derdeyn CP, Khosla A, Videen TO, Fritsch SM, Carpenter DL, Grubb RL Jr. Severe hemodynamic impairment and border zone--region infarction. Radiology. 2001 Jul. 220(1):195-201. [Medline].

  44. Pollanen MS, Deck JH. Directed embolization is an alternate cause of cerebral watershed infarction. Arch Pathol Lab Med. 1989 Oct. 113(10):1139-41. [Medline].

  45. Waterston JA, Brown MM, Butler P, Swash M. Small deep cerebral infarcts associated with occlusive internal carotid artery disease. A hemodynamic phenomenon?. Arch Neurol. 1990 Sep. 47(9):953-7. [Medline].

  46. U.S. Centers for Disease Control and Prevention and the Heart Disease and Stroke Statistics - 2007 Update, published by the American Heart Association. Available at http://www.strokecenter.org/patients/stats.htm. Accessed: September 2008.

  47. Towfighi A, Saver JL. Stroke declines from third to fourth leading cause of death in the United States: historical perspective and challenges ahead. Stroke. 2011 Aug. 42(8):2351-5. [Medline].

  48. MacKay J, Mensah GA. World Health Organization. Global Burden of Stroke. The Atlas of Heart Disease and Stroke. Available at http://www.who.int/cardiovascular_diseases/en/cvd_atlas_15_burden_stroke.pdf.

  49. Schneider AT, Kissela B, Woo D, Kleindorfer D, Alwell K, Miller R, et al. Ischemic stroke subtypes: a population-based study of incidence rates among blacks and whites. Stroke. 2004 Jul. 35(7):1552-6. [Medline].

  50. Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, et al. Relationship of national institutes of health stroke scale to 30-day mortality in medicare beneficiaries with acute ischemic stroke. J Am Heart Assoc. 2012 Feb. 1(1):42-50. [Medline]. [Full Text].

  51. von Kummer R, Allen KL, Holle R, Bozzao L, Bastianello S, Manelfe C, et al. Acute stroke: usefulness of early CT findings before thrombolytic therapy. Radiology. 1997 Nov. 205(2):327-33. [Medline].

  52. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, von Kummer R, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA. 1995 Oct 4. 274(13):1017-25. [Medline].

  53. Bruno A, Levine SR, Frankel MR, Brott TG, Lin Y, Tilley BC, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 2002 Sep 10. 59(5):669-74. [Medline].

  54. Bruno A, Biller J, Adams HP Jr, Clarke WR, Woolson RF, Williams LS, et al. Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology. 1999 Jan 15. 52(2):280-4. [Medline].

  55. Baird TA, Parsons MW, Phanh T, Butcher KS, Desmond PM, Tress BM, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003 Sep. 34(9):2208-14. [Medline].

  56. Mandelzweig L, Goldbourt U, Boyko V, Tanne D. Perceptual, social, and behavioral factors associated with delays in seeking medical care in patients with symptoms of acute stroke. Stroke. 2006 May. 37(5):1248-53. [Medline].

  57. National Institutes of Health Stroke Scale. Available at http://www.ninds.nih.gov/doctors/NIH_Stroke_Scale.pdf. Accessed: October 2008.

  58. Huff JS. Stroke mimics and chameleons. Emerg Med Clin North Am. 2002 Aug. 20(3):583-95. [Medline].

  59. Libman RB, Wirkowski E, Alvir J, Rao TH. Conditions that mimic stroke in the emergency department. Implications for acute stroke trials. Arch Neurol. 1995 Nov. 52(11):1119-22. [Medline].

  60. Runchey S, McGee S. Does this patient have a hemorrhagic stroke?: clinical findings distinguishing hemorrhagic stroke from ischemic stroke. JAMA. 2010 Jun 9. 303(22):2280-6. [Medline].

  61. Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurolo... Stroke. 2009 Jun. 40(6):2276-93. [Medline].

  62. Tintinalli J, Kellen G, Stapczynski J. American College of Emergency Physicians. Emergency Medicine: A Comprehensive Study Guide. 6th. New York: McGraw Hill; 2004. 1382-1390.

  63. Leira EC, Chang KC, Davis PH, Clarke WR, Woolson RF, Hansen MD, et al. Can we predict early recurrence in acute stroke?. Cerebrovasc Dis. 2004. 18(2):139-44. [Medline].

