Close
New

Medscape is available in 5 Language Editions – Choose your Edition here.

 

Abdominal Aortic Aneurysm Workup

  • Author: Saum A Rahimi, MD, FACS; Chief Editor: Vincent Lopez Rowe, MD  more...
 
Updated: Sep 28, 2015
 

Approach Considerations

More than 80% of patients with ruptured abdominal aortic aneurysm (AAA) present without a previous diagnosis of AAA, which contributes to an initial misdiagnosis rate of 24-42%. A rational approach to the diagnostic evaluation is predicated on a high degree of suspicion.

No specific laboratory studies exist that can be used to make the diagnosis of AAA. Laboratory testing may be used to aid in diagnosis of other pathology or associated medical disorders. Options for radiologic evaluation of AAA include ultrasonography, plain radiography, computed tomography (CT), magnetic resonance imaging (MRI), and angiography.

Next

Laboratory Studies

A complete blood count with differential is used to assess transfusion requirements and the possibility of infection. A metabolic panel (including kidney and liver function tests) is indicated for ascertaining the integrity of renal and hepatic function and thus help assess operative risk and guide postoperative management. Blood must be typed and crossmatched to prepare for the possibility of transfusion, including clotting factors and platelets.

Because synthetic material is used in the intervention, any potential foci of infection should be assessed and eliminated preoperatively with the aid of urinalysis.

The preoperative workup should also include assessment of pulmonary function to help evaluate operative risk and determine postoperative care. Patients who can climb a flight of stairs without excessive shortness of breath generally do well. If the patient’s pulmonary status is in question, blood gas measurement and pulmonary function tests are helpful.

Previous
Next

Ultrasonography

Ultrasonography is the standard imaging tool for AAA (see the image below). When performed by trained personnel, it has a sensitivity of nearly 100% and a specificity approaching 96% for the detection of infrarenal AAA. Ultrasonography can also detect free peritoneal blood.

Ultrasonogram from patient with abdominal aortic a Ultrasonogram from patient with abdominal aortic aneurysm (AAA). This aneurysm was best visualized on transverse or axial image. Patient underwent conventional AAA repair.

Ultrasonography is noninvasive and may be performed at the bedside. Bedside emergency ultrasonography should be performed immediately if AAA is suspected. Elderly patients with abdominal pain are prime candidates for bedside ultrasonography screening. (See Bedside Ultrasonography Evaluation of Abdominal Aortic Aneurysm.)

Screening for AAA reduces the mortality from rupture and is cost-effective.[12] The US Preventive Services Task Force recommends ultrasound screening in men aged 65-75 years who have smoked.[4, 5] Abdominal ultrasonography can provide a preliminary determination of aneurysm presence, size, and extent. In addition, it is a cost-effective modality for monitoring patients whose aneurysms are too small for surgical intervention. It is also useful for follow-up after endovascular surgery to assess the durability of the repair.

Limitations of ultrasonography in this setting are few but include inability to detect leakage, rupture, branch artery involvement, and suprarenal involvement. In addition, the ability to image the aorta is reduced in the presence of bowel gas or obesity.

Significant portions of the abdominal aorta (at least one third of its length) are not visualized on bedside emergency ultrasonography in 8% of nonfasting patients.[13] This rate is higher than reported for fasting patients receiving elective ultrasonography for evaluation of their aortas.

Previous
Next

Plain Radiography

Plain radiography is often performed on patients with abdominal complaints before the diagnosis of AAA has been entertained. Using this method to evaluate patients with AAA is difficult because the only marginally specific finding, aortic wall calcification, is seen less than half of the time. Aortic-wall calcification (see the images below) may appear without aneurysm rim calcification, resulting in a high false-negative rate.

Radiograph shows calcification of abdominal aorta. Radiograph shows calcification of abdominal aorta. Left wall is clearly depicted and appears aneurysmal; however, right wall overlies spine.
On radiography, lateral view clearly shows calcifi On radiography, lateral view clearly shows calcification of both walls of abdominal aortic aneurysm, allowing diagnosis to be made with certainty.

Plain radiography should not, however, be ordered for the sole purpose of evaluating suspected AAA; because of its low diagnostic yield, its use can waste time, delay care, and place the patient at risk for aortic rupture and death.

Chest radiography may be employed to gain a preliminary assessment of the status of the heart and lungs. Concurrent pulmonary or cardiac disease may have to be addressed before the AAA is treated.