  64. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005 Sep 3-9. 366(9488):809-17. [Medline].

  65. Byrne JV. The aneurysm "clip or coil" debate. Acta Neurochir (Wien). 2006 Feb. 148(2):115-20. [Medline].

  66. Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology. 1996 May. 199(2):391-401. [Medline].

  67. González RG, Schaefer PW, Buonanno FS, Schwamm LH, Budzik RF, Rordorf G, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999 Jan. 210(1):155-62. [Medline].

  68. Marks MP, Olivot JM, Kemp S, Lansberg MG, Bammer R, Wechsler LR, et al. Patients with acute stroke treated with intravenous tPA 3-6 hours after stroke onset: correlations between MR angiography findings and perfusion- and diffusion-weighted imaging in the DEFUSE study. Radiology. 2008 Nov. 249(2):614-23. [Medline]. [Full Text].

  69. Schellinger PD, Bryan RN, Caplan LR, Detre JA, Edelman RR, Jaigobin C, et al. Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2010 Jul 13. 75(2):177-85. [Medline].

  70. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology. 1999 Feb. 210(2):519-27. [Medline].

  71. Camerlingo M, Casto L, Censori B, Ferraro B, Gazzaniga GC, Mamoli A. Transcranial Doppler in acute ischemic stroke of the middle cerebral artery territories. Acta Neurol Scand. 1993 Aug. 88(2):108-11. [Medline].

  72. Sagar G, Riley P, Vohrah A. Is admission chest radiography of any clinical value in acute stroke patients?. Clin Radiol. 1996 Jul. 51(7):499-502. [Medline].

  73. Meerwaldt R, Slart RH, van Dam GM, Luijckx GJ, Tio RA, Zeebregts CJ. PET/SPECT imaging: from carotid vulnerability to brain viability. Eur J Radiol. 2010 Apr. 74(1):104-9. [Medline].

  74. Handschu R, Poppe R, Rauss J, Neundörfer B, Erbguth F. Emergency calls in acute stroke. Stroke. 2003 Apr. 34(4):1005-9. [Medline].

  75. Williams JE, Rosamond WD, Morris DL. Stroke symptom attribution and time to emergency department arrival: the delay in accessing stroke healthcare study. Acad Emerg Med. 2000 Jan. 7(1):93-6. [Medline].

  76. Zweifler RM, Mendizabal JE, Cunningham S, Shah AK, Rothrock JF. Hospital presentation after stroke in a community sample: the Mobile Stroke Project. South Med J. 2002 Nov. 95(11):1263-8. [Medline].

  77. Lacy CR, Suh DC, Bueno M, Kostis JB. Delay in presentation and evaluation for acute stroke: Stroke Time Registry for Outcomes Knowledge and Epidemiology (S.T.R.O.K.E.). Stroke. 2001 Jan. 32(1):63-9. [Medline].

  78. Puolakka T, Väyrynen T, Häppölä O, Soinne L, Kuisma M, Lindsberg PJ. Sequential analysis of pretreatment delays in stroke thrombolysis. Acad Emerg Med. 2010 Sep. 17(9):965-9. [Medline].

  79. Ford AL, Williams JA, Spencer M, McCammon C, Khoury N, Sampson TR, et al. Reducing door-to-needle times using Toyota's lean manufacturing principles and value stream analysis. Stroke. 2012 Dec. 43(12):3395-8. [Medline]. [Full Text].

  80. Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, et al. Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke. 2008 Feb. 39(2):384-9. [Medline].

  81. Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute ischaemic stroke. Cochrane Database Syst Rev. 2011 Sep 7. 9:CD005346. [Medline].

  82. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008 Sep 25. 359(13):1317-29. [Medline].

  83. [Guideline] Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke. 2009 Aug. 40(8):2945-8. [Medline]. [Full Text].

  84. Wahlgren N, Ahmed N, Dávalos A, Hacke W, Millán M, Muir K, et al. Thrombolysis with alteplase 3-4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet. 2008 Oct 11. 372(9646):1303-9. [Medline].

  85. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2013 Jan 31. [Medline].

  86. Brooks M. Stroke a Race Against the Clock, Review Confirms. Medscape Medical News. Available at http://www.medscape.com/viewarticle/830611. Accessed: September 2, 2014.

  87. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014 Aug 5. [Medline].

  88. Strbian D, Ringleb P, Michel P,et al. Ultra-early intravenous stroke thrombolysis: do all patients benefit similarly?. Stroke. 2013 Aug 22. [Medline].

  89. Brooks M. Ultra-Early' Thrombolysis Cuts Disability in Mild Stroke. Medscape Medical News. Aug 28 2013. [Full Text].

  90. Diedler J, Ahmed N, Sykora M, Uyttenboogaart M, Overgaard K, Luijckx GJ, et al. Safety of intravenous thrombolysis for acute ischemic stroke in patients receiving antiplatelet therapy at stroke onset. Stroke. 2010 Feb. 41(2):288-94. [Medline].

  91. Xian Y, Federspiel JJ, Grau-Sepulveda M, Hernandez AF, Schwamm LH, Bhatt DL, et al. Risks and Benefits Associated With Prestroke Antiplatelet Therapy Among Patients With Acute Ischemic Stroke Treated With Intravenous Tissue Plasminogen Activator. JAMA Neurol. 2015 Nov 9. 1-10. [Medline].

  92. Alexandrov AV, Molina CA, Grotta JC, Garami Z, Ford SR, Alvarez-Sabin J, et al. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004 Nov 18. 351(21):2170-8. [Medline].

  93. Tsivgoulis G, Eggers J, Ribo M, Perren F, Saqqur M, Rubiera M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010 Feb. 41(2):280-7. [Medline].

  94. Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD, et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N Engl J Med. 2013 Mar 7. 368(10):893-903. [Medline]. [Full Text].

  95. Schonewille WJ, Wijman CA, Michel P, Rueckert CM, Weimar C, Mattle HP, et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): a prospective registry study. Lancet Neurol. 2009 Aug. 8(8):724-30. [Medline].

  96. Lindsberg PJ, Mattle HP. Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke. 2006 Mar. 37(3):922-8. [Medline].

  97. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet. 1997 Jun 7. 349(9066):1641-9. [Medline].

  98. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet. 1997 May 31. 349(9065):1569-81. [Medline].

  99. Abciximab in acute ischemic stroke: a randomized, double-blind, placebo-controlled, dose-escalation study. The Abciximab in Ischemic Stroke Investigators. Stroke. 2000 Mar. 31(3):601-9. [Medline].

  100. Adams HP Jr, Effron MB, Torner J, Dávalos A, Frayne J, Teal P, et al. Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke. 2008 Jan. 39(1):87-99. [Medline].

  101. Sare GM, Geeganage C, Bath PM. High blood pressure in acute ischaemic stroke--broadening therapeutic horizons. Cerebrovasc Dis. 2009. 27 Suppl 1:156-61. [Medline].

  102. Potter JF, Robinson TG, Ford GA, Mistri A, James M, Chernova J, et al. Controlling hypertension and hypotension immediately post-stroke (CHHIPS): a randomised, placebo-controlled, double-blind pilot trial. Lancet Neurol. 2009 Jan. 8(1):48-56. [Medline].

  103. Sandset EC, Bath PM, Boysen G, Jatuzis D, Kõrv J, Lüders S, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011 Feb 26. 377(9767):741-50. [Medline].

  104. Jeffrey S. CATIS: No Benefit of BP Reduction in Acute Phase of Stroke. Medscape Medical News. Available at http://www.medscape.com/viewarticle/814531. Accessed: November 24, 2013.

  105. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, et al. Effects of Immediate Blood Pressure Reduction on Death and Major Disability in Patients With Acute Ischemic Stroke: The CATIS Randomized Clinical Trial. JAMA. 2013 Nov 17. [Medline].

  106. [Guideline] Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 AHA/ASA Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015 Jun 29. [Medline].

  107. Gobin YP, Starkman S, Duckwiler GR, Grobelny T, Kidwell CS, Jahan R, et al. MERCI 1: a phase 1 study of Mechanical Embolus Removal in Cerebral Ischemia. Stroke. 2004 Dec. 35(12):2848-54. [Medline].

  108. Smith WS, Sung G, Starkman S, Saver JL, Kidwell CS, Gobin YP, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke. 2005 Jul. 36(7):1432-8. [Medline].

  109. Smith WS, Sung G, Saver J, Budzik R, Duckwiler G, Liebeskind DS, et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke. 2008 Apr. 39(4):1205-12. [Medline].