Previous
Next

Computed Tomography

CT has a sensitivity of nearly 100% for detecting AAA, and it has certain advantages over ultrasonography for defining aortic size, rostral-caudal extent, involvement of visceral arteries, and extension into the suprarenal aorta (see the image below). CT permits visualization of the retroperitoneum, is not limited by obesity or bowel gas, detects leakage, and allows concomitant evaluation of the kidneys. Spiral (helical) CT allows three-dimensional (3D) imaging of abdominal contents, facilitating detection of branch vessel and adjacent organ involvement.

CT demonstrates abdominal aortic aneurysm (AAA). A CT demonstrates abdominal aortic aneurysm (AAA). Aneurysm was noted during workup for back pain, and CT was ordered after AAA was identified on radiography. No evidence of rupture is seen.

Preoperative CT is helpful for more clearly defining the anatomy of the aneurysm and other intra-abdominal pathologic conditions. Nonenhanced CT is used to size aneurysms.[14] As important as sizing the aneurysm is determining the anatomic relations that are relevant to surgical repair. These include the location of the renal arteries, the length of the aortic neck, the condition of the iliac arteries, and the presence of anatomic variants such as a retroaortic left renal vein or a horseshoe kidney.

Enhanced spiral CT of the abdomen and pelvis with multiplanar reconstruction and CT angiography is the modality of choice for preoperative evaluation for open and endovascular repair (see the image below).

Enhanced spiral CT scans with multiplanar reconstr Enhanced spiral CT scans with multiplanar reconstruction and CT angiogram.

In 10-20% of AAA cases, CT scans show focal outpouchings or blebs that are thought to contribute to the potential for rupture. The wall of the aneurysm becomes laminated with thrombus as the blebs enlarge. This process can yield the appearance of a relatively normal intraluminal diameter in spite of a large extraluminal size.

CT is the best modality for determining whether a patient is a candidate for endovascular aneurysm repair (EVAR). It can assess the aneurysm neck diameter, length, and angulation, as well as thrombus within the neck. The CT scan is also useful for assessing iliac vessel diameter, calcification, and tortuosity, which are important for determining whether the endovascular device can be advanced from the femoral artery.

Major disadvantages of CT include potential difficulties with technician availability, higher cost, longer study time, exposure to radiation and contrast material, and the need to send patients with possible rupture out of the emergency department for an extended period.

Previous
Next

Magnetic Resonance Imaging

MRI permits imaging of the aorta comparable to that achievable with CT and ultrasonography, but without subjecting the patient to a dye load or ionizing radiation (see the image below). It may offer better imaging of branch vessels than either CT or ultrasonography does, but it is less valuable in assessing suprarenal extension and is not suitable in patients who are unstable. MRI may have a role in very stable patients with a severe dye allergy.

MRI of 77-year-old man with leg pain believed to b MRI of 77-year-old man with leg pain believed to be secondary to degenerative disk disease. During evaluation, abdominal aortic aneurysm was discovered.

Limitations of MRI in the assessment of AAA are the lack of widespread availability, the need for a stable patient, potential incompatibility with monitoring equipment, and high cost.

Previous
Next

Angiography

Because of advances in CT imaging with 3D reconstruction capability, angiography (see the images below) currently is less often used in preoperative evaluation of AAA than it once was. Arteriography may miss an AAA if there is a lack of calcification because of the laminated thrombus within the AAA making a more normal-appearing aortic lumen. It is primarily used intraoperatively to facilitate endovascular repair.

Arteriography demonstrates infrarenal abdominal ao Arteriography demonstrates infrarenal abdominal aortic aneurysm. This arteriogram was obtained in preparation for endovascular repair of aneurysm.
Lateral arteriogram demonstrates infrarenal abdomi Lateral arteriogram demonstrates infrarenal abdominal aortic aneurysm. Demonstration of superior mesenteric artery, inferior mesenteric artery, and celiac artery on lateral arteriogram is important for complete evaluation of extent of aneurysm.

Limitations on the use of angiography include the invasiveness of the procedure, the cost, the potential lack of operator availability, the considerable time involved, and the risk of complications (eg, bleeding, perforation, and embolization). Routine use of angiography in the evaluation of AAA is not recommended.

Digital subtraction angiography (DSA) requires less time, uses less contrast material, and is less invasive than conventional angiography. However, DSA is not widely available and offers no real advantage over conventional CT.