  110. Bose A, Henkes H, Alfke K, Reith W, Mayer TE, Berlis A. The Penumbra System: a mechanical device for the treatment of acute stroke due to thromboembolism. AJNR Am J Neuroradiol. 2008 Aug. 29(7):1409-13. [Medline].

  111. Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet. 2012 Oct 6. 380(9849):1241-9. [Medline].

  112. Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet. 2012 Oct 6. 380(9849):1231-40. [Medline].

  113. Anderson P. Medical management still bests intracranial stenting. Medscape Medical News. October 31, 2013. [Full Text].

  114. Derdeyn CP, Chimowitz MI, Lynn MJ, Fiorella D, Turan TN, Janis LS, et al. Aggressive medical treatment with or without stenting in high-risk patients with intracranial artery stenosis (SAMMPRIS): the final results of a randomised trial. Lancet. 2013 Oct 25. [Medline].

  115. Rothwell PM, Markus HS. Improved medical treatment in secondary prevention of stroke. Lancet. 2013 Oct 25. [Medline].

  116. Marion DW. Controlled normothermia in neurologic intensive care. Crit Care Med. 2004 Feb. 32(2 Suppl):S43-5. [Medline].

  117. Olsen TS, Weber UJ, Kammersgaard LP. Therapeutic hypothermia for acute stroke. Lancet Neurol. 2003 Jul. 2(7):410-6. [Medline].

  118. Hemmen TM, Raman R, Guluma KZ, Meyer BC, Gomes JA, Cruz-Flores S, et al. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke. 2010 Oct. 41(10):2265-70. [Medline].

  119. den Hertog HM, van der Worp HB, van Gemert HM, Algra A, Kappelle LJ, van Gijn J, et al. The Paracetamol (Acetaminophen) In Stroke (PAIS) trial: a multicentre, randomised, placebo-controlled, phase III trial. Lancet Neurol. 2009 May. 8(5):434-40. [Medline].

  120. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009 Apr. 8(4):326-33. [Medline].

  121. Jüttler E, Schwab S, Schmiedek P, Unterberg A, Hennerici M, Woitzik J, et al. Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): a randomized, controlled trial. Stroke. 2007 Sep. 38(9):2518-25. [Medline].

  122. Vahedi K, Hofmeijer J, Juettler E, Vicaut E, George B, Algra A, et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol. 2007 Mar. 6(3):215-22. [Medline].

  123. Vahedi K, Vicaut E, Mateo J, Kurtz A, Orabi M, Guichard JP, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007 Sep. 38(9):2506-17. [Medline].

  124. Wijdicks EF, Sheth KN, Carter BS, Greer DM, Kasner SE, Kimberly WT, et al. Recommendations for the Management of Cerebral and Cerebellar Infarction With Swelling: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2014 Jan 30. [Medline].

  125. Hughes S. AHA/ASA Guideline on Stroke With Brain Swelling. Medscape [serial online]. Available at http://www.medscape.com/viewarticle/820481. Accessed: February 25, 2014.

  126. Padma V, Fisher M, Moonis M. Role of heparin and low-molecular-weight heparins in the management of acute ischemic stroke. Expert Rev Cardiovasc Ther. 2006 May. 4(3):405-15. [Medline].

  127. CLOTS (Clots in Legs Or sTockings after Stroke) Trials Collaboration. Dennis M, Sandercock P, Reid J, Graham C, Forbes J, Murray G. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. Lancet. 2013 Aug 10. 382(9891):516-24. [Medline].

  128. Collaborative overview of randomised trials of antiplatelet therapy--I: Prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists' Collaboration. BMJ. 1994 Jan 8. 308(6921):81-106. [Medline]. [Full Text].

  129. Amarenco P, Bogousslavsky J, Callahan A 3rd, Goldstein LB, Hennerici M, Rudolph AE, et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006 Aug 10. 355(6):549-59. [Medline].

  130. Chimowitz MI, Lynn MJ, Howlett-Smith H, Stern BJ, Hertzberg VS, Frankel MR, et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med. 2005 Mar 31. 352(13):1305-16. [Medline].

  131. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009 May 30. 373(9678):1849-60. [Medline]. [Full Text].

  132. Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005 Mar 31. 352(13):1293-304. [Medline].

  133. [Guideline] Hughes S. New AHA/ASA Stroke Secondary Prevention Guidelines. Medscape Medical News. May 2 2014. [Full Text].