Intra-aortic CT angiography (IA-CTA) has good sensitivity for locating the Adamkiewicz artery (AKA) in patients with thoracoabdominal aortic aneurysms. In one study, the AKA was visualized by IA-CTA in 27 of 30 cases (90%) before surgery for aneurysm or dissection of the thoracoabdominal aorta.[15] Continuity with the aorta was satisfactorily seen in 26 of 31 (84%) cases. Spinal angiography by selective catheterization confirmed the results of IA-CTA in 75% of cases in which the AKA was visualized.

In a number of centers, magnetic resonance angiography (MRA) is replacing traditional angiographic assessment of aneurysms. MRA provides excellent anatomic definition and 3D assessment of the problem. Gadolinium-enhanced MRA can provide excellent images, even though regional variations in quality are reported.

Previous
Next

Echocardiography

Because of the fluid shift involved during the operative repair of AAA, cardiac function should be assessed by means of echocardiography. Ascertaining the ejection fraction of the patient facilitates planning of the operative intervention and institution of cardiac protective measures as needed. This study is particularly indicated in patients with a history of congestive heart failure or known cardiac enlargement.

Previous
Next

Other Studies

Assessment of pulmonary function is of paramount importance in AAA patients. Because surgical intervention requires an abdominal incision, preoperative assessment of the patient’s pulmonary status allows postoperative care to be appropriately tailored to the patient’s condition.

Assessment of cardiac status is mandatory in all patients with vascular disease. If one vascular bed is involved with an atherosclerotic process, others may be involved as well. Electrocardiographic findings provide a baseline assessment of cardiac rhythm and old disease processes. A stress test can be performed to uncover unsuspected cardiac ischemia. Significant coronary disease may have to be addressed before the AAA can be repaired.

On histologic examination, AAAs contain a chronic inflammatory infiltrate and neovascularity of varying degrees. Inflammatory AAAs may contain germinal centers.

Previous
 
 
Contributor Information and Disclosures
Author

Saum A Rahimi, MD, FACS Interim Chief, Assistant Professor of Surgery, Division of Vascular Surgery, Rutgers Robert Wood Johnson Medical School

Saum A Rahimi, MD, FACS is a member of the following medical societies: American College of Surgeons, Society for Vascular Surgery, Eastern Vascular Society, Vascular Society of New Jersey

Disclosure: Nothing to disclose.

Chief Editor

Vincent Lopez Rowe, MD Professor of Surgery, Program Director, Vascular Surgery Residency, Department of Surgery, Division of Vascular Surgery, Keck School of Medicine of the University of Southern California

Vincent Lopez Rowe, MD is a member of the following medical societies: American College of Surgeons, American Heart Association, Society for Vascular Surgery, Vascular and Endovascular Surgery Society, Society for Clinical Vascular Surgery, Pacific Coast Surgical Association, Western Vascular Society

Disclosure: Nothing to disclose.

Acknowledgements

Suman Annambhotla, MD Fellow in Vascular Surgery, Northwestern University, The Feinberg School of Medicine

Suman Annambhotla, MD is a member of the following medical societies: American College of Surgeons, American Medical Association, Association for Academic Surgery, and Society for Vascular Surgery

Disclosure: Nothing to disclose.

Edward Bessman, MD, MBA Chairman and Clinical Director, Department of Emergency Medicine, John Hopkins Bayview Medical Center; Assistant Professor, Department of Emergency Medicine, Johns Hopkins University School of Medicine

Edward Bessman, MD, MBA is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, and Society for Academic Emergency Medicine

Disclosure: Nothing to disclose.

David FM Brown, MD Associate Professor, Division of Emergency Medicine, Harvard Medical School; Vice Chair, Department of Emergency Medicine, Massachusetts General Hospital

David FM Brown, MD is a member of the following medical societies: American College of Emergency Physicians and Society for Academic Emergency Medicine

Disclosure: lippincott Royalty textbook royalty; wiley Royalty textbook royalty

Jeffrey Lawrence Kaufman, MD Associate Professor, Department of Surgery, Division of Vascular Surgery, Tufts University School of Medicine

Jeffrey Lawrence Kaufman, MD is a member of the following medical societies: Alpha Omega Alpha, American College of Surgeons, American Society for Artificial Internal Organs, Association for Academic Surgery, Association for Surgical Education, Massachusetts Medical Society, Phi Beta Kappa, and Society for Vascular Surgery

Disclosure: Nothing to disclose.

Robert E O'Connor, MD, MPH Professor and Chair, Department of Emergency Medicine, University of Virginia Health System

Robert E O'Connor, MD, MPH is a member of the following medical societies: American Academy of Emergency Medicine, American College of Emergency Physicians, American College of Physician Executives, American Heart Association, American Medical Association, Medical Society of Delaware, National Association of EMS Physicians, Society for Academic Emergency Medicine, and Wilderness Medical Society

Disclosure: Nothing to disclose.

William H Pearce, MD Chief, Division of Vascular Surgery, Violet and Charles Baldwin Professor of Vascular Surgery, Department of Surgery, Northwestern University, The Feinberg School of Medicine

William H Pearce, MD is a member of the following medical societies: American College of Surgeons, American Heart Association, American Surgical Association, Association for Academic Surgery, Association of VA Surgeons, Central Surgical Association, New York Academy of Sciences, Society for Vascular Surgery, Society of Critical Care Medicine, Society of University Surgeons, andWestern Surgical Association

Disclosure: Nothing to disclose.

Gary Setnik, MD Chair, Department of Emergency Medicine, Mount Auburn Hospital; Assistant Professor, Division of Emergency Medicine, Harvard Medical School

Gary Setnik, MD is a member of the following medical societies: American College of Emergency Physicians, National Association of EMS Physicians, and Society for Academic Emergency Medicine

Disclosure: SironaHealth Salary Management position; South Middlesex EMS Consortium Salary Management position; ProceduresConsult.com Royalty Other

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Medscape Salary Employment

References
  1. Blanchard JF, Armenian HK, Friesen PP. Risk factors for abdominal aortic aneurysm: results of a case-control study. Am J Epidemiol. 2000 Mar 15. 151(6):575-83. [Medline].

  2. Lederle FA, Johnson GR, Wilson SE, Chute EP, Littooy FN, Bandyk D, et al. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med. 1997 Mar 15. 126(6):441-9. [Medline].

  3. Wassef M, Baxter BT, Chisholm RL, Dalman RL, Fillinger MF, Heinecke J, et al. Pathogenesis of abdominal aortic aneurysms: a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vasc Surg. 2001 Oct. 34(4):730-8. [Medline].

  4. [Guideline] U.S. Preventive Services Task Force. Screening for abdominal aortic aneurysm: recommendation statement. Ann Intern Med. 2005 Feb 1. 142(3):198-202. [Medline]. [Full Text].

  5. Guirguis-Blake JM, Beil TL, Senger CA, Whitlock EP. Ultrasonography screening for abdominal aortic aneurysms: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2014 Mar 4. 160(5):321-9. [Medline].

  6. Svensjö S, Björck M, Gürtelschmid M, Djavani Gidlund K, Hellberg A, Wanhainen A. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation. 2011 Sep 6. 124(10):1118-23. [Medline].

  7. Majumder PP, St Jean PL, Ferrell RE, Webster MW, Steed DL. On the inheritance of abdominal aortic aneurysm. Am J Hum Genet. 1991 Jan. 48(1):164-70. [Medline]. [Full Text].

  8. Tilson MD, Ozsvath KJ, Hirose H, Xia S. A genetic basis for autoimmune manifestations in the abdominal aortic aneurysm resides in the MHC class II locus DR-beta-1. Ann N Y Acad Sci. 1996 Nov 18. 800:208-15. [Medline].

  9. Ambler GK, Gohel MS, Mitchell DC, Loftus IM, Boyle JR. The Abdominal Aortic Aneurysm Statistically Corrected Operative Risk Evaluation (AAA SCORE) for predicting mortality after open and endovascular interventions. J Vasc Surg. 2014 Jun 28. [Medline].

  10. Von Allmen RS, Powell JT. The management of ruptured abdominal aortic aneurysms: screening for abdominal aortic aneurysm and incidence of rupture. J Cardiovasc Surg (Torino). 2012 Feb. 53(1):69-76. [Medline].

  11. Anjum A, von Allmen R, Greenhalgh R, Powell JT. Explaining the decrease in mortality from abdominal aortic aneurysm rupture. Br J Surg. 2012 May. 99(5):637-45. [Medline].

  12. Daly KJ, Torella F, Ashleigh R, McCollum CN. Screening, diagnosis and advances in aortic aneurysm surgery. Gerontology. 2004 Nov-Dec. 50(6):349-59. [Medline].

  13. Blaivas M, Theodoro D. Frequency of incomplete abdominal aorta visualization by emergency department bedside ultrasound. Acad Emerg Med. 2004 Jan. 11(1):103-5. [Medline].