  134. [Guideline] Kernan WN, Ovbiagele B, Black HR, et al. Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2014 May 1. [Medline]. [Full Text].

  135. Geeganage CM, Diener HC, Algra A, Chen C, Topol EJ, Dengler R, et al. Dual or mono antiplatelet therapy for patients with acute ischemic stroke or transient ischemic attack: systematic review and meta-analysis of randomized controlled trials. Stroke. 2012 Apr. 43(4):1058-66. [Medline].

  136. Halkes PH, van Gijn J, Kappelle LJ, Koudstaal PJ, Algra A. Aspirin plus dipyridamole versus aspirin alone after cerebral ischaemia of arterial origin (ESPRIT): randomised controlled trial. Lancet. 2006 May 20. 367(9523):1665-73. [Medline].

  137. Dengler R, Diener HC, Schwartz A, Grond M, Schumacher H, Machnig T, et al. Early treatment with aspirin plus extended-release dipyridamole for transient ischaemic attack or ischaemic stroke within 24 h of symptom onset (EARLY trial): a randomised, open-label, blinded-endpoint trial. Lancet Neurol. 2010 Feb. 9(2):159-66. [Medline].

  138. Diener HC, Bogousslavsky J, Brass LM, Cimminiello C, Csiba L, Kaste M, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet. 2004 Jul 24-30. 364(9431):331-7. [Medline].

  139. Connolly S, Pogue J, Hart R, Pfeffer M, Hohnloser S, Chrolavicius S, et al. Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet. 2006 Jun 10. 367(9526):1903-12. [Medline].

  140. [Guideline] Wann LS, Curtis AB, Ellenbogen KA, Estes NA 3rd, Ezekowitz MD, Jackman WM, et al. 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (update on Dabigatran): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2011 Mar 15. 123(10):1144-50. [Medline]. [Full Text].

  141. Uchino K, Hernandez AV. Dabigatran association with higher risk of acute coronary events: meta-analysis of noninferiority randomized controlled trials. Arch Intern Med. 2012 Mar 12. 172(5):397-402. [Medline].

  142. [Guideline] Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL, Fagan SC, et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2011 Jan. 42(1):227-76. [Medline]. [Full Text].

  143. Hughes S. Endovascular Stroke Therapy Proven at Last: MR CLEAN Published. Medscape Medical News. Dec 17 2014. [Full Text].

  144. Berkhemer OA, Fransen PS, Beumer D, et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N Engl J Med. 2014 Dec 17. [Medline].

  145. Anderson P. Wait on elective surgery after stroke. Medscape Medical News. July 17, 2014. [Full Text].

  146. Chiong W, Kim AS, Huang IA, Farahany NA, Josephson SA. Testing the presumption of consent to emergency treatment for acute ischemic stroke. JAMA. 2014 Apr 23-30. 311(16):1689-91. [Medline].

  147. Ebinger M, Winter B, Wendt M, Weber JE, Waldschmidt C, Rozanski M, et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 2014 Apr 23-30. 311(16):1622-31. [Medline].

  148. Fonarow GC, Zhao X, Smith EE, Saver JL, Reeves MJ, Bhatt DL, et al. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA. 2014 Apr 23-30. 311(16):1632-40. [Medline].

  149. Hughes S. DESTINY II: benefit of surgery for stroke with swelling. Medscape Medical News. March 24, 2014. [Full Text].

  150. Jeffrey S. TARGET: STROKE Cuts Door-to-Needle Time, Improves Outcomes. Medscape Medical News. Available at http://www.medscape.com/viewarticle/824008. Accessed: April 29, 2014.

  151. Jørgensen ME, Torp-Pedersen C, Gislason GH, Jensen PF, Berger SM, Christiansen CB, et al. Time elapsed after ischemic stroke and risk of adverse cardiovascular events and mortality following elective noncardiac surgery. JAMA. 2014 Jul 16. 312(3):269-77. [Medline].

  152. Jüttler E, Unterberg A, Woitzik J, Bösel J, Amiri H, Sakowitz OW, et al. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med. 2014 Mar 20. 370(12):1091-100. [Medline].

  153. Ropper AH. Hemicraniectomy--to halve or halve not. N Engl J Med. 2014 Mar 20. 370(12):1159-60. [Medline].

  154. Shiber JR, Fontane E, Adewale A. Stroke registry: hemorrhagic vs ischemic strokes. Am J Emerg Med. 2010 Mar. 28(3):331-3. [Medline].