  14. Bobadilla JL, Suwanabol PA, Reeder SB, Pozniak MA, Bley TA, Tefera G. Clinical implications of non-contrast-enhanced computed tomography for follow-up after endovascular abdominal aortic aneurysm repair. Ann Vasc Surg. 2013 Nov. 27(8):1042-8. [Medline].

  15. Clarençon F, Di Maria F, Cormier E, Gaudric J, Sourour N, Gabrieli J, et al. Comparison of intra-aortic computed tomography angiography to conventional angiography in the presurgical visualization of the Adamkiewicz artery: first results in patients with thoracoabdominal aortic aneurysms. Neuroradiology. 2013 Oct 2. [Medline].

  16. Brewster DC, Cronenwett JL, Hallett JW Jr, Johnston KW, Krupski WC, Matsumura JS. Guidelines for the treatment of abdominal aortic aneurysms. Report of a subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery. J Vasc Surg. 2003 May. 37(5):1106-17. [Medline].

  17. The UK Small Aneurysm Trial Participants. Mortality results for randomized controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 1998. 353:1649-55.

  18. Lederle FA, Wilson SE, Johnson GR, Reinke DB, Littooy FN, Acher CW, et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N Engl J Med. 2002 May 9. 346(19):1437-44. [Medline].

  19. Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002 Sep. 36(3):589-97. [Medline]. [Full Text].

  20. Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg. 1991 Nov. 5(6):491-9. [Medline].

  21. Reichart M, Geelkerken RH, Huisman AB, van Det RJ, de Smit P, Volker EP. Ruptured abdominal aortic aneurysm: endovascular repair is feasible in 40% of patients. Eur J Vasc Endovasc Surg. 2003 Nov. 26(5):479-86. [Medline].

  22. Schanzer A, Greenberg RK, Hevelone N, et al. Predictors of abdominal aortic aneurysm sac enlargement after endovascular repair. Circulation. 2011 Jun 21. 123(24):2848-55. [Medline].

  23. Tan JW, Yeo KK, Laird JR. Food and Drug Administration-approved endovascular repair devices for abdominal aortic aneurysms: a review. J Vasc Interv Radiol. 2008 Jun. 19(6 Suppl):S9-S17. [Medline].

  24. United Kingdom EVAR Trial Investigators. Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D, Sculpher MJ. Endovascular versus open repair of abdominal aortic aneurysm. N Engl J Med. 2010 May 20. 362(20):1863-71. [Medline].

  25. United Kingdom EVAR Trial Investigators, Greenhalgh RM, Brown LC, Powell JT, Thompson SG, Epstein D. Endovascular repair of aortic aneurysm in patients physically ineligible for open repair. N Engl J Med. 2010 May 20. 362(20):1872-80. [Medline].

  26. De Bruin JL, Baas AF, Buth J, Prinssen M, Verhoeven EL, Cuypers PW, et al. Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N Engl J Med. 2010 May 20. 362(20):1881-9. [Medline].

  27. White GH, Yu W, May J. Endoleak--a proposed new terminology to describe incomplete aneurysm exclusion by an endoluminal graft. J Endovasc Surg. 1996 Feb. 3(1):124-5. [Medline].

  28. Filardo G, Lederle FA, Ballard DJ, et al. Immediate open repair vs surveillance in patients with small abdominal aortic aneurysms: survival differences by aneurysm size. Mayo Clin Proc. 2013 Sep. 88(9):910-9. [Medline].

  29. O’Riordan M. EVAR Improves Aneurysm-Related Survival Over Surgery. Medscape Medical News. Available at http://www.medscape.com/viewarticle/778123. Accessed: February 6, 2013.

  30. Mehta M, Paty PS, Byrne J, Roddy SP, Taggert JB, Sternbach Y, et al. The impact of hemodynamic status on outcomes of endovascular abdominal aortic aneurysm repair for rupture. J Vasc Surg. 2013 May. 57(5):1255-60. [Medline].

  31. Le Manach Y, Collins GS, Ibanez C, Goarin JP, Coriat P, Gaudric J, et al. Impact of Perioperative Bleeding on the Protective Effect of ß-Blockers during Infrarenal Aortic Reconstruction. Anesthesiology. 2012 May 30. [Medline].

  32. Lederle FA, Freischlag JA, Kyriakides TC, Padberg FT Jr, Matsumura JS, et al. Outcomes following endovascular vs open repair of abdominal aortic aneurysm: a randomized trial. JAMA. 2009 Oct 14. 302(14):1535-42. [Medline].

  33. Nishimori M, Low JH, Zheng H, Ballantyne JC. Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst Rev. 2012 Jul 11. 7:CD005059. [Medline].

 
Previous
Next
 
Radiograph shows calcification of abdominal aorta. Left wall is clearly depicted and appears aneurysmal; however, right wall overlies spine.
On radiography, lateral view clearly shows calcification of both walls of abdominal aortic aneurysm, allowing diagnosis to be made with certainty.
CT demonstrates abdominal aortic aneurysm (AAA). Aneurysm was noted during workup for back pain, and CT was ordered after AAA was identified on radiography. No evidence of rupture is seen.
Arteriography demonstrates infrarenal abdominal aortic aneurysm. This arteriogram was obtained in preparation for endovascular repair of aneurysm.
Lateral arteriogram demonstrates infrarenal abdominal aortic aneurysm. Demonstration of superior mesenteric artery, inferior mesenteric artery, and celiac artery on lateral arteriogram is important for complete evaluation of extent of aneurysm.
Arteriogram after successful endovascular repair of abdominal aortic aneurysm.
Ultrasonogram from patient with abdominal aortic aneurysm (AAA). This aneurysm was best visualized on transverse or axial image. Patient underwent conventional AAA repair.
MRI of 77-year-old man with leg pain believed to be secondary to degenerative disk disease. During evaluation, abdominal aortic aneurysm was discovered.
Age is risk factor for development of aneurysm.
Inflammation, thinning of media, and marked loss of elastin.
Pulsatile abdominal mass.
Aneurysm with retroperitoneal fibrosis and adhesion of duodenum.
Aortic endoprosthesis (Cook aortic and aortobi-iliac endograft).
Endoaneurysmorrhaphy
Endovascular grafts.
Atheroemboli from small abdominal aortic aneurysms produce livedo reticularis of feet (ie, blue toe syndrome).
Enhanced spiral CT scans with multiplanar reconstruction and CT angiogram.
Angiography is used to diagnose renal area. In this instance, endoleak represented continued pressurization of sac.
Table 1. Operative Mortality Risk of Open Repair of Abdominal Aortic Aneurysm
Lowest Risk Moderate Risk High Risk
Age < 70 y Age 70-80 y Age 80 y
Physically active Active Inactive, poor stamina
No clinically overt cardiac disease Stable coronary disease; remote MI; LVEF >35% Significant coronary disease; recent MI; frequent angina; CHF; LVEF < 25%
No significant comorbidities Mild COPD Limiting COPD; dyspnea at rest; O2 dependency; FEV1 < 1 L/sec
... Creatinine 2.0-3.0 mg/dL ...
Normal anatomy Adverse anatomy or AAA characteristics Creatinine >3 mg/dL
No adverse AAA characteristics ... Liver disease (↑ PT; albumin < 2 g/dL)
Anticipated operative mortality, 1%-3% Anticipated operative mortality, 3%-7% Anticipated operative mortality, at least 5%-10%; each comorbid condition adds ~3%-5% mortality risk
AAA—abdominal aortic aneurysm; CHF—chronic heart failure; COPD—chronic obstructive pulmonary disease; FEV1 —forced expiratory volume in 1 second; LVEF—left ventricular ejection fraction; MI—myocardial infarction; PT—prothrombin time.
Table 2. Abdominal Aortic Aneurysm Size and Estimated Annual Risk of Rupture
AAA Diameter (cm) Rupture Risk (%/y)
< 4 0
4-5 0.5-5
5-6 3-15
6-7 10-20
7-8 20-40
>8 30-50
AAA—abdominal aortic aneurysm.
Table 3. Factors Affecting Risk of Abdominal Aortic Aneurysm Rupture
  Low Risk Average Risk High Risk
Diameter < 5 cm 5-6 cm >6 cm
Expansion < 0.3 cm/y 0.3-0.6 cm/y >0.6 cm/y
Smoking/COPD None, mild Moderate Severe/steroids
Family history No relatives One relative Numerous relatives
Hypertension Normal blood pressure Controlled Poorly controlled
Shape Fusiform Saccular Very eccentric
Wall stress Low (35 N/cm2 Medium (40 N/cm2 High (45 N/cm2)
Sex ... Male Female
COPD—chronic obstructive pulmonary disease.
Previous
Next
 
 
 
 
 
All material on this website is protected by copyright, Copyright © 1994-2016 by WebMD LLC. This website also contains material copyrighted by 3rd parties.