 
Previous
Next
 
Maximum intensity projection (MIP) image from a computed tomography angiogram (CTA) demonstrates a filling defect or high-grade stenosis at the branching point of the right middle cerebral artery (MCA) trunk (red circle), suspicious for thrombus or embolus. CTA is highly accurate in detecting large- vessel stenosis and occlusions, which account for approximately one third of ischemic strokes.
Axial noncontrast computed tomography (NCCT) scan demonstrates diffuse hypodensity in the right lentiform nucleus with mass effect upon the frontal horn of the right lateral ventricle in a 70-year-old woman with a history of left-sided weakness for several hours.
Magnetic resonance imaging (MRI) scan in a 70-year-old woman with a history of left-sided weakness for several hours. An axial T2 fluid-attenuated inversion recovery (FLAIR) image (left) demonstrates high signal in the lentiform nucleus with mass effect. The axial diffusion-weighted image (middle) demonstrates high signal in the same area, with corresponding low signal on the apparent diffusion coefficient (ADC) maps, consistent with true restricted diffusion and an acute infarction. Maximum intensity projection from a 3-dimensional (3-D) time-of-flight magnetic resonance angiogram (MRA, right) demonstrates occlusion of the distal middle cerebral artery (MCA) trunk (red circle).
Cardioembolic stroke: Axial diffusion-weighted images demonstrate scattered foci of high signal in the subcortical and deep white matter bilaterally in a patient with a known cardiac source for embolization. An area of low signal in the left gangliocapsular region may be secondary to prior hemorrhage or subacute to chronic lacunar infarct. Recurrent strokes are most commonly secondary to cardioembolic phenomenon.
Axial noncontrast computed tomography (CT) scan demonstrates a focal area of hypodensity in the left posterior limb of the internal capsule in a 60-year-old man with acute onset of right-sided weakness. The lesion demonstrates high signal on the fluid-attenuated inversion recovery (FLAIR) sequence (middle image) and diffusion-weighted magnetic resonance imaging (MRI) scan (right image), with low signal on the apparent diffusion coefficient (ADC) maps indicating an acute lacunar infarction. Lacunar infarcts are typically no more than 1.5 cm in size and can occur in the deep gray matter structures, corona radiata, brainstem, and cerebellum.
Magnetic resonance imaging (MRI) scan was obtained in a 62-year-old man with hypertension and diabetes and a history of transient episodes of right-sided weakness and aphasia. The fluid-attenuated inversion recovery (FLAIR) image (left) demonstrates patchy areas of high signal arranged in a linear fashion in the deep white matter, bilaterally. This configuration is typical for deep border-zone, or watershed, infarction, in this case the anterior and posterior middle cerebral artery (MCA) watershed areas. The left-sided infarcts have corresponding low signal on the apparent diffusion coefficient (ADC) map (right), signifying acuity. An old left posterior parietal infarct is noted as well.
A 48-year-old man presented with acute left-sided hemiplegia, facial palsy, and right-sided gaze preference. Angiogram with selective injection of the right internal carotid artery demonstrates occlusion of the M1 segment of the right middle cerebral artery (MCA) and A2 segment of the right anterior cerebral artery (ACA; images courtesy of Concentric Medical).
Follow-up imaging after mechanical embolectomy in 48-year-old man with acute left-sided hemiplegia, facial palsy, and right-sided gaze preference demonstrates complete recanalization of the right middle cerebral artery (MCA) and partial recanalization of the right A2 segment (images courtesy of Concentric Medical).
Cerebral angiogram performed approximately 4.5 hours after symptom onset in a 31-year-old man demonstrates an occlusion of the distal basilar artery (images courtesy of Concentric Medical).
Image on the left demonstrates deployment of a clot retrieval device in a 31-year-old man. Followup angiogram after embolectomy demonstrates recanalization of the distal basilar artery with filling of the superior cerebellar arteries and posterior cerebral arteries. The patient had complete resolution of symptoms following embolectomy (images courtesy of Concentric Medical).
Noncontrast computed tomography (CT) scan in a 52-year-old man with a history of worsening right-sided weakness and aphasia demonstrates diffuse hypodensity and sulcal effacement with mass effect involving the left anterior and middle cerebral artery territories consistent with acute infarction. There are scattered curvilinear areas of hyperdensity noted suggestive of developing petechial hemorrhage in this large area of infarction.
Magnetic resonance angiogram (MRA) in a 52-year-old man demonstrates occlusion of the left precavernous supraclinoid internal carotid artery (ICA, red circle), occlusion or high-grade stenosis of the distal middle cerebral artery (MCA) trunk and attenuation of multiple M2 branches. The diffusion-weighted image (right) demonstrates high signal confirmed to be true restricted diffusion on the apparent diffusion coefficient (ADC) map consistent with acute infarction.
Lateral view of a cerebral angiogram illustrates the branches of the anterior cerebral artery (ACA) and Sylvian triangle. The pericallosal artery has been described to arise distal to the anterior communicating artery or distal to the origin of the callosomarginal branch of the ACA. The segmental anatomy of the ACA has been described as follows: the A1 segment extends from the internal carotid artery (ICA) bifurcation to the anterior communicating artery; A2 extends to the junction of the rostrum and genu of the corpus callosum; A3 extends into the bend of the genu of the corpus callosum; A4 and A5 extend posteriorly above the callosal body and superior portion of the splenium. The Sylvian triangle overlies the opercular branches of the middle cerebral artery (MCA), with the apex representing the Sylvian point.
Frontal projection from a right vertebral artery angiogram illustrates the posterior circulation. The vertebral arteries join to form the basilar artery. The posterior inferior cerebellar arteries (PICAs) arise from the distal vertebral arteries. The anterior inferior cerebellar arteries (AICAs) arise from the proximal basilar artery. The superior cerebellar arteries (SICAs) arise distally from the basilar artery prior to its bifurcation into the posterior cerebral arteries (PCAs).
Frontal view of a cerebral angiogram with selective injection of the left internal carotid artery (ICA) illustrates the anterior circulation. The anterior cerebral artery (ACA) consists of the A1 segment proximal to the anterior communicating artery, with the A2 segment distal to it. The middle cerebral artery (MCA) can be divided into 4 segments: the M1 (horizontal segment) extends to the anterior basal portion of the insular cortex (the limen insulae) and gives off lateral lenticulostriate branches, the M2 (insular segment), M3 (opercular branches), and M4 (distal cortical branches on the lateral hemispheric convexities).
Regions of interest are selected for arterial and venous input (image on left) for dynamic susceptibility-weighted perfusion magnetic resonance imaging (MRI). Signal-time curves (image on right) obtained from these regions of interest demonstrate transient signal drop following the administration of intravenous contrast. The information obtained from the dynamic parenchymal signal changes postcontrast is used to generate maps of different perfusion parameters.
Vascular distributions: Middle cerebral artery (MCA) infarction. Noncontrast computed tomography (CT) scanning demonstrates a large acute infarction in the MCA territory involving the lateral surfaces of the left frontal, parietal, and temporal lobes, as well as the left insular and subinsular regions, with mass effect and rightward midline shift. There is sparing of the caudate head and at least part of the lentiform nucleus and internal capsule, which receive blood supply from the lateral lenticulostriate branches of the M1 segment of the MCA. Note the lack of involvement of the medial frontal lobe (anterior cerebral artery [ACA] territory), thalami, and paramedian occipital lobe (posterior cerebral artery [PCA] territory).
Vascular distributions: Anterior choroidal artery infarction. The diffusion-weighted image (left) demonstrates high signal with associated signal dropout on the apparent diffusion coefficient (ADC) map involving the posterior limb of the internal capsule. This is the typical distribution of the anterior choroidal artery, the last branch of the internal carotid artery (ICA) before bifurcating into the anterior and middle cerebral arteries. The anterior choroidal artery may also arise from the middle cerebral artery (MCA).
Vascular distributions: Anterior cerebral artery (ACA) infarction. Diffusion-weighted image on the left demonstrates high signal in the paramedian frontal and high parietal regions. The opposite diffusion-weighted image in a different patient demonstrates restricted diffusion in a larger ACA infarction involving the left paramedian frontal and posterior parietal regions. There is also infarction of the lateral temporoparietal regions bilaterally (both middle cerebral artery [MCA] distributions), greater on the left indicating multivessel involvement and suggesting emboli.
Vascular distributions: Posterior cerebral artery (PCA) infarction. The noncontrast computed tomography (CT) images demonstrate PCA distribution infarction involving the right occipital and inferomedial temporal lobes. The image on the right demonstrates additional involvement of the thalamus, also part of the PCA territory.
The supratentorial vascular territories of the major cerebral arteries are demonstrated superimposed on axial (left) and coronal (right) T2-weighted images through the level of the basal ganglia and thalami. The middle cerebral artery (MCA; red) supplies the lateral aspects of the hemispheres, including the lateral frontal, parietal, and anterior temporal lobes; insula; and basal ganglia. The anterior cerebral artery (ACA; blue) supplies the medial frontal and parietal lobes. The posterior cerebral artery (PCA; green) supplies the thalami and occipital and inferior temporal lobes. The anterior choroidal artery (yellow) supplies the posterior limb of the internal capsule and part of the hippocampus extending to the anterior and superior surface of the occipital horn of the lateral ventricle.
Table 1. Vascular Supply to the Brain
VASCULAR TERRITORY Structures Supplied
Anterior Circulation (Carotid)
Anterior Cerebral Artery Cortical branches: medial frontal and parietal lobe



Medial lenticulostriate branches: caudate head, globus pallidus, anterior limb of internal capsule



Middle Cerebral Artery Cortical branches: lateral frontal and parietal lobes lateral and anterior temporal lobe



Lateral lenticulostriate branches: globus pallidus and putamen, internal capsule



Anterior Choroidal Artery Optic tracts, medial temporal lobe, ventrolateral thalamus, corona radiata, posterior limb of the internal capsule
Posterior Circulation (Vertebrobasilar)
Posterior Cerebral Artery Cortical branches: occipital lobes, medial and posterior temporal and parietal lobes



Perforating branches: brainstem, posterior thalamus and midbrain



Posterior Inferior Cerebellar Artery Inferior vermis; posterior and inferior cerebellar hemispheres
Anterior Inferior Cerebellar Artery Anterolateral cerebellum
Superior Cerebellar Artery Superior vermis; superior cerebellum
Table 2. National Institutes of Health Stroke Scale
  Category Description Score
1a level of consciousness (LOC) Alert



Drowsy



Stuporous



Coma



0



1



2



3



1b LOC questions (month, age) Answers both correctly



Answers 1 correctly



Incorrect on both



0



1



2



1c LOC commands (open and close eyes,



grip and release nonparetic hand)



Obeys both correctly



Obeys 1 correctly



Incorrect on both



0



1



2



2 Best gaze (follow finger) Normal



Partial gaze palsy



Forced deviation



0



1



2



3 Best visual (visual fields) No visual loss



Partial hemianopia



Complete hemianopia



Bilateral hemianopia



0



1



2



3



4 Facial palsy (show teeth, raise brows,



squeeze eyes shut)



Normal



Minor



Partial



Complete



0



1



2



3



5 Motor arm left* (raise 90°, hold 10 seconds) No drift



Drift



Cannot resist gravity



No effort against gravity



No movement



0



1



2



3



4



6 Motor arm right* (raise 90°, hold 10 seconds) No drift



Drift



Cannot resist gravity



No effort against gravity



No movement



0



1



2



3



4



7 Motor leg left* (raise 30°, hold 5 seconds) No drift



Drift



Cannot resist gravity



No effort against gravity



No movement



0



1



2



3



4



8 Motor leg right* (raise 30°, hold 5 seconds) No drift



Drift



Cannot resist gravity



No effort against gravity



No movement



0



1



2



3



4



9 Limb ataxia (finger-nose, heel-shin) Absent



Present in 1 limb



Present in 2 limbs



0



1



2



10 Sensory (pinprick to face, arm, leg) Normal



Partial loss



Severe loss



0



1



2



11 Extinction/neglect (double simultaneous testing) No neglect



Partial neglect



Complete neglect



0



1



2



12 Dysarthria (speech clarity to "mama,



baseball, huckleberry, tip-top, fifty-fifty")



Normal articulation



Mild to moderate dysarthria



Near to unintelligible or worse



0



1



2



13 Best language** (name items,



describe pictures)



No aphasia



Mild to moderate aphasia



Severe aphasia



Mute



0



1



2



3



  Total - 0-42
* For limbs with amputation, joint fusion, etc, score 9 and explain.



** For intubation or other physical barriers to speech, score 9 and explain. Do not add 9 to the total score. NIH Stroke Scale (PDF)



Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